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ABSTRACT

Verification and validation (V&V) are essential concerns in the development of safety-critical distributed
software systems. V&V efforts targeting full system implementations rely on testing, which requires real-
world deployments and cumbersome analysis to track down issues across distributed software components.
Here, we propose a simulation-based development and testing framework for distributed systems following
the event-driven architecture (EDA) paradigm. During development, unmodified software components can
be executed in their interaction with a simulated environment, allowing for early testing under envisioned
deployments. After introducing the interplay of EDA and discrete-event simulation, we present our
framework’s architecture and the API offered to software components, which closely follows accepted
EDA principles. We demonstrate the use of our framework on a medical software system used in the
diagnosis of rare genetic diseases. By observing the system’s interaction with simulated laboratories, the
feedback loop between diagnoses by laboratories and classifications from the software system is evaluated.

1 INTRODUCTION

Software verification and validation (V&V) methods (Rodriguez et al. 2019) are essential parts of the
development process of safety-critical software systems, e.g., in medicine (Arcaini et al. 2015). However,
these methods struggle to capture the complex interactions among components that are characteristic for
modern distributed software systems. For instance, in a self-adaptive software system (Cheng et al. 2008), a
component’s behavior may change dynamically based on a feedback loop involving other components and an
external environment. While models of the system and environment may allow for design-time verification
of desired properties, the system’s implementation may inadvertently diverge from the design. On the other
hand, unit and integration testing typically does not consider complex interactions with the environment.
Runtime V&V can detect violations of the expected system behavior during deployment (Tamura et al.
2013), but is insufficient if the consequences of violations in a real-world context cannot be tolerated.

In the present paper, we propose a simulation-centric development approach for distributed software
systems, wherein V&V efforts can target real implementations of the components, which are executed
in virtual time and interact with a model of the environment (e.g., the users of the system). We target
systems that follow the event-driven architecture (EDA) paradigm, in which loosely coupled components
communicate asynchronously in the form of notifications signifying events, i.e., significant changes in
state (Chandy 2006). This approach maps naturally to discrete-event simulation (DES), in which simulated
entities evolve along a virtual timeline, by skipping from one instantaneous state change to the next (Law
2013). The use of simulation enables V&V with respect to envisioned deployments at various scales and
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Figure 1: Our approach: an EDA system implementation is executed either in a simulation for V&V
(orange box), or in a real-world deployment (green box). During V&YV, unmodified components interact
with a model of the environment.

under arbitrary influences from the environment. In particular, feedback loops between the EDA system and
the environment can be studied without the cost and safety concerns of real-world testing. Importantly, the
component code tested in the simulation can be deployed to production without modification (cf. Figure 1).

Related Work Existing approaches for executing distributed software systems in a simulation modify
or substitute operating system functionalities to orchestrate the execution of the software components and
the time advancement (Jansen and Hopper 2012; Jin et al. 2014; Lamps et al. 2014). We take a different
approach, enabling a user-level implementation by making use of the natural fit of EDA systems to the DES
paradigm. The closest existing work targeting EDA systems proposes modeling and simulation languages
for EDA systems (Clark and Barn 2011). In contrast, we allow components to be implemented using
arbitrary general-purpose programming languages and software libraries.

2 SIMULATING EDA IN VIRTUAL TIME

Our goal is the execution of a real EDA system in its interaction with either a real or a simulated environment,
with minimal changes required for transitioning between the two modes of execution. The use of simulation
makes it possible to parameterize the envisioned deployment of the system (e.g., execution speed) as well as
the environment (e.g., the distribution of incoming user requests). In this setting, methods from experiment
design (Kleijnen 1998; Sanchez et al. 2020) can be applied, for example, to systematically assess the
behavior of the system when varying parameters of the environment.

In the following, we describe how we connect concepts from EDA and DES to execute unmodified
EDA components interacting with a simulated environment. In particular, this involves the translation
of placement of occurrences in the EDA system on a virtual timeline, which requires EDA events to be
dynamically diverted to a central simulator. Further, we detail how distributed EDA systems are imitated
by sequential simulations and describe the constraints that must be satisfied to achieve correctness.

2.1 Overview

In the following, we introduce the central concepts of our approach.

Event-Driven-Architecture (EDA) In EDA, loosely coupled components observe events and notify
other components about events using messages (Eugster et al. 2003; Miihl et al. 2006). An event is a
“significant change in state” (Chandy 2006), whereas the corresponding notification message is used to
signal the occurrence of the event to other components. Notifications are disseminated by the notification
service (NoSe) using a publish-subscribe (pub/sub) API (Miihl et al. 2006), in which notification messages
are published on a topic and all subscribers to this topic are informed.

Discrete-Event Simulation (DES) In DES, events are used to control the operation of the simulation.
A modeled system is simulated by changing the state of simulation entities at discrete time points (Law
2013). These time points, signified by events, occur in virtual time. Pending events are stored in an event
queue. The simulator advances virtual time by iteratively dequeueing and executing the event with the
lowest timestamp. This execution may update the state of simulation entities and schedule new events by
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Figure 2: The system’s execution during simulation Figure 3: During simulation, processes (which may
is based on a mapping of physical time to virtual overlap in virtual time) are executed sequentially in
time via a time model. wall-clock time.

inserting them into the event queue. In this manner, virtual time advances from one event to the next in
timestamp order, until the event queue is empty or a termination condition is met.

Both in EDA and in DES, events represent changes in state. However, in DES the state changes are
triggered directly by the simulator, while the focus in EDA is on observing and communicating them.

Processes To enable the execution of EDA systems in a DES context, we employ the notion of
processes. We define a process (bar in Figure 2) as a non-preemptable reaction of a component to a
single notification (arrow in Figure 2). Hence, a process represents the execution of component code as a
consequence of receiving a notification. Over the course of a running process, new notifications may be
published. Components follow this process-based mode of execution independently of whether the EDA
system is embedded in a simulation or deployed in the real-world (Figure 1). This notion of a process is
roughly analogous to a “service” in service-oriented and microservice architectures.

Notions of Time To temporally relate a sequence of state changes observed in a real EDA system
to those observed in a simulation, three different notions of time must be distinguished (Fujimoto 2000).
In a real-world deployment, the EDA system and its various processes execute in physical time (PT). In
contrast, the advancement of time in a simulated execution of an EDA system or process occurs with respect
to virtual time (VT). During simulation, PT is mapped to VT based on a time model. The execution of the
simulation itself requires real-world processing. The time needed to do so is measured in wall-clock time
(WCT), which is the ordinary notion of time observed in the real world.

Translation between Timelines Figures 2 and 3 contrast the execution and simulation of an EDA
system on the different timelines. In the descriptions and our prototypical implementation, the simulation is
assumed to be sequential, although parallel or distributed simulation (Fujimoto 2000) could also be applied.
In the following, we describe the translation of overlapping EDA processes to a sequential simulation.

Suppose for simplicity of the illustration that processing times in the simulation are chosen to be
identical to those observed in a real-world deployment. Then, Figure 2 represents the desired behavior
as a mapping from points in PT at which events and processes occur in the real deployment to the same
points in VT during a simulation run. The simulation imitates the overlapping execution of processes in
VT, while serializing the process execution in WCT (cf. Figure 3). In WCT, the process with the lowest
timestamp is always executed to completion before the next process is executed. For instance, processes
Pd-1 and Pb are executed sequentially in WCT, whereas in VT, their execution overlaps as it does in PT.

Constraints  Our approach puts only mild constraints on the EDA system under development. To
guarantee that the component behavior during simulation matches the behavior in a real-world deployment,
we require that components do not share memory directly, i.e., all communication among processes relies on
notifications. Further, our approach requires the creation of a model of the environment. These constraints
are detailed further in Section 3.
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Figure 4: The overall system is composed of a reusable framework library with API, notification service
(NoSe) and simulator (blue), a model of the environment (orange), and components, which communicate
via the NoSe API (green). The parameters used in individual simulation runs are configured as part of the
experiment design.

2.2 Architecture

Figure 4 shows the building blocks of the overall system and their interaction during a simulation study.
The EDA components employ a client library with a pub/sub API to interface with a central notification
service (NoSe). The implementations of the client library and NoSe are central to the simulation-based
execution. As in real world deployment, the NoSe keeps track of subscriptions to the communication
channels and routes notifications to the respective subscribers. The client provides an interface to produce
notifications for detected events and consume and process events received from a subscribed channel.
However, to translate the execution to virtual time, published notifications are first sent to the simulator,
which enqueues the notifications as timestamped events in its event queue. The time stamp is calculated
according to the time model. Since EDA is a distributed system architecture, we cannot make assumptions
on the locations where components are executed. Thus, all communication among components and with
the simulator requires the message data to be serialized, reflecting the loosely coupled nature of the EDA
concepts. The notifications are only propagated to the receivers once virtual time has advanced to the
respective events. We go into more detail on the notification dissemination in Section 2.4.

The environment is represented by a simulation model, which generates and processes events to interact
with the EDA system. The model of the environment can be designed freely depending on the requirements
of a given verification and validation study. A particular benefit of our simulation-based approach is the
opportunity to include complex environment models in order to study feedback loops between EDA system
and environment.

Considering the EDA system, the only components that must be modeled are gateway components,
which act as the interface between the environment and the EDA system (e.g., web front-ends). A model
of a gateway component translates simulation events generated by the environment (e.g., user accesses to a
website) to simulated EDA events, and vice versa. Apart from gateway components, all EDA components
are executed using their unmodified implementations.

To carry out a simulation study, parameters of the environment model as well as the time model that
maps process durations from physical time to virtual time are configured and may be varied systematically
using established experiment design techniques (Kleijnen 1998; Sanchez et al. 2020).
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2.3 Simulation Events
The simulation is controlled entirely using three types of simulation events:

1. Environment events,
2. API events, and
3. Control events.

All these events are exclusively used in the communications (i.e., via socket) between EDA modules
(components and NoSe) and the simulator. All events hold a timestamp in virtual time and a data field.

Environment events represent occurrences in the environment. They can originate from the environmental
model as well as the EDA system during an interaction with the environment via the modeled gateway.
The timestamps of environment events that stem from the EDA system are set based on the advancement
of virtual time in the EDA system. An event’s data field can be used to hold arbitrary data to be interpreted
by the modeled gateway component or the environment model.

API events are used in the EDA communication between NoSe and components. The canonical events
include notifications, subscriptions and unsubscriptions. However, other broker protocol messages such
as connection handshakes could be included as well. We recall that an EDA event is a state change
observed by a component. A representation of the EDA event is disseminated to other components as a
notification message. The main API event represents this dissemination by encapsulating the notification
with a timestamp in virtual time, which is generated either implicitly or based on a component-specific
measure of progress by our library (see Section 3). The resulting simulation event is then rerouted to the
simulator. The API event’s data field carries the original notification message consisting of header and
body with an identifier of the notification’s publisher component in the header. Once the notification event
is executed by the simulator, the publisher continues execution. Subsequently, only the notification itself
is needed to continue, whereas the encapsulation is discarded for compatibility with the communication
flow in a real-world deployment. Other API events are routed through the simulator in the same fashion
(see Section 2.4 for a more detailed description of the dissemination process).

Finally, to schedule and serialize processes correctly, simulator, NoSe and NoSe clients schedule control
events. For instance, if a notification arrives at a component that is blocked due to a currently running
process, the delivery of the notification must be postponed to a later point in virtual time. Consider the
scenario from Figure 2:

1. Component Cc sends a notification to component Cd, which starts a process Pd-2 at component
Cd at virtual time t3.

2. Component Cb sends another notification while Pd-2 is still running at virtual time t4. Assuming
component Cd can only execute one process at a time (as we require for state isolation; see Section
3.), this notification is blocked and cannot start a new process.

3. The notification from Component Cb has to be requeued to a time, i.e., virtual time t5, when Pd-2
will have completed.

In a real-world deployment, the NoSe handles (re-)dissemination of notifications to the components.
However, in a simulation run, event dissemination is controlled by the simulator and triggered by simulation
events. Hence, a new simulation event is required for dissemination retries (from blocked events), which
can be achieved by generating a control event that reschedules notifications within the NoSe’s event queue.

2.4 Implementation Specifics

While developing a prototype of the framework, we discovered some details that are common for any

implementation. Here we discuss these framework specifics excluding DES implementation details.
Initialization  Since the EDA components and the NoSe are distributed, the initialization must enable

communication between the components and the simulator. Since the simulation experiment determines
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the involved components, the starting of components is initiated by the simulator. In contrast, due to the
simulator’s centrality, the communication connections to the simulator are initiated by the NoSe and the
individual components. Additionally, since components are likely to attempt to connect to the NoSe during
startup, the NoSe is initialized before any component is started. Only after all components have signaled
the completion of initialization, the simulator begins executing events.

Component synchronization Since all events are controlled by the simulator, it must be aware of
all components known to the NoSe. Based on this knowledge, notifications are disseminated as follows.
The simulator executes a notification event which starts a process in a component (step 1 in Figure 5a).
During the process another notification is published (2) which is scheduled as a simulation event by the
component client before sending it to the NoSe. This event is dequeued later in the simulator (in the
meantime other events might be scheduled) and a simulation event informs the client to continue (3).
Now, the conventional EDA execution flow continues, and the client sends the event to the NoSe (4) as
an API event. From there, notifications are disseminated as API events to all subscribed components (5).
Simultaneously, a list of all recipients is sent to the simulator (same step, also 5) to track which components
need to signal their completion. All components that accept the event execute the corresponding process
and send an event signaling completion to the simulator (6). Once all components in the affected list of
step 5 have responded, the current simulation step is finished, and the next event can be dequeued (7).
Components that are blocked due to running processes send a rejection to the NoSe (6 in Figure 5b) instead
of a completion event to the simulator. Rejected events are rescheduled in the simulator, and a completion
event in the name of the rejecting component is sent (8). When a previously rejected event is executed by
the simulator, it is once again sent to the NoSe (9) where it is forwarded to the blocking component (10).
If the component is not busy anymore, the corresponding process is executed and a completion event is
sent to the simulator (as in 6 in Figure 5a). Once the completion event has been received, the simulator
can execute the next event (11).

3 SYSTEM DEVELOPERS’ PERSPECTIVE

Time Model. The execution of an EDA system in virtual time allows a time model to be chosen as part
of the experiment design. The time model maps the progress of processes to virtual time. For instance, the
durations may be determined based on the processing speed expected from the hardware to be used once
the system is deployed. However, to achieve transparency, the process durations can also be measured on
the fly on the hardware that executes the simulation, by using the process durations observed in wall-clock
time as the virtual durations. The point in virtual time at which a notification is published can then be
calculated as VTioity = WCThotity — W CTprocess + V Tprocesss Where WCT oigy — W CTprocess 1S the duration
from process start to the notification in wall-clock time, and V Tjocess 1S the process start time in virtual
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Figure 5: The main API events during dissemination of notifications in simulation mode.
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time used as an offset. Of course, durations can also be scaled to experiment with faster or slower hardware
in the envisioned deployment. As a downside of relying on processing durations measured in wall-clock
time, the simulation results become machine-dependent and non-deterministic. An alternative is to record
application-specific measures of progress within components, (e.g., the number of database records updated
as a reaction to an event) based on which process durations can be calculated deterministically according to
a chosen time model. To offer these modes of time advancement, we slightly extend the traditional pub/sub
API (Miihl et al. 2006) (see Figure 6). Optional arguments allow a component to quantify the progress
made throughout the current process, from which the NoSe client computes a corresponding virtual time
according to the time model.

These functions cover all basic pub/sub functionality. However, in future work we plan to extend the
API to include the configuration of quality of service options and callbacks for error handling.

State Isolation To maintain consistency between the components’ states in the simulation and a
real-world deployment, processes of separate components cannot share memory directly; instead, all state
must be shared via notifications. Similarly, concurrent processes within a single component cannot share
state. Due to the serialization of processes during simulation, any race conditions that would be observed
in the deployed system would otherwise not be reflected in virtual time. For this reason, we prohibit
component level concurrent processes entirely and require the blocking behavior of components.

Environment Modeling The discrete-event model used to represent the environment in the simulation
can be designed freely according to the needs of the verification and validation study. To closely represent
environment behavior that may be observed during deployment, the model should be designed to follow
real-world data, e.g., from surveys or measurements. As a trivial example, the environment model could
simply replay user requests recorded in a previous deployment of the system, or generate requests according
to a probability distribution fitted to the data. However, a key benefit of the simulation-based approach is
the capability of representing feedback between the EDA system and a dynamic environment. For instance,
user requests may depend on the responses received from the EDA system as reactions to prior requests.
The model developer may also include hypothetical behavior in the environment model in order to carry out
so-called what if analyses (Banks 2000), e.g., to study the system’s behavior under bursts of user requests
or the robustness of the system when faced with erroneous input data. The creation of the model can draw
on established methods from the field of modeling and simulation (?).

4 CASE STUDY

It is assumed that 350 million people worldwide are affected by rare diseases (Faviez et al. 2020). As most
of these are of genetic origin (Faviez et al. 2020), whole-exome sequencing (WES) has become the standard
tool for diagnosing such diseases. The diagnosis process can be roughly outlined as follows (Quintans
et al. 2014): A physician sends a genetic sample from the patient, e.g., blood, to a genetic laboratory

interface NoSeClient
// connect to NoSe at ’address’
fn connect (address [, progressMeasure]);
// disconnect from NoSe
fn disconnect ([progressMeasure]) ;
// disseminate observed event
fn publish(notification[, progressMeasure]l);
// subscribe to a filter to receive notifications
fn subscribe (filter[, progressMeasure]) ;
// register callback function for received notifications
fn register_notify(notificationCallback);
// unsubscribe from previous subscription filter
fn unsubscribe (filter[, progressMeasure]);

Figure 6: API as pseudocode.
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that prepares the sample and sequences the patient’s exome. A reporter subsequently reviews the genetic
variants, i.e., the deviations of the patients’ DNA from a reference genome, to identify the disease-causing
variants and reports the findings to the physician.

However, in a typical WES case, 25000 to 75000 (Negishi et al. 2015) variants have to be narrowed to
only a handful of disease-causing variants. Variant prioritization methods aim at supporting the reporter by
predicting the pathogenicity-likelihood of the variants using classification models (Quintans et al. 2014). To
this end, these models are trained on data from curated variant-pathogenicity associations from databases,
e.g., ClinVar (Landrum et al. 2014), in combination with annotations describing the biological context of
the variants, e.g., their evolutionary conservation (Eilbeck et al. 2017).

In the following, we demonstrate our prototype in a scenario in which the variant-pathogenicity
associations from the reviewing process of the reporters are also considered when learning a variant
prioritization method. In this scenario, the medical environment of physicians and reporters interacts with
our implementation of a self-learning system. This interaction introduces a feedback loop in which the
self-learning system uses final variant assessments (created as part of diagnoses) as training data to learn
prioritization methods which, in turn, are used to support the same reporters in their assessment. Such
feedback loops are common for self-adaptive software systems (Cheng et al. 2008) (like our learning
system) and under active research (Weyns et al. 2021). They tend to amplify output that is fed back to
the inputs, as in our case, where diagnoses should improve later diagnoses while simultaneously posing a
risk of amplifying diagnosis errors. Given the importance of the feedback loop behavior, thorough tests
should be conducted during the development cycle and lifetime of the software to ensure robustness. With
this case study, we illustrate the use of our framework and the analysis of feedback dynamics.

4.1 EDA-Prototype

The learning system contains two main workflows: 1. The classification pipeline with patient variants as
input and their predicted pathogenicity-likelihood as output, and 2. an adaptation loop which monitors
database changes and diagnoses to find the best points in time for learning runs. The classification pipeline
can be integrated seamlessly in a web frontend where reporters filter variants according to their workflow.
Rankings can then be displayed as an additional column in the currently listed variants. This frontend is
the interface between environment (human interaction) and system (EDA implementation), hence it will
be a gateway component that has to be maintained in a version for simulation runs and in a version for
the real environment. As far as the system is concerned, the reporter workflow starts by uploading the
patient’s information and his or her variants at the frontend. After the upload, the variants are annotated
with information describing the biological context of the variants. With the annotations as features, the
current classifier calculates a pathogenicity score by which the variants can be ranked. The variants can
now be returned to the frontend to be displayed, filtered and diagnosed. Finished diagnoses are sent to
the physicians for patient treatment but also collected by our system as part of the last step in the reporter
workflow, while respecting legal constraints. The accumulating variant assessments are monitored in the
second workflow (the adaptation loop), together with changes in public databases. If the accumulating
changes justify a new training process, a machine learning run is configured and executed. The performance
of the resulting classifier is tested in a final step. If the newly trained classifier’s ranking precision is superior,
it is used in future reporter interactions.

4.2 Simulation Experiment

We exercise the feedback loop among the EDA system and the reporters using synthetic case data. Each
variant in a generated case is associated with a point in a two-dimensional feature space based on which a
binary classification is carried out using logistic regression. Both the initial training data and the reports are
affected by random errors, which we describe below. Since the true class membership of each generated
variant is known, we can assess the propagation of errors through the system.
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Environment Model We defined the simulation model of the environment as a DEVS model (Van Ten-
deloo and Vangheluwe 2018). The model consists of the three components of Physician, Laboratory reporter,
and Consensus, each realized as an atomic DEVS model. The Physician component generates synthetic
cases with exponentially distributed delays (see Figure 7). Part of its state is a seed used for generating cases.
Cases are forwarded to Laboratory reporters who annotate cases with features later used by the learned
classifiers. Laboratory reporters collect the cases and request pathogenicity scores from the EDA software
system. The scores received from the software system are then compared to the reporters’ assessments.

We define two types of reporters, which differ in their reaction when their assessments deviate from the
classifier’s scores. If the number of deviating assessments exceeds a deviation threshold, cautious reporters
consult their peers at the same laboratory to determine a consensus as the final assessment. Otherwise,
they accept the classifier’s suggestion. In contrast, bold reporters always maintain their own assessment.

Each model’s state consists of a variable that shows the phase the model is in, e.g., idle, or assess,
and further information ?x to keep track of data or other information, e.g., cases or a prioritizing list of
variants. As usual in DEVS, the external transition function &,,, defines how the model reacts to incoming
events, whereas the internal transitions J;,, are triggered by the passage of time. A time advance function
(ta) defines how long each state persists per se. At the moment an internal transition takes place, an output
is produced by the output function A. From the perspective of the environment, the EDA system acts as
a DEVS model that takes case data and diagnoses and returns variant rankings. For the case study, we
assume that the processing time of these actions is negligible.

In the case study, we focus on the effects of the consensus mechanism on the propagation of erroneous
assessments. Figure 8 shows the distribution of the synthetic data used to generate cases. The classes of
benign (top left) and pathogenic (bottom right) variants are drawn from two-dimensional normal distributions
with covariance 0.03 and mean (0.25,0.75) and (0.75,0.25), respectively. We model errors by a probability
p of assigning the classification “benign” without consideration of the variant’s actual class. For instance,
if p equals 1, all variants are assessed to be benign. This type of probabilistic error is used when generating

Physician:

Ot = (%, %, %) — (%)

S = (idle, *) — (idle, =)

ta = (idle, *) — exponential(lambda)
A = (idle, ?7x) — case(?x)

Laboratory reporter:
Oexr = ((+, idle, 7x), *, case) — (x, systemRequest,appendX(?x, case))
((x, idle, ?x), =*, rankedVariants) — (x, assess, appendX(?x, rankedVariants))
((cautious, idle, ?x), *, consensus) — (cautious, reassess, assessX(?x, consensus))
i = (%, systemRequest, ) — (x, idle, *)
(bold, assess, ?x) — (x, idle, cleanUp(?x))
(cautious, assess, *) — (x, idle, )
(cautious, reassess, 7x) — (x, idle, cleanUp(?x))
ta = (*, systemRequest,x) — €
(x, assess, *) — €
(*, reassess,x) — €
(%, idle, #) — oo
A = (*, systemRequest, 7x) — case(?x)
(bold,assess, ?x) — { rankedVariants(?x), report(rankedVariants(?x)) }
(cautious, assess, ?x) — evalRankedVariants(?x)
(cautious, reassess, ?x) — { rankedVariants(?x), report(rankedVariants(?x)) }

Consensus:
Oexr = ((idle, ?x), *, variants) — (assess, appendX(?x, variants))
Oinr = (assess, 7x) — (idle, cleanUp(?x))
ta = (assess,*) — €
(idle, %) — oo
A = (assess, ?7x) — evaluatedConsensus(?x)

Figure 7: Excerpt from the environment DEVS models.
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the initial data used to train the classifier as well as in the assessments made by individual reporters or as
a consensus. Initially, the classifier is trained using 500 samples with p = 0.1. The same value for p is
used in the assessments by individual reporters. Since we assume that a consensus leads to more accurate
assessment, we set p = 0.05 in this case. We populate the environment with two cautious reporters and one
bold reporter. Case generation and assessment begins after one day of virtual time, each case involving the
assessment of 100 gene variants. The times between new cases are drawn from an exponential distribution
with a mean of three hours. The classifier is newly trained once ten new reports have been received, the
training data being comprised of the initial training data and all assessments by reporters up to this point in
time. To allow us to study the effects of erroneous assessments on future classifications, the bold reporter
produces highly erroneous assessments throughout the first three days of activity, i.e., days 1 through 3.
During this time span, we set p = 1.0, i.e., the bold reporter assesses all variants as benign. We now
consider two possible behaviors of the cautious reporter by setting d to two different values. With d = oo,
the cautious reporters never obtain a consensus opinion, even if their own assessments deviate severely
from the classifier’s scores. In contrast, with d = 10, a consensus opinion is obtained if more than 10 of
the assessments in the current case deviate.

Results We measure the error propagation based on the F1 score, which accounts for the precision and
recall of the binary classifier within a single scalar. Figure 9 shows the F1 scores observed throughout one
week of virtual time each for the two scenario variants, each curve showing averages across 16 simulation
runs. We observe that with d = oo, the errors introduced by the bold reporter promptly and severely reduce
the quality of the classifications. Since cautious reporters naively accept the assessments suggested by the
classifier, the errors introduced by the bold reporter propagate into the reports and any subsequent classifier
training. Once the bold reporter begins generating high-quality reports at day 4, the F1 score gradually
recovers. On the other hand, with d = 10, the F1 scores are much less affected by the erroneous reports.
In this case, the bold reporter affects the training process negatively only through its own reports, while
the cautious reporters rely on the consensus results to still generate high-quality training data.

This feedback analysis shows a basic test scenario with our simulation framework i.e. testing the
feedback behavior under the influence of bad actors. During the software development, the components
can be further improved, and complex environments can be modeled to focus on more specific behavior
patterns. For example: we can analyze changes in the learning sample usage based on differing laboratory
reputations, and validate the impact on the classification score. This way, the software can be verified early
and validated systematically with a model of the environment.
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Figure 8: Binary classification in our case study. Figure 9: F1 score of the classifier in our case study
Due to the symmetric distribution of the two classes’ over virtual time, varying the deviation threshold d.
features, an optimal linear separation of the classes The frequent reliance on a consensus triggered with
is achieved by the diagonal (black line). d =10 limits the error propagation.
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5 CONCLUSION

We described a framework that allows EDA systems to be tested in their interaction with simulated
environments. We outlined the mapping from physical time to virtual time as a basis for integrating EDA
system processes and environment actions in a discrete-event simulation. Additionally, we described a
generic architecture that defines the communication among a simulator core, EDA components, and simulated
entities. We detailed the constraints required to guarantee that the simulation behavior is analogous to
production use. In a case study, a prototypical implementation of our framework was used to analyze the
feedback-dynamic between a self-learning EDA system and an environment of users n a medical context.

Our approach can be expanded in several ways. On the technical level, complex EDA systems may
require moving beyond a centralized notification service. In general, publish/subscribe functionality may be
offered by an entire network of notification service brokers. Further, applications may demand functionalities
such as different quality of service levels for notifications. To minimize the gap between simulated EDA
systems and their deployment, we intend to make use of the functionalities of existing middlewares for
message-based communication (e.g., Mosquitto (Light 2017)) by extending the middleware with the facilities
required for simulation. While our current focus is on medical systems, our intention in the long term is to
facilitate the development, debugging, and analysis of a wide range of safety-critical event-driven systems.
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