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ABSTRACT

We consider a new approach to solve distributionally robust optimization formulations that address
nonparametric input model uncertainty in simulation-based decision making problems. Our approach for the
minimax formulations applies stochastic gradient descent to the outer minimization problem and efficiently
estimates the gradient of the inner maximization problem through multi-level Monte Carlo randomization.
Leveraging theoretical results that shed light on why standard gradient estimators fail, we establish the
optimal parameterization of the gradient estimators of our approach that balances a fundamental tradeoff
between computation time and statistical variance. We apply our approach to nonconvex portfolio choice
modeling under cumulative prospect theory, where numerical experiments demonstrate the significant
benefits of this approach over previous related work.

1 INTRODUCTION

Consider the following general formulations of distributionally robust optimization (DRO) in the context of
decision making. Let X denote a sample space, P a probability distribution on X, and Θ⊆ Rd a parameter
space. Define LP(θ) := EP[l(θ ,ξ )] to be the expectation, with respect to (w.r.t.) P, of an objective function
in terms of a risk of loss function l : Θ×X→ R to be minimized over parameters θ ∈ Θ given (data)
samples ξ ∈ X. Define the worst-case expected risk of loss R(θ) := EP∗(θ)[l(θ ,ξ )] = supP∈P{LP(θ)},
which maximizes the risk of loss LP over a well-defined set of measures P . This set typically takes the form
P = {P |D(P,Pb)≤ ρ,

∫
dP(ξ ) = 1,P(ξ )≥ 0}, where D(·, ·) is a distance function on a set or space of

probability distributions on X and where the constraints limit the feasible candidates to be within a distance
ρ of a base Pb. We seek parameters θ ∗rob ∈Θ that, for a given P , solve the DRO problem formulated as

θ
∗
rob = argmin

θ∈Θ

{
R(θ)

}
= argmin

θ∈Θ

{
sup
P∈P
{LP(θ)}

}
. (1)

Simulation-based optimization represents an important approach to solving decision-making problems
in which nonparametric input model uncertainty is a predominant concern. This uncertainty arises when
only a finite set of observations N = {ξn, n = 1, . . . ,N} are available to characterize the inputs of the
simulation model that estimates the risk of loss function l. A confidence interval (CI) constructed for the
expected risk of loss using as an input model the equal-weight empirical distribution UN = {1/N} can
provide poor coverage of the true value. A rich literature exists on constructing CIs using boot-strapping
methods to incorporate the impact of input model uncertainty (Barton et al. 2014). Lam (2019) shows how
φ -divergence balls centered at Pb =UN with appropriately chosen radius ρ can construct robust risk of
loss R(θ) as in (1) to obtain an asymptotically valid CI for LP0(θ) (for a fixed θ ), where P0 is the true
unknown distribution generating the input samples N . In terms of simulation optimization, the equal-weight
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empirical distribution UN over N is the nonparametric maximum likelihood estimator (Owen 2001) of the
(unknown) distribution underlying the datasets, which motivates the standard practice of minimizing the
empirical risk of loss LUN (·) over Θ. The DRO philosophy seeks to extend the input model uncertainty
analysis to simulation optimization by instead picking θ ∗rob as the best parameter. In practice, estimating
with DRO formulations (1) amounts to dynamically re-weighing the data using the solution P∗(θ) to the
inner maximization at each parameter θ ∈Θ. Unlike the equal emphasis placed by LUN (θ) on all observed
data, the R(θ) in DRO formulations sets these weights to emphasize data that experience high risk of loss
at θ . Hence, this approach explicitly treats the ambiguity in the identity of P0, since in general UN ̸= P0.

This problem is also studied in the statistical learning setting where the best model parameters θ

of a statistical model is sought given only a finite training dataset N and the model is then used for
inference over other test datasets, all of which are typically assumed to be identically distributed. In
real-world settings, the training dataset and any dataset to which the trained model is applied are finite
sets sampled from the same underlying distribution P0. While popular model selection techniques, such as
cross-validation (Stone 1974)), seek to improve the estimation error between training and testing datasets,
they are often computationally prohibitive and lack rigorous guarantees. The DRO formulation (1) with the
empirical distribution UN over the finite training dataset as the base distribution Pb has been proposed as a
promising alternative approach. In particular, Blanchet et al. (2016) show for Wasserstein distance metrics
that, with an appropriately chosen value of constraint parameter ρ , there exists a P ∈P which leads to the
same optimal decision θ ∗ as P0. with high probability; and Namkoong and Duchi (2017) establish similar
results for φ -divergence measures.

Our study concerns efficiently finding solutions of (1) as a fundamental approach to simulation-based
decision making. The key obstacle is the minimax formulation, and specifically the inner maximization
over probability sets P . In some cases, its solution is explicitly available; e.g., P constrained by certain
instances of the Wasserstein distance, studied by Blanchet et al. (2016) and Sinha et al. (2017), admit an
explicit characterization of the robust objective EP∗(θ)[l(θ ,ξ )]. However, such reductions do not hold in
general, and they require solving a convex nonlinear program (Esfahani and Kuhn 2018). Namkoong and
Duchi (2017) show that the inner maximization with χ2-divergence constraints can be efficiently solved,
while Hu and Hong (2012) show the same for Kullback-Leibler (KL) divergence. We therefore focus on
the general φ -divergence distance function Dφ (P,Pb) = EPb [φ(

dP
dPb

)], where φ(s) is a nonnegative convex
function taking a value of 0 only at s = 1. The modified χ2 and KL divergences are given by φ(s) = (s−1)2

and φ(s) = s logs− s+1, respectively. Define the N-sized vector P := (pn) and set the base Pb =UN . We
then have

LP(θ) =
N

∑
n=1

pnl(θ ,ξn) and P =
{

P
∣∣Dφ (P,UN) =

1
N

N

∑
n=1

φ(N pn)≤ ρ,
N

∑
n=1

pn = 1, pn ≥ 0,∀n
}
.

The robustness of simulation models to input model uncertainty is well established as a critically
important problem in simulation-based optimization. Glasserman and Xu (2013) use relative entropy
(equivalent to KL divergence) to constrain model distance in studying a portfolio optimization problem
with a convex objective function. They employ a parametric model for the distributions in P and propose
a simulation approach tailored to the formulation to characterize worst-case model errors in portfolio
allocation; they then apply their approach to various problems including robust portfolio risk measurement.
Hu and Hong (2012) study DRO formulations based on distance functions defined by KL divergence arising
from input model uncertainty in financial decision-making problems. They show that when the empirical
loss El(θ ,ξ ) is convex, the minimax formulation can be reduced to a single layer minimization optimization
problem with a moderately augmented decision space. This is in general agreement with previous work
by Ben-Tal et al. (2013) for general Dφ -constrained DRO problems, who take a similar Lagrangian dual
algorithm approach to reduce the inner concave problem to a convex minimization problem. Hu and Hong
(2012) cover popular risk measures such as conditional value-at-risk (CVaR), but importantly their analysis
also extends to special cases of nonconvex risk measures, such as value-at-risk (VaR), that can be formulated
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as chance-constraints. Many simulation optimization problems of interest in theory and practice, however,
involve more general (nonconvex) objective functions, including those based on observed human behaviors
exhibiting greater risk adversity to losses than to gains (Kahneman and Tversky 1979). Of particular interest
herein are optimization problems based on cumulative prospect theory in which the objective function
is concave for gains, convex for losses, and steeper for losses than for gains (Tversky and Kahneman
1992). He and Zhou (2011) formulate and derive an analytical treatment of single-period portfolio choice
optimization within the context of cumulative prospect theory and a financial market consisting of one risky
asset and one riskless asset. Our approach to solving (1) in this paper extends to such general nonconvex
problems, and we demonstrate the benefit of our approach using numerical experiments over a robust
version of this nonconvex portfolio optimization problem. Our DRO formulation includes a more general
class of optimization problems and a more general class of distances functions than Hu and Hong (2012)
and Glasserman and Xu (2013), as well as a more general class of minimax optimization problems and a
higher dimensional simulation-based decision making approach than He and Zhou (2011).

Our DRO framework utilizes a stochastic approximation approach to iterating the decision parameter θ

in Θ and subsumes the inner problem into that of estimating the gradient of the robuse loss R(θ). Since
R(θ) is an extreme value function (that is, it is the optimal value of a maximization problem), unbiased
estimation of its value and derivatives at any θ requires an expensive computation over an optimization
problem of large dimension N. This is indeed the approach of Namkoong and Duchi (2017). We devise in
this paper a new small-sample stochastic estimator of the gradient of R(θ) that is unbiased. Our construction
of this estimator is based on a novel approach called Multi-level Monte Carlo (MLMC) that has been
recently introduced in the research literature by Giles (2008) to eliminate the bias exhibited in typical
numerical methods for stochastic problems. This technique has been adapted to various unconstrained
stochastic optimization contexts by Blanchet and Glynn (2015) and Blanchet, et al. (2017). The strategy is
to randomize the choice of the subsample size Mt over which the estimate ∇θ R̂(θ) is constructed in each
iteration t in a manner that allows for Mt = N only with a small probability. While MLMC randomization
scheme of Giles potentially incurs a high computational cost and the randomized Mt imply a possibly larger
variance for the gradient estimator, our careful analysis in Theorems 4 and 5 addresses these two competing
concerns. Moreover, such results provide the range of randomization parameter values that balances these
competing objectives, leading to an efficient unbiased estimator of ∇θ R(θ). We then establish in Theorem 6
convergence of a stochastic gradient descent (SGD) algorithm with this gradient estimator for nonconvex
smooth objectives l(θ ,ξ ) by exploiting standard tools.

A superficially similar approach was independently and simultaneously developed by Levy et al. (2020).
Our approach, however, fundamentally differs from their procedure in that we are the first to solve the
DRO formulation by assembling the mini-batch through sampling subsets Mt without replacement from the
training dataset, whereas in strong contrast sampling with replacement is employed in Levy et al. (2020).
While our general theory in the without-replacement sampling approach is harder to establish because the
individual samples in the mini-batch are not distributionally independent, we are able to provide a crucial
bound on the variance experienced by our gradient estimator that further leads to establishing stronger
theoretical results on the convergence of our algorithm. On the other hand, Levy et al. (2020) show that the
variance of their R(θ) estimator may not vanish with increasing batch size, leading to poorer guarantees on
convergence. Hence the estimation is significantly improved for the same computational effort by only
considering unique samples ξ and the corresponding losses l(θ ,ξ ) in approximating R(θ). Indeed, a set of
size M sampled with replacement has on average only about N(1−e−M/N) unique support points, and thus
estimation using with-replacement sampled M may lead to wasted computational effort.

In Ghosh et al. (2021), we present an alternative scheme to tackle the efficient estimation of an optimal
solution to (1). There, in each iteration, the gradient ∇θ R(θ) is estimated with a bias, and the algorithm
parameters are controlled in a way that ensures the mean squared error of the gradient estimates reduces to
zero as iterates progress, which ensures convergence. The method presented here, on the other hand, ensures
that the gradient ∇θ R(θ) is efficiently estimated without bias in each iteration. This yields a standard SGD
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form of (1) w.r.t. the variables θ , and in turn the convergence of the method is analyzed by standard SGD
theory. In particular, when losses l(θ ,ξ ) are strongly convex, this MLMC method will produce ε-optimal
solutions with the fastest work-complexity of O(ε−1) for any desired ε > 0, as established by SGD theory.
In Ghosh et al. (2021), a similar rate of convergence is established, but with a caveat that this is achievable
only for ε ≥ ε = O(1/N), a small price paid for the bias in estimation of ∇θ R(θ) in every iteration.

We conduct a broad collection of numerical experiments over the nonconvex portfolio allocation problems
grounded in prospect theory that were mentioned earlier. In particular, we compare the performance of our
algorithm against those proposed by Namkoong and Duchi (2017), who consider full dataset computations
in each iteration to estimate ∇θ R(θ). The experiments show that our algorithm maintains a performance
level similar to this method while being far more economical in the number of samples accessed for the
gradient computation steps. In addition, our results shed important light on the fact that the choice of the
best ball size parameter ρ can interact non-trivially with the problem formulation and dataset characteristics.
While useful progress has been made (Lam 2019; Blanchet et al. 2016) in predicting the appropriate choice
of ρ that maximizes coverage of the true unknown input model in certain subclasses of decision problems,
a general approach for simulation optimization problems remains an open question of high interest.

2 ALGORITHM AND ANALYSIS

We now present our subgradient descent approach for efficiently solving the general DRO minimax optimization
problem with our algorithm in Figure 1, comprising SGD-like iterations for the outer minimization problem
in (1):

θt+1 = θt − γt∇θ R̂t(θt) = θt − γtGt(θt), (2)

where γt is the step size, R̂t(·) is a stochastic approximation of the robust loss R(·) from the inner
maximization over Dφ -constrained P , and Gt(θt) := ∇θ R̂t(θt). This view of (1) allows us to depart from the
convex-concave formulations of Ben-Tal et al. (2013) and Hu and Hong (2012), and to consider nonconvex
risk of loss functions l, as long as the subgradient Gt(·) approximates the gradient ∇θ R(·) sufficiently well.
In this section, we consider the inner maximization and outer minimization of our algorithm in Figure 1
followed by a theoretical analysis of this algorithm.

2.1 Inner Maximization

Recall that R(θ) is the optimal value of the inner maximization problem. Define the set Θ∅ := {θ :
l(θ ,ξn1) = l(θ ,ξn2), ∀n1,n2} and, for a small ς > 0, define the ς -neighborhood of Θ∅ as Θ∅,ς :=
∪θo∈Θ∅{θ : ∥θ −θo∥2 < ς}. Exploiting Danskin’s Theorem, Proposition 1 shows the existence of ∇θ R(θ)
assuming that formulation (1) precludes Θ∅,ς in order to avoid a degenerate inner maximization objective
function that does not depend on the decision variables pn, in which case the entire feasible set is optimal.
Proposition 1 (Ghosh et al. 2021, Proposition 1) Let the feasible region Θ be compact and assume
Θ⊆Θc

∅,ς , for a small ς > 0. Further suppose φ in the Dφ -constraint has strictly convex level sets, and let
ρ < ρ̄(N,φ) =

(
1− 1

N

)
φ
( N

N−1

)
+ 1

N φ(0). Then: (i) the optimal solution P∗ of R(θ) = supP∈P{LP(θ)} is
unique and the gradient is given by ∇θ R(θ) := ∑n∈N p∗n(θ)∇θ l(θ ,ξn); and (ii) for all ρ , the ∇θ R(θ) is a
sub-gradient of R(θ).

We then construct the estimate R̂M(θ) in (2) from the inner maximization problem restricted only to
a subset M of size |M |= M of the full dataset N of size N. Defining [N] := {1, . . . ,N}, P := (pm) of
dimension M and objective coefficients zm := l(θ ,ξm), consider

R̂M(θ) = max
P=(pm)

∑
m∈M

pmzm s.t. ∑
m∈M

φ(Mpm)≤MρM, ∑
m∈M

pm = 1, pm ≥ 0, (3)

where the uncertainty radius ρM = ρ +ηM now changes with the subsample size M, motivated by Theorem 2
discussed below, and where ηM = c(1/M−1/N)(1−δ )/2 for small positive constants c,δ . Suppose P∗M(θ)
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1: procedure GILES SSD(γt ,r,θ0)
2:

3: for t = 1,2, . . . do
4: Sample τt from truncated geometric qk
5: Sample set Mτt ⊆N uniformly without

replacement
6: Solve problems (3) to obtain estimates

∇θ R̂τ(θt), ∇θ R̂τ,l(θt) and ∇θ R̂τ,r(θt)
7: Sample singleton {ξ1,t} and set

∇θ R̂1(θ)← ∇θ l(θt ,ξ1,t)
8: Set ∆τt (θt), Gt(θt) from (4)
9: Set θt+1← θt − γtGt(θt)

10: If stopping criterion satisfied, then
11: Set T ← t and break
12: Increment t← t +1
13: return θT

14: end procedure

(a) Outer Minimization, where input parameters
include step size γ , sampling parameter r, initial
iterate θ0.

1: procedure INNERMAX(Z ,M ,ρ)
2: M← |M |, base Pb =

{ 1
M ,∀m ∈M

}
3: z̄←maxm{zm | zm ∈Z }
4: M ′←{m∈M : zm = z̄} and M′←|M ′|
5: P′←

{ 1
M′ I{m ∈M ′}, ∀m ∈M

}
6: If Dφ (P∗,Pb)≤ ρ then
7: P∗← P′ and return P∗

8: for α ∈ [0, ᾱ] do
9: for λ ∈ [λ , λ̄ ] do

10: M ′←{m |λ ≤ zm−αφ ′(0)}
11: P′←

{
1
M (φ ′)−1( zm−λ

α
),m ∈M ′

}
12: If ∑m p′m = 0, then
13: P∗(α)← P′, and break
14: If Dφ (P∗(α),Pb) = ρ , then
15: P∗← P∗(α) and break
16: return P∗

17: end procedure

(b) Inner Maximization, where input parameters
include loss values Z , subsampled support M , Dφ

constraint ρ .

Figure 1: Giles sampled subgradient descent algorithm.

is an optimal solution to (3). Then a valid subgradient for R̂M(θ) is obtained as an expression analogous
to that in Proposition 1(i) under appropriate substitutions w.r.t. P∗M(θ) and M . This procedure is used in
Step 6 of our algorithm in Figure 1a(a) to obtain each of the gradient estimators of the subsampled sets
Mτ , Mτ,l and Mτ,r.

Next, we consider the exact solution to the inner maximization problem presented in our algorithm
in Figure 1b(b). This procedure obtains the optimal primal and dual variables that solves (3) for various
φ -divergences by solving the equivalent Lagrangian formulations. This procedure is thoroughly analyzed
in Ghosh et al. (2021), who take the same basic approach for such problems pursued by others (see,
e.g., Ben-Tal et al. (2013), Ghosh and Lam (2018), Namkoong and Duchi (2017), Hu and Hong (2012)) and
adapt it to the inner maximization formulation over Dφ -constrained P . Ghosh et al. (2021), Proposition 2
establish a worst-case computational complexity bound of O(M logM+(log( 1

ε
))2) for finding an ε-optimal

solution to (3) when applying our algorithm in Figure 1b(b) to any φ -divergence. Since the machine-precision
ε is set to a fixed arbitrarily small value independent of any other parameter of the formulation or algorithm
(e.g., M,N,ρ), we follow Ghosh et al. (2021) and assume that our algorithm in Figure 1b(b) returns the
exact unique solution (P∗,α∗,λ ∗) to (3) with computational complexity bounded by O(M logM).

Now, we consider the bias and variance induced by the approach of subsampling the full support
using the subgradient approximation ∇θ R̂M(θ) to the true gradient ∇θ R(θ). Further let EM and PM denote
expectation and probability w.r.t. the random set M , respectively.
Theorem 2 (Ghosh et al. 2021, Corollary 1, Theorem 4) Suppose the φ -divergence satisfies uniformly for
all s and ζ < ζ0 the continuity condition |φ(s(1+ζ ))−φ(s)| ≤ κ1ζ φ(s)+κ2ζ , for constants ζ0,κ1,κ2 > 0.
Further suppose the assumptions of Proposition 1 hold. Define ηM = c( 1

M −
1
N )

(1−δ )/2 for small constants
c,δ > 0, and set the Dφ -target in (3) to be ρM = ρ +ηM . Then, for the estimate ∇θ R̂M(θ) calculated over
the sampled-without-replacement set M of size M, we have

∥EM[∇θ R̂M(θ)]−∇θ R(θ)∥2
2 = O(η2

M) and EM[∥∇θ R̂M(θ)−∇θ R(θ)∥2
2] = O(η

2/(1−δ )
M ).
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Theorem 2 shows that a squared bias of order η2
M ≊ M−1 is incurred when a fixed subsample of size M

is used in creating the gradient estimate. The variance incurred is also of a similar order, and hence so is the
mean squared error. Levy et al. (2020), on the other hand, are not able to establish the variance bound for
their MLMC-based procedure for DRO, which leads to significantly slower convergence of their procedure.

These results are broadly in line with what is expected for sample average approximated solutions of
stochastic optimization problems. It is important to note, however, that the result in Theorem 2 is distinct
because of the set M being sampled uniformly-without-replacement from N , rather than the more easily
analyzed with-replacement sampling procedure that is broadly followed. The proof in Ghosh et al. (2021)
requires analogous probability tools for without-replacement sampling to establish the result.

2.2 Outer Minimization

The bound on the bias presented in Theorem 2 vanishes only as M ↑ N as the iterate t→ ∞. This motivated
the approach of Ghosh et al. (2021) to progressively reduce the bias by increasing the subsample set size
Mt as t grows, consequently also increasing the computation time. The maximum size N is then hit after
a large number of iterations T , at which point their algorithm switches to the deterministic optimization
of Namkoong and Duchi (2017). Ghosh et al. (2021) establish the convergence of their algorithm and
show how growth parameters of the per-iterate samples Mt can be carefully chosen to minimize the overall
computation time needed to converge to the optimal solution θ ∗rob.

We propose here a fundamentally different approach to solving the outer minimization that eliminates
bias without the concomitant increase in computation by adding an MLMC randomization step; see Giles
(2008) and Blanchet and Glynn (2015) for a basic introduction to MLMC randomization. For ease of
exposition, we henceforth assume the training set is such that N = 2K +1 for an integral value of K, noting
that the general case is easily handled by appropriately adjusting our algorithm in Figure 1a(a) above. Let
τ be a discrete random variable taking values in [K] := {1, . . . ,K}. The random variable τ is sampled
geometrically using the probability mass function

qk := P(τ = k) = rk−1 1− r
1− rK+1 , k ∈ [K].

Let Mτ = 2τ be a subset size associated with τ , and Mτ the corresponding subset sampled uniformly
without replacement from the full dataset N . Partition Mτ into two equal-sized subsets Mτ,l and Mτ,r,
each of size 2τ−1. To simplify notation, we denote the robust loss calculated over Mτ , Mτ,l and Mτ,r by
R̂τ , R̂τ,l and R̂τ,r, respectively. Define

∆τ(θ) := ∇θ R̂τ(θ)−
(
∇θ R̂τ,l(θ)+∇θ R̂τ,r(θ)

)
2

and G(θ) := ∇θ R̂1(θ)+
∆τ(θ)

qτ

, (4)

where ∇θ R̂1(θ) is the gradient computed from a singleton subset, as per the definition (3) with M = 1. (Note
that the inner maximization in this one-sample set {ξ1} is degenerate and hence ∇θ R̂1(θ) = ∇θ l(θ ,ξ1).)
Then the estimator G(θ) provides an unbiased estimate for ∇θ R(θ), in the style of Giles (2008), under
very general conditions on l(·,ξ ). In fact, this allows our algorithm in Figure 1 above to be used under
general conditions when the risk of loss functions l(·,ξn) are nonconvex.

2.3 Theoretical Analysis

We next establish various mathematical properties for our DRO approach, including properties of G(θ) and
convergence. This analysis provides theoretical justification for our algorithm and its parameter settings. To
start, we can easily establish the unbiasedness of the estimator G(θ) given in (4). Let Eτ denote expectation
under the joint distribution of the randomizing variable τ and the subsampled set Mτ .
Proposition 3 We have that Eτ [G(θ)] = ∇θ R(θ).
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Proof. Recall that R̂M(θ) is the robust loss estimate constructed by subsampling an M-sized subset of
the training set. We then obtain

Eτ [G(θ)] =
K

∑
k=1

qk ·E
(

∆k(θ)

qk
+∇θ R̂1(θ)

)
= E∇θ R̂1(θ)+

K

∑
k=1

(
E∇θ R̂2τ (θ)−E∇θ R̂2τ−1(θ)

)
= ∇θ R(θ),

where the telescoping sums in the last equality cancel out to leave only the leading term for k = K, with
R̂2K (θ) = R̂N(θ) = R(θ) by assumption.

Observe that the computation time in sampling the zero-bias estimator now depends on the randomizer
τ because we solve inner maximization problems of size Mτ = 2τ . Let T denote the total computation time
involved in constructing one replication of the Giles estimator G(θ). We then establish the following result.
Theorem 4 When r < 1/2, the expected computation time is bounded by a quantity independent of the
dataset size N > 1 : Eτ [T ]≤ 4C′r(1−r) log2

(1−2r)2 , where constant C′ is finite.

Proof. The computation time in calculating ∆k for a fixed k lies mainly with estimating the solutions
to the four inner maximization problems over subsets of size up to Mk = 2k within ε-accuracy. Recall
from Ghosh et al. (2021), Proposition 2 that the computation time in obtaining approximations to a problem
of size M is O(M logM). Hence, we have

EτT ≤C′
K

∑
k=1

qk ·2kk log2 =
C′(1− r) log2

1− rK

K

∑
k=1

k(2r)k

≤ 2C′(1− r) log2
∞

∑
k=1

k(2r)k = 2C′r(1− r) log2
∞

∑
k=1

d
dr

((2r)k) = 2C′r(1− r) log2
d
dr

(
∞

∑
k=1

(2r)k

)

= 2C′r(1− r) log2
d
dr

(
1

1−2r

)
=

4C′r(1− r) log2
(1−2r)2 .

Here, the first inequality uses the above O(M logM) computational complexity result. The second inequality
holds because K > 1 and r < 1/2 by assumption. The interchange of the derivative and the infinite sum is
justified by the convergence of the sum (because 2r < 1).

It is also important to ensure that the injection of extraneous randomness via τ does not result in a very
large variance of the estimator G(θ). We now establish that the variance of our Giles estimator is bounded
given the variance result in Theorem 2.
Theorem 5 Suppose the assumptions of Theorem 2 hold, and further suppose that, for each ξ , the loss
function l(·,ξ ): (i) is L-Lipschitz smooth, i.e., has gradients ∇θ l(·,ξ ) that are L-Lipschitz continuous; and
(ii) has a finite minima l∗(ξ ) over θ ∈Θ. Then, with r ∈ (1/4,1/2), the variance of G(θ) is bounded from
above by a quantity independent of the dataset size N > 1:

Eτ

[
∥G(θ)−∇θ R(θ)∥2

2
]
≤C(r)< ∞.

Proof Sketch of Theorem 5: Space considerations limit us to the brief proof sketch below; please
refer to Ghosh and Squillante (2020) for the complete proof. We will first show that the result in the
statement can be derived if E

[
∥∆k∥2

2
]
≤C (2−k−2−K)2 for a fixed k and a constant C < ∞. Noting that
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∥a+b∥2 ≤ 2(∥a∥2 +∥b∥2) , we have

Eτ∥G(θ)∥2
2 =

K

∑
k=1

qk E
∥∥∥∥∆k

qk
+∇θ R̂1(θ)

∥∥∥∥2

2
≤ 2E∥∇θ R̂1(θ)∥2

2 +2
K

∑
k=1

1
qk
E∥∆k∥2

2

≤ 2E∥∇θ R̂1(θ)∥2
2 +

2(1− r)
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K
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(

1
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1
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)2
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1− rK

K

∑
k=1

r−k2−2k

≤ 2E∥∇θ R̂1(θ)∥2
2 +

4(1− r)
1−1/(4r)

=C(r).

The final inequality follows from the assumption that K > 1 and r ∈ (1/4,1/2), whereas the first term is
bounded via the variance bound from Theorem 2. The order of the variance E

[
∥∆k∥2

2
]

of the individual
difference terms in the Giles estimator is established by relating the variance of the gradients ∇θ R̂M(θ) to
those of the corresponding robust loss estimates R̂M(θ) and using the gradient-smoothness assumption in
the statement of the proof; please refer to Ghosh and Squillante (2020) for further details.

Now, we turn to analyze the convergence of our algorithm in Figure 1, for which a common requirement
is that the objective R(θ) be Lipschitz smooth. The gradient ∇θ R(θ) of the optimal value of an optimization
problem is in general not Lipschitz if the objective function is Lipschitz. Consider, for example, a
linear objective l(θ ,ξn) = θ tξi, which implies R(θ) = maxp ∑i piθ

tξi. When maximized over a polyhedral
constraint set (e.g., the probability simplex constraints of (1)) the 0-Lipschitzness of the l are not preserved
for R, because in this case the optimal solutions P∗ are picked from the discrete set of vertices of the
polyhedron and thus ∇θ R(θ) is piecewise discontinuous.

Our assumptions from Proposition 1 yield an inner maximization with a non-zero linear objective over
a strictly convex feasible set. The desired smoothness can then be obtained with some additional conditions
on the loss functions l(θ ,ξi). Ghosh et al. (2021), in Proposition 5, note that the Lipschitzness of ∇θ R(θ)
follows from the Hessian ∇2

θ
l(θ ,ξ ) being bounded in norm, which is often satisfied by the optimization

problems of interest.
The combination of the Lipschitzness of the robust loss function R(θ), the finiteness of the variance

of the Giles gradient estimator G(θ), and the finite expected computation time to obtain the estimator
enables us to now apply the standard SGD convergence machinery in establishing the convergence of (2) to
first-order optimal solutions. We exploit the following result adapted to our problem and its setting.
Theorem 6 (Bottou et al. 2016, Theorem 4.9) Suppose the robust loss objective R(θ) satisfies: (i) A lower
bound Rinf exists for the robust loss function R(θ)≥ Rinf, ∀θ ∈Θ; (ii) The gradient ∇θ R(θ) is L-Lipschitz.
Further suppose the estimator G(θ) of the gradient ∇θ R(θ) is unbiased and has variance bounded above by
a constant C < ∞. Choosing the step size sequence γt to satisfy ∑t γt → ∞ and ∑t γ2

t < ∞, we then have

liminf
t→∞

E
[
∥∇θ R(θt)∥2

2
]
= 0.

3 NUMERICAL EXPERIMENTS

In this section we present numerical experiments evaluating our new DRO approach and its above theoretical
properties applied in the context of optimal nonlinear portfolio allocation. Motivated by input uncertainty,
Section 3.1 presents a DRO version of this general nonlinear problem. Section 3.2 describes empirical
results that compare our approach against previous related work in the research literature.

3.1 Nonlinear Utility Portfolio Optimization

Since the seminal work of Markowitz (1952), optimal portfolio allocation has been a foundational problem
formulation for decision making under uncertainty. In this formulation, a decision maker chooses the

2301



Ghosh and Squillante

fractional allocation θ ∈ Rd of a portfolio over d financial instruments, where ξ ∈ Rd represents the
(single-period) outcome of the relative increase in the value of the instruments. The allocation decision θ

requires careful balancing of the risk of large losses against the expected profitability of the portfolio θ⊤ξ .
Supposing ξ ∼ P0, the original formulation of Markowitz chose the θ ∗ that maximized EP0 [θ

⊤ξ ] subject
to an upper bound on the variance VarP0 [θ

⊤ξ ]. Under specific assumptions on the distributional form of
P0, this formulation has an equivalent convex representation. For general P0, a relaxation that takes a
soft-penalty form of the variance constraint into the objective can be further well-approximated using convex
optimization techniques. Over time, this version of the portfolio allocation problem has been generalized to
consider other measures of risk, including VaR (Pflug 2000) and coherent risk measures (Artzner et al.
1999) such as CVaR.

The uncertainty in specifying the input distribution can have a significant impact on the actual portfolio
performance. The instruments ξ in a typical real-world scenario are significantly correlated, and usually
there is a lack of adequate data to obtain a well-fit estimate of the high-dimensional joint distribution P0.
Consequently, the portfolio allocation problem has been increasingly studied from the DRO perspective,
where the worst-case loss R(θ) suffered over an appropriately defined uncertainty ball is minimized. (Indeed,
Artzner et al. (1999) show that many coherent risk measures can be characterized as the robust loss R(θ)
arising from a carefully defined loss l(θ ,ξ ) and ball P .) As described in the introduction, this includes
the work of Glasserman and Xu (2013) and Hu and Hong (2012) based on portfolio risk minimization over
KL divergence balls. Notably, in addition to many convex risk measures, Hu and Hong (2012) also model
nonconvex VaR objectives.

Our approach in this paper explicitly allows for the loss function l(θ ,ξ ) to be nonconvex in θ , and in
Theorem 6 we establish convergence of our algorithm to local minima under minimal regularity conditions.
To demonstrate the power of our DRO approach, we consider a large class of nonconvex portfolio allocation
objectives that arise from the field of prospect theory in economics. Kahneman and Tversky (1979) started
this body of work, awarded the 2002 Nobel prize in economics, by proposing the study of S-shaped
utility functions of financial returns using econometric experiments. They posited that the nonlinear
form l(θ ,ξ ) =−C(r0−θ⊤ξ )αI

{
r0 ≥ θ⊤ξ

}
+(θ⊤ξ − r0)

β I
{

r0 < θ⊤ξ
}

conforms better to actual human
preferences, where r0 is a reference return value (such as the risk-free return rate). The parameter C is
typically greater than 1, encoding a larger disutility for losses compared to gains. In addition, α,β < 1
which implies that users are more sensitive to losses (and gains) around the reference (certain) rate of
return than to larger lower-probability losses (and gains) in the tails of the return distribution. Tversky and
Kahneman (1992) explain that α = β = 0.88 and C = 2.25 adequately match experimental observations. Our
experiments will therefore be performed using these parameter values for the S-shaped utility function given
above for l(θ ,ξ ). He and Zhou (2011) analyze the S-utility portfolio allocation problem that minimizes the
expectation E[l(θ ,ξ )] for the two-instrument case (e.g., risk-free vs. an index fund) and show that even this
small problem requires non-trivial conditions to be satisfied for the well-posedness of this problem.

3.2 Algorithmic Performance

A large collection of numerical experiments were conducted to empirically evaluate our new unbiased
Giles estimator sampled subgradient descent algorithm (Giles) in comparison with the full-support gradient
algorithm (FG) of Namkoong and Duchi (2017). Each numerical experiment solves the DRO formulation (1)
of minimizing the worst expected S-shaped portfolio return utility for the nonlinear l(θ ,ξ ) defined above over
a χ2-divergence ball, namely Dφ with φ(s) = (s−1)2. The portfolio allocations θ are further constrained
to be within the simplex {∑d

i=1 θi = 1, θi ≥ 0}. The reference return r0 is assumed to be a risk-free (i.e.,
zero-variance) return of 0.01 percent per annum. This instrument is taken as an option in the portfolio of
instruments ξ . We consider portfolios of size d = 20, 50 and 75, comprising stocks picked equally from
each of the constituent sectors of the S&P 500 index. The base input model P0 is constructed from two
datasets: 1258 daily returns recorded for the calendar years 2008 to 2012; and 1008 daily returns recorded
for the calendar years 2018 to 2021. In every experiment, the dataset was split to randomly select 90% of
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Figure 2: Comparison of Giles and FG methods on averaged
robust loss R(θ) (100 replications) over cumulative samples
expressed as multiples of N. Two settings of the minimum
sampleset size (denoted M) for Giles method and two settings
of maximum step-length γ0 for FG method are presented.

Table 1: Comparison of estimated optimal robust
loss R(θ ∗) over various d,ρ settings, presented as
a 95% confidence interval over 100 replications.

Dataset 2008-to-2012

ρ d = 20 d = 50 d = 75

0.0001 0.17±0.08 0.36±0.09 0.43±0.09
0.001 0.20±0.09 0.40±0.11 0.49±0.1
0.01 0.11±0.04 0.40±0.06 0.52±0.06
0.1 0.10±0.01 0.58±0.05 0.77±0.04
1 0.20±0.04 1.22±0.07 1.80±0.09

Dataset 2018-to-2021

ρ d = 20 d = 50 d = 75

0.0001 0.37±0.11 0.51±0.07 0.54±0.05
0.001 0.41±0.12 0.56±0.08 0.60±0.06
0.01 0.28±0.1 0.57±0.07 0.67±0.06
0.1 0.15±0.03 0.76±0.07 0.93±0.05
1 0.23±0.05 1.60±0.13 2.03±0.11

the data as the empirical distribution P0, respectively yielding N = 1132 and N = 907 for the two datasets.
Results are presented from a collection of 100 replications using this permutation procedure. The initial θ0
for each method is sampled from U [0,1]d , projected to the constraint simplex.

Blanchet et al. (2016) and Namkoong and Duchi (2017) consider at length the question of setting
the parameter ρ in (1), providing a broad guideline that ρ = O(d/N) for a class of statistical binary
classification models. This suggests for our datasets that ρ = O(0.01). We therefore experiment with
ρ ∈ {0.0001,0.001,0.01,0.1,1.0}, covering two orders of magnitude in either direction.

Figure 2 presents our representative results for the 2018-to-2021 daily-returns dataset with d = 20
instruments allowed in the model, comparing the Giles method with the FG method on the robust loss
objective R(θ) as iterations progress in each method. For consistency, we present our results as a function
of the cumulative sample size accessed by the gradient computation steps. Two settings of the minimum
sample-set size (denoted M) of Giles is plotted against two settings of the initial step-length (γ0) for the FG
method. As expected, FG is not competitive with Giles as a function of the computational effort expended.
The Giles method does exhibit added variance, likely because of the added randomization in the gradient
computation procedure; moreover, its form includes a subtraction of estimates of the gradient over nested
sample sets, which might also contribute to the larger variability. On the other hand, the Giles method is
able to make adequate progress even with a small minimum batch-size, indicating that the larger minimum
does not necessarily contribute in higher accuracy and hence faster convergence (as a function of total
computational effort).

Table 1 presents the estimated optimal robust loss R(θ ∗) observed over the different ρ values for the
distributional ball constraint. The three columns present results for three models, each respectively allowing
d = 20, 50 and 75 instruments in the portfolio. Additionally, results are presented for the two datasets:
2018-to-2021 and 2008-to-2012. The two larger portfolio columns (d = 50 and d = 75) show an increasing
relationship over ρ , with the large values for ρ = 1 possibly due to the distributional ball being too large.
The behaviour of the smallest portfolio problem is interesting, in that the lowest robust loss is observed for
ρ = 0.1. Notice further that the confidence intervals grow as ρ shrinks. Recalling that in each replication
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the P0 is constituted from 100 random permutations of the input dataset, one might infer from this that
the smallest ρ values yield too small of a distributional ball to adequately capture the impact of input
uncertainty on this model, thus leading to higher variability in the estimated optimal robust loss R(θ ∗). In
addition, one would expect greater hedging opportunities with the larger portfolios.

Giles parameters. Our Giles method requires a diminishing step-size sequence, which we choose
to be γt = γ0 ·5000/(5000+ t) with γ0 = 0.1. The Giles estimator parameter r has a feasibility range of
(1/4,1/2). Blanchet and Glynn (2015) consider a Giles-based estimator for unconstrained optimization
problems with continuously distributed random variables, while we solve the constrained problem (3) using
discrete samples from the finite training set. They show that the product E[T ]×Var[G(θ)], denoting the
variance of a generalized central limit obeyed by the Giles estimator as a function of the computational
budget, is minimized by r∗ = 2−3/2 which represents the geometric mean of the end points of the feasible
region. We therefore use this choice in the experiments for our Giles method.

FG parameters. The step lengths of the FG algorithm are determined by the LBFGS-B algorithm
with a maximum of γ0 for all experiments. This parameter can have a notable impact on the speed of
convergence, as our results in Figure 2 illustrate.

Other parameters. In all cases, the inner-maximization formulation is solved to within an ε-accuracy
where ε = 10−7. Parameter δ appears prominently in the definition of ρM and in defining the bias of the
gradient estimation in Theorem 2, but the result requires only that δ be a small positive constant. We find
that the numerical experiments are not sensitive to δ and therefore set δ = 0.01 in defining the expanded
constraint ρM. Each method stops if the average of the robust loss objective values of the last 20 iterates
does not improve more than 1% when compared with the average of the previous 80 evaluations.

4 CONCLUSION

This paper presents a new approach to efficiently solve distributionally robust optimization formulations that
address nonparametric input model uncertainty in simulation-based decision making problems. We utilize a
carefully tuned multi-level Monte Carlo randomization scheme to estimate the gradient of the robust loss
objective (the inner maximization in the formulation) to provide a stochastic gradient descent equivalent
form of the bi-level optimization problem. This approach handles non-convex simulation objectives, and
we exhibit its significant benefits over previous related work on a simulation-based analysis of portfolio
optimization by demonstrating via numerical experiments how solutions to a general nonconvex portfolio
choice modeling problem arising from cumulative prospect theory are efficiently obtained.

Our results shed important light on the fact that the choice of the best ball size parameter ρ can interact
non-trivially with the problem formulation and dataset characteristics. A general approach for determining
the best ρ that maximizes coverage of the true unknown input model for simulation optimization problems
remains an open question of great interest. Note that in a subsequent analysis of our formulation, we focus
on simulation outcomes l(θ ,ξ ) where only one copy of the input model ξ ∼ P is accessed. This model
captures a broad class of decision making under uncertainty problems from diverse fields such as finance
(portfolio modeling) and inventory (including newsvendor models, customer choice theory, and so on). A
second important avenue of future work lies in the extension of these methods to analyze general simulation
optimization objectives, where the simulation model may access multiple copies of the input model P. This
yields a harder to solve inner problem; see, for example, Ghosh and Lam (2018).
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