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ABSTRACT

This paper introduces the first fully integrated algorithm for combining simulation with numerical linear
algebra, as a means of computing stationary distributions for Markov chains and Markov jump processes.
We use linear algebra to analyze the “center” of the state space, while simulation is used to estimate
contributions to the steady-state from path excursions outside the “center”. The method yields consistent
estimators for stationary expectations, and can be viewed as an application of the variance reduction
technique known as conditional Monte Carlo.

1 INTRODUCTION

This paper is concerned with the computation of stationary distributions for Markov chains and Markov
jump processes taking values in a discrete state space S. Such stationary distributions are of central interest
when the long-run steady-state behavior of the associated system is relevant. When the state space is of
modest size, it is well known that the stationary distribution can be numerically computed as the solution to
a system of linear equations; see, for example, (Heyman and Sobel 2004) and (Asmussen 2008). However,
when the state space is large or countably infinite, the use of simulation is often computationally preferable.

This paper is concerned with combining the best features of numerical linear algebra (e.g. solving
systems of linear equations) with simulation. In particular, numerical linear algebra can compute high
accuracy solutions to linear systems of moderate size, while simulation typically computes low accuracy
solutions to systems of almost arbitrarily large size. In this paper, we propose the first algorithm that
computes solutions to systems of linear equations for the “center” of the state space supporting most
of the equilibrium distribution, and uses simulation to explore the remaining outer state space that is of
much larger magnitude. There are no ad hoc elements to the way in which we combine simulation with
numerical linear algebra. Rather, we adopt a principled approach in which the combined algorithm is
always guaranteed to produce an estimator that converges to the stationary quantity, regardless of how
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many states the numerical linear algebraic component of the algorithm encompasses. We call our approach
COSIMLA, for “COmbined SIMulation and Linear Algebra.”

As we shall see in Section 2, COSIMLA can be viewed as being a powerful variance reduction
technique (specifically, an instance of conditional Monte Carlo). Alternatively, one can view COSIMLA
as a means of using simulation to compute those elements that can not be calculated from within the finite
“truncated” sub-matrix used by the linear algebraic computation. (Kuntz, Thomas, Stan, and Barahona 2021)
provide a comprehensive and accessible review of truncation-based approximation schemes for Markov
jump processes with infinite or large state space. This paper paper is also connected to the literature in
hybrid simulation, in that it combines simulation with the linear algebraic methods used to study one of the
most import systems dynamic models, namely Markov chains; see (Brailsford, Eldabi, Kunc, Mustafee,
and Osorio 2019) for a survey on hybrid simulation.

The rest of this paper is organized as follows. Section 2 describes and analyzes the COSIMLA approach
for computing Markov chain stationary expectations. Section 3 describes and analyzes the COSIMLA
approach for evaluating Markov chain stationary distributions. Section 4 extends COSIMLA to evaluate
Markov jump process stationary distributions and expectations. Section 5 provides a brief account of
numerical experiments to illustrate the analysis of COSIMLA.

2 COSIMLA FOR MARKOV CHAIN STATIONARY EXPECTATIONS

Suppose that X = (Xn : n ≥ 0) is an irreducible positive recurrent Markov chain with one step transition
matrix P = (P(x,y) : x,y∈ S). Then, there exists a unique stationary distribution π = (π(x) : x∈ S) (encoded
as a row vector) satisfying the linear system of equations

π = πP.

Consider the problem of computing the stationary expectation πr, where r = (r(x) : x ∈ S) is a non-
negative “reward” function (encoded as a column vector). For x ∈ S, let Px(·) be the probability on the
path-space of X conditioned on X0 = x, and let Ex(·) be its associated expectation. Fix z ∈ S as our
“regeneration” state. The theory of regenerative processes guarantees that

πr =
Ez ∑

τ(z)−1
j=0 r(X j)

Ez τ(z)
, (1)

where τ(z) = inf{n≥ 1 : Xn = z} is the first return time to z; see, for example, (Chung 1967).
Choose the finite subset A ⊆{z} of a size for which linear systems involving |A| equations in |A|

unknowns can be tractably numerically computed. Put T = inf{n≥ 0 : Xn ∈ Ac}, and note that

κ(r), Ez

τ(z)−1

∑
j=0

r(X j) = Ez

(τ(z)∧T )−1

∑
j=0

r(X j)+Ez

τ(z)−1

∑
j=T

r(X j)I(T < τ(z))

= Ez

(τ(z)∧T )−1

∑
j=0

r(X j)+Ez h(XT )I(T < τ(z)),

where

h(x) = Ex

τ(z)−1

∑
j=0

r(X j)

for x ∈ S.
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Set Az = A−{z}, and let B = (B(x,y) : x,y ∈ Az) be the matrix in which B(x,y) = P(x,y) for x,y ∈ Az.
Then,

Ez

(τ(z)∧T )−1

∑
j=0

r(X j) = r(z)+ ∑
x∈Az

P(z,x)Ex

(τ(z)∧T )−1

∑
j=0

r(X j)

= r(z)+ ∑
x∈Az

P(z,x)
∞

∑
j=0

∑
y∈Az

Px(X j = y,τ(z)∧T > j) · r(y)

= r(z)+ ∑
x∈Az

P(z,x)
∞

∑
j=0

∑
y∈Az

B j(x,y)r(y)

= r(z)+ϕz

∞

∑
j=0

B jrA,

where ϕz = (ϕz(x) : x ∈ Az) is the row vector in which ϕz(x) = P(z,x) for x ∈ Az, and rA = (rA(y) : y ∈ Az)
is the column vector for which rA(y) = r(y) for y ∈ Az. We note that because B is a finite non-negative
strictly substochastic matrix, (I−B)−1 exists and

∞

∑
j=0

B j = (I−B)−1;

see, for example, (Kemeny and Snell 1960).
Also, we observe that for y ∈ Ac,

Pz(XT = y,T < τ(z)) = P(z,y)+ ∑
x∈Az

P(z,x)
∞

∑
j=0

Px(XT = y,T < τ(z))

= P(z,y)+ ∑
x∈Az

P(z,x)
∞

∑
j=0

Px(X j+1 = y,T ∧ τ(z)> j)

= P(z,y)+ ∑
x∈Az

P(z,x)
∞

∑
j=0

∑
w∈Az

Px(X j = w,T ∧ τ(z)> j)P(w,y)

= P(z,y)+ ∑
x∈Az

P(z,x)
∞

∑
j=0

∑
w∈Az

B j(x,w)P(w,y)

= P(z,y)+ϕz

∞

∑
j=0

B j py

= P(z,y)+ϕz(I−B)−1 py,

where py = (py(x) : x ∈ Az) is the column vector for which py(x) = P(x,y) for x ∈ Az. Hence, for y ∈ Ac,

Pz(XT = y,T < τ(z)) = Pz(T < τ(z))Pz(XT = y|T < τ(z)),

where

Pz(T < τ(z)) = Pz(X1 ∈ Ac)+ϕz(I−B)−1 pAc ,

Pz(XT = y|T < τ(z)) =
P(z,y)+ϕz(I−B)−1 py

Pz(X1 ∈ Ac)+ϕz(I−B)−1 pAc
,

and pAc = (pAc(x) : x ∈ Az) is the column vector in which pAc(x) = Px(X1 ∈ Ac) for x ∈ Az.
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Remark 1 To enhance the above numerical computations, note that if we set χz = ϕz(I−B)−1, then χz
satisfies the linear system of equations given by χz = ϕz+χzB. Having computed χz, we can then calculate
χz py over all the necessary y’s by performing as many inner products as there are states in Ac that are
accessible in a single transition from A. So, we need not explicitly invert I−B.

Suppose that W is a random variable (rv) taking values in Ac, generated from the probability mass
function (Pz(XT = y|T < τ(z)) : y ∈ Ac). Conditional on W , we run the Markov chain X starting from W ,
accumulating the rewards until the chain hits τ(z), thereby generating the cumulative reward rv R. More
precisely,

P(R ∈ ·|W = x) = Px

( τ(z)−1

∑
j=0

r(X j) ∈ ·
)
,

for x ∈ Ac. If (W1,R1), . . . ,(Wn,Rn) are n independent and identically distributed (iid) copies of (W,R),
then our above argument establishes that if R̄n , n−1

∑
n
i=1 Ri, then

κn(r) = r(z)+χz(I−B)−1rA +Pz(T < τ(z))R̄n (2)

is an unbiased estimator for the numerator of (1), which was note as κ(r). If we denote the denominator
of (1) by κ(e), we observe that it is a special case of the numerator in which r = e, where e(x) ≡ 1 for
each x ∈ S.

Of course, rather than implementing separate and independent simulations of the numerator and
denominator, it will be more efficient to implement these simulations together. To this end, conditional on
W , suppose that

P((R,V ) ∈ ·|W = x) = Px

(( τ(z)−1

∑
j=0

r(X j),τ(z)
)
∈ ·

)

for x ∈ Ac, where V denotes a rv that represents the hitting time τ(z). If (W1,R1,V1), . . . ,(Wn,Rn,Vn) are n
iid copies of the just defined triplet (W,R,V ), then we can estimate πr via

αn , κn(r)/κn(e), (3)

where
κn(e) = 1+χzeA +Pz(T < τ(z))V̄n. (4)

Here, V̄n = n−1
∑

n
i=1Vi and eA = (eA : x ∈ Az) is the column vector in which eA(x) = 1 for x ∈ Az.

The strong law of large numbers (SLLN) for iid rv’s ensures that

αn→ α a.s.

as n→∞, so that αn is strongly consistent for α , regardless of how accurately π is approximated over A by the
linear systems involving the matrix B. Put p = Pz(T < τ(z)), and note that if Zi = (Ri−ER1)−α(Vi−EVi)
then

αn−α =
pZ̄n

κn(e)

where Z̄n = n−1
∑

n
i=1 Zi. Hence, if EZ2

1 < ∞, it follows that

n
1
2 (αn−α)⇒ σN(0,1)
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as n→∞, where⇒ denotes weak convergence, N(0,1) is a normal rv with mean 0 and unit variance, and
σ2 , EZ2

1 · (p/κ(e))2.
It follows that if we set

σ
2
n =

( p
κn(e)

)2 1
n−1

n

∑
i=1

(Ri−αnVi− (R̄n−αnV̄n))
2,

then σ2
n → σ2 a.s. as n→∞, and [Ln,Rn] is an asymptotic 100(1−δ )% confidence interval for α (provided

σ2 > 0), where

Ln = αn−
zσn√

n
,

Rn = αn−
zσn√

n
,

and z is selected so that P(−z≤N(0,1)≤ z) = 1−δ . Hence, we have described above a complete algorithm
for computing α , and assessing its accuracy (via a confidence interval).

We note that if we compute α via conventional simulation, the standard approach is to simulate X for
t time units and to form the time-average

α(t) =
1
t

t−1

∑
i=0

r(Xi).

It is well known that if Ez(∑
τ(z)−1
j=0 r(X j)−ατ(z))2 < ∞, then

t
1
2 (α(t)−α)⇒ νN(0,1)

as t→ ∞, where ν2 = Ez(∑
τ(z)−1
j=0 r(X j)−ατ(z))2/Ez τ(z); see (Chung 1967). Note that

Ez(
τ(z)−1

∑
j=0

r(X j)−ατ(z)|X j : T ≥ j)

D
=r(z)−α +χz(rA−αeA)+ I(T < τ(z))Z1,

where D
= means “equality in distribution”, and Z1 is independent of I(T < τ(z)). Because conditional

expectations always reduce variance (see, Section V.4 of (Asmussen and Glynn 2007)) and κ(e) = Ez τ(z),
we see that

p
EZ2

1
κ(e)

≤
Ez(∑

τ(z)−1
j=0 r(X j)−ατ(z))2

Ez τ(z)
= ν

2. (5)

In order to fully compare the efficiency of αn to α(t), we must also take into account the fact that each of
the n observations Z1, . . . ,Zn take, on average, E(τ(z)−T |τ(z)> T ) Markov chain time steps to generate.
Hence, if αN(t) is the COSIMLA estimator in which N(t) is the number of Zi’s completed within a simulation
budget of t Markov chain time steps, the central limit theorem (CLT) of (Glynn and Whitt 1992) implies
that

t
1
2 (αN(t)−α)⇒

√
E(τ(z)−T |τ(z)> T )σN(0,1)
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as t→ ∞. But (5) then shows that

E(τ(z)−T |τ(z)> T )σ2 = E(τ(z)−T )I(τ(z)> T )p
EZ2

1
κ(e)2

≤ pEZ2
1

κ(e)
≤ ν

2,

thereby establishing that αN(t) is a more efficient estimator for α than is α(t). Hence, we are justified in
viewing COSIMLA as a variance reduction technique.

We now turn to the numerical linear algebra perspective on COSIMLA. Note that in truncating the
transition matrix P to B, we can reasonably approximate πr via

r(z)+χzrA

1+χzeA
=

Ez ∑
(τ(z)∧T )−1
j=0 r(X j)

Ez T ∧ τ(z)
. (6)

It is known (see (Seneta 1980) and (Infanger and Glynn 2022)) that the approximation (6) is identical to
the unique stationary distribution of the stochastic matrix P̃ = (P̃(x,y) : x,y ∈ A), where

P̃(x,y) =

{
P(x,y)+∑w∈Ac P(x,w) , y = z
P(x,y) , y 6= z.

The matrix P̃ is known, in the literature on Markov chain numerical computation, as the truncation/augmentation
of P associated with “first state” augmentation (in which z is the so-called “first state”). Hence, we can
view αn as a computational vehicle for using simulation to add information on the behavior of X outside
the “truncation” set A. Whatever error arises in the approximation (6) is recovered and “fixed” by αn.

We conclude this section with a discussion of the implementation of the simulation component of the
COSIMLA algorithm. Suppose, for the sake of concreteness, that S = Zd

+ and that P(x,y)> 0 only for y’s
that are “neighbors” of x, namely for y’s that are contained in the set {w ∈ S : |wi− xi| ≤ 1,1≤ i≤ d}. A
natural choice for A would then be a set of the form {(x1, · · · ,xd)∈ S : x1+ · · ·xd ≤m}, for some m≥ 1. Note
that |A| is of order md , while the subset of Ac accessible from A (i.e. {w∈ Ac : P(x,w)> 0 for some x∈ A})
is of order md−1. The support of Pz(XT ∈ ·|T < τ(z)) is contained in this accessibility subset, so is also
of order md−1 (at most).

Suppose that we use the alias method (see, (Walker 1974; Walker 1977)) to generate rv’s from
Pz(XT ∈ ·|T < τ(z)). The set-up phase for the alias method therefore has complexity of order md−1 log(m).
If the model has “random walk” structure, the expected number of transitions required to get from the
accessibility subset to z is roughly of order m, so each simulation of a Zi takes roughly order m transitions.
Given that the solution of linear systems involving I−B has a complexity of at least order m2d (see (Raz
2002)), one can run at least md simulations of Z1 without the simulation phase of COSIMLA taking more
computational effort than that associated with computing the solutions to the linear system that arises here.

3 COSIMLA FOR MARKOV CHAIN STATIONARY DISTRIBUTIONS

In this section, we briefly discuss how COSIMLA can be applied to computing the stationary distribution
of X over the set A, namely πA = (π(x) : x ∈ A), with πA encoded as a row vector. We note that πA is not
the stationary distribution π conditioned on A (i.e. (π(x)/∑w∈A π(w)) : x ∈ A); the conditioned distribution
can be easily computed from πA, but not vice versa (so πA contains more information about π than does
the conditional distribution).

We start by recognizing that (1) also applies to a representation for the entire stationary distribution π ,
so that

πA(x) =
κ(ex)

κ(e)
,
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for x ∈ Az, where ex = (ex(y) : y ∈ Az) is the column vector in which ex(x) = 1 and ex(y) = 0 for y 6= x and
y ∈ Az. Also, πA(z) = 1/κ(e). Then, πA can be estimated via the row vector πn = (πn(x) : x ∈ A), where

πn(x) =
κn(ex)

κn(e)

for x ∈ Az and

πn(z) =
1

κn(e)
.

Of course, we can simultaneously estimate the κn(ex)’s, by noting that the row vector (κn(ex) : x ∈ Az) can
be computed as

(κn(ex) : x ∈ Az)
D
= χz + p

1
n

n

∑
i=1

Γi,

where (W1,Γ1), . . . ,(Wn,Γn) are n iid copies of (W,Γ), and

P(Γ ∈ ·|W = w) = Pw((
τ(z)−1

∑
j=0

I(X j = x) : x ∈ Az) ∈ ·).

In other words, the components of Γ just include counting the total number of visits made to each x ∈ Az
along the path to z initiated from w ∈ Ac.

As in Section 2, it is evident that πn is strongly consistent for πA, and that it satisfies a multivariate
CLT, namely

n
1
2 (πn−πA)⇒ G (7)

as n→ ∞, where G = (G (x) : x ∈ A) is a Gaussian multivariate normal (row) vector. Furthermore, as in
Section 2,

πn(x)−π(x) =
p 1

n ∑
n
i=1(Γi(x)−EΓ1(x)−π(x))(Vi−EV1)

κn(e)

for x ∈ Az, where Γi(x) is the x’th entry of the row vector Γi. Also,

πn(z)−π(z) =−pπ(z)
1
n

∑
n
i=1(Vi−EV1)

κn(e)
.

One commonly used measure of the quality of πn as a numerical approximation to π is the total variation
distance ‖πn−πA‖1 , ∑x∈A |πn(x)−π(x)|. This total variation distance satisfies the limit theorem

n
1
2 ∑

x∈A
|πn(x)−π(x)| ⇒ ∑

x∈A
|G (x)|, ‖G ‖1 (8)

as n→∞, where G is as in (7). This result can be used to estimate ‖πn−πA‖. In particular, we can estimate
the covariance matrix of G from the simulated data, and then use Monte Carlo to compute the distribution
of ‖G ‖1.
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4 COSIMLA FOR MARKOV JUMP PROCESS STATIONARY DISTRIBUTIONS AND
EXPECTATIONS

We now turn to briefly describing how COSIMLA can be applied to computing stationary distributions
and expectations for Markov jump processes. In particular, if X = (X(t) : t ≥ 0) is an irreducible positive
recurrent S-valued Markov jump process with rate matrix Q = (Q(x,y) : x,y ∈ S), we can use the fact that
its (unique) stationary distribution π = (π(x) : x ∈ A) can be written in terms of the invariant measure
π̃ = (π̃(x) : x ∈ S) associated with its embedded discrete time Markov chain Y = (Yn : n≥ 0). Recall that
Y is an S-valued Markov chain describing the sequence of states visited by X , having a one-step transition
matrix J = (J(x,y) : x,y ∈ S) given by

J(x,y) =

{
Q(x,y)/λ (x) , y 6= x
0 , y = x,

where λ (x),−Q(x,x) for x ∈ S. Then, π and π̃ are connected as follows (see for example (Norris 1997)):

π(x) =
π̃(x)/λ (x)

∑y∈S π̃(y)/λ (y)
. (9)

We note that the positive recurrence of X implies that

∑
y∈S

π̃(y)
λ (y)

< ∞.

We will also require that Y is positive recurrent, so that

∑
y∈S

π(y)λ (y)< ∞.

Without the positive recurrent of Y , the expected number of jumps required to compute a regenerative
z-cycle of X would be infinite, so that the expected computational effort required to complete a z-cycle of
X (or Y ) would be infinite.

Suppose r : S→ R+ is a “reward” function and that we wish to compute πr. In view of (9), we can
express πr as

πr =
κ(r̃)
κ(ẽ)

,

where r̃ = (r̃(x) : x ∈ S), ẽ = (ẽ(x) : x ∈ S), r̃(x) = r(x)/λ (x), ẽ(x) = e(x)/λ (x) = 1/λ (x) and

κ(r̃) = Ez

τ(z)−1

∑
j=0

r̃(Yj),

κ(ẽ) = Ez

τ(z)−1

∑
j=0

ẽ(Yj).

We can now compute κ(r̃) and κ(ẽ) exactly as in Section 2. We note that the simulations involve Y rather
than X , thereby inducing a conditional Monte Carlo variance reduction known as “discrete time conversion”;
see (Fox and Glynn 1986; Fox and Glynn 1990). Similarly, πA can be computed via κ(ẽx)/κ(ẽ) for x ∈ Az,
and λ (z)−1/κ(ẽ) for state z, where ẽx(y) = 1/λ (x) for y = x and ẽx(y) = 0 for y 6= x.
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5 NUMERICAL EXAMPLE

In this section, we present a brief account of numerical experiments to demonstrate the performance of
COSIMLA for computing Markov chain stationary expectations. We adopt the notation and setup of Section
2. We consider a discrete-time Markov chain on S = Z+, in which the state X = (Xn : n ≥ 0) evolves
according to the stochastic recursion

Xn+1 = [Xn +Zn+1−1]+,

where [x]+ , max(x,0) and the Zn’s are iid with P(Z1 = 0) = q, P(Z1 = 1) = 1− p−q, and P(Z1 = 2) = p.
This Markov chain describes the number-in-system process for a slotted time queue in which the system can
serve 1 customer in each time slot, and Zn+1 represents the number of customers arriving at the beginning
of slot n+1. The one step transition matrix P of X is a tri-diagonal matrix given by

P =


1− p p 0 0 0 · · ·

q 1− (p+q) p 0 0 . . .
0 q 1− (p+q) p 0 . . .
0 0 q 1− (p+q) p
...

...
. . . . . . . . .

 ,

where q > p > 0 and p+ q ≤ 1. We compare two estimators to compute the stationary expectation πr,
where r(x) = x for x ∈ S. The first estimator is the time-average Monte Carlo simulation estimator

α(t) =
1
t

t−1

∑
i=0

r(Xi),

where t is the simulation run-length and X0 is set to be 0. The second estimator αn is the COSIMLA
estimator defined in (3). For the second estimator, we set the regeneration state z to be 0 and the finite
“center” set A to be {0,1,2, · · · ,M} where M ∈ Z+ is a tunable estimator parameter.

We use this birth-death Markov chain to illustrate estimator performance because it provides a closed-
form α = πr, so that we have an explicit true value to facilitate the evaluation of estimators, including
the computation of mean squared error (MSE). In addition, we can adjust the ratio ρ , p/q. For the
experiment setup, we fix p+q = 1 and consider a range of different choices of value for ρ , given from
{0.8,0.95,0.99}. For each choice of value for ρ , we implement the two estimators with various choices
of the estimator parameters. We present the mean square error and the mean wall-clock time to generate
one estimator. The wall-clock time, which is sometimes referred to as elapsed real time, is the actual time
taken by the computer to compute an estimator. The means are computed via 1000 replications for each
estimator (except for the time-average Monte Carlo estimator’s MSE and wall-clock time entry in Table 3,
where 50 replications are used due to excessively long computation times). All experiments are conducted
on an iMac computer with 3.6 GHz 10-Core Intel Core i9 processor and 64 GB 2667 MHz DDR4 memory.

The MSE and the mean wall-clock time to generate an estimator are reported in Tables 1, 2, 3, in
correspondence to the value of ρ being 0.8, 0.95, 0.99. We have the following observations from the
reported results.

• The COSIMLA estimator appears to have overall superior performance compared to the time-average
Monte Carlo estimator. The COSIMLA estimator incurs much smaller expected wall-clock time to
generate, compared to the time-average Monte Carlo estimator, in order to achieve a similar MSE.

• The generation of one COSIMLA estimator involves two tunable parameters M and n. For a fixed
M, the larger n is, the smaller the MSE and the larger the mean wall-clock time. For a fixed n,
the larger M is, the smaller the MSE and the larger the mean wall-clock time. We recall that the
unbiasedness of the COSIMLA estimator is ensured regardless of the choice of M and n.
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• When the ratio ρ is close to one, as reflected by ρ = 0.99 in Table 3, it can be computationally
expensive (taking one hour or more) to generate even one copy of the time-average Monte Carlo
estimator to ensure a reasonably low MSE. Table 3 suggests that users of the COSIMLA estimator
may tune the flexible parameters M and n to tailor to obtain better performance on MSE and mean
walk-clock time.

Table 1: Estimator mean squared error performance, with ratio ρ = 0.8.

Estimator\Performance Mean squared error Mean wall-clock time
Time-average Monte Carlo
α(t): t = 106 3.21×10−3 2.3 seconds
α(t): t = 4 ·106 8.10×10−4 9.1 seconds
α(t): t = 16 ·106 2.03×10−4 36.9 seconds
COSIMLA
M = 10,n = 1000 4.71×10−3 0.25 seconds
M = 10,n = 4000 1.24×10−3 0.96 seconds
M = 20,n = 250 8.12×10−4 0.11 seconds
M = 20,n = 1000 1.96×10−4 0.46 seconds
M = 50,n = 50 5.16×10−8 0.055 seconds
M = 50,n = 250 1.23×10−8 0.28 seconds

Table 2: Estimator mean squared error performance, with ratio ρ = 0.95.

Estimator\Performance Mean squared error Mean wall-clock time
Time-average Monte Carlo
α(t): t = 106 3.21×10−3 3.5 seconds
α(t): t = 4 ·106 7.90×10−4 13.9 seconds
α(t): t = 16 ·106 1.93×10−4 56.8 seconds
COSIMLA
M = 100,n = 200 9.9×10−3 1.8 seconds
M = 100,n = 1000 2.0×10−3 8.9 seconds
M = 200,n = 5 8.01×10−5 0.095 seconds
M = 200,n = 50 7.98×10−6 0.94 seconds
M = 200,n = 200 1.95×10−6 3.7 seconds

Table 3: Estimator mean squared error performance, with ratio ρ = 0.99.

Estimator\Performance Mean squared error Mean wall-clock time
Time-average Monte Carlo
α(t): t = 109 6.41×101 2311 seconds
α(t): t = 4 ·109 – >1 hour
α(t): t = 16 ·109 – >1 hour
COSIMLA
M = 200,n = 500 7.38×100 49.0 seconds
M = 500,n = 50 1.11×100 11.4 seconds
M = 500,n = 500 1.09×10−1 112 seconds
M = 1000,n = 5 4.77×10−3 2.43 seconds
M = 1000,n = 50 4.81×10−4 24.1 seconds
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6 CONCLUSION

This paper is concerned with combining the best features of numerical linear algebra (e.g. solving systems
of linear equations) with simulation to compute equilibrium distributions for Markov processes. We propose
an algorithm that computes solutions to systems of linear equations for the “center” of the state space
supporting most of the equilibrium distribution, and uses simulation to explore the remaining outer state
space that is of much larger magnitude. We adopt a principled approach in which the combined algorithm is
always guaranteed to produce an estimator that converges to the stationary quantity, regardless of how many
states the numerical linear algebraic component of the algorithm encompasses. This combined approach,
COSIMLA, for “COmbined SIMulation and Linear Algebra,” may have the potential in broader applications
that involve Markov processes. One future work is about the use of COSIMLA approach in effectively
solving Markov decision processes with large or infinite size state space.
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