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ABSTRACT 

Deep neural networks (DNNs) have become a driving factor of visual scene understanding. However, the 
shortage of construction training images has been a major barrier to fully leverage its maximum 
performance potential. To address this issue, we investigate the effectiveness of synthetic images on DNN 
training in a common real-world scenario where only a small, biased real training image dataset is available. 
To this end, we synthetize numerous construction training images and conduct a DNN training experiment 

in real construction settings. Results show that the combined dataset-trained model always outperforms the 
one trained with only a small, biased real dataset. This finding indicates that an image synthetization 
approach has promising potential to enhance a given real training dataset in terms of data quantity and 
diversity. Image synthetization with automated labeling will mitigate the training image shortage, 
contributing to the development of more accurate and scalable DNNs for construction scene understanding. 

1 INTRODUCTION 

Robotic automation and digitalization has emerged as an effective means of improving construction 
productivity and safety (Kim et al. 2020a; Kim and Chi 2021). In the near future, robotic systems will be 
responsible for physically demanding, laborious, and dangerous operations (Kim et al. 2022), freeing 
human workers to focus more on supervising robots or troubleshooting uncertain events (Liang et al. 2021). 
Mobile robots that can digitally record, store, and analyze as-is onsite information will also help to achieve 
the digitalization of ongoing field operations (Davila Delgado et al. 2019). These capabilities will enable 

continuous, accurate, and digital inspection and control of field operations, leading to improved 
productivity and safety. These benefits of robotic automation will reform existing labor-intensive 
construction into a more innovative industry.   
 Visual scene understanding of complex and ever-changing workplaces is a central part of robotic 
automation and digitalization (Kim et al. 2019; Kim 2020). This will enable autonomous robots to place 
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themselves at as-planned working positions, perceive surrounding objects to reach or bypass, and adapt to 
changes in construction workplaces over time (Liang et al. 2021). However, as deep neural networks (DNN) 
have become a crucial basis of visual scene understanding, it is necessary to assemble an extensive 

construction training image dataset with accurate ground truth labels (e.g., object locations within an image) 
(Hwang et al. 2022; Kim et al. 2020b). Since manual training dataset assembly is time-consuming, 
laborious, and expensive, DNN training images used in construction studies have been limited in terms of 
data quantity and diversity (Kim and Chi 2022). This data shortage has held DNN models back from 
reaching their maximum performance potential for construction scene understanding (Kim et al. 2021).  

To address this issue, we present an image synthetization approach that can automatically manipulate 

a wide spectrum of construction scenes (e.g., object poses, illuminations, and camera viewpoints) and create 
new artificial training images in a virtual environment. Being able to synthesize and label limitless 
construction training images without site visits and human effort will be innovative. To this end, we 
assemble a synthetic construction image dataset using Synthetic Human for Real Tasks (SURREAL) (Varol 
et al. 2017) and conduct a DNN training experiment, answering the following question: Can synthetic 
construction images offset the shortage of real training images? Specifically, we consider a common real-

world scenario wherein only a small, biased real training image dataset is available. This study particularly 
targets construction worker detection since it is an essential task for construction scene understanding and 
this capability enables us to obtain workers’ presence and location who are the key players in both current 
and future co-robotic construction.  

2 EXISTING CONSTRUCTION BENCHMARK DATASETS AND DNN APPROACHES 

Computer vision studies have made large strides in DNN-powered visual scene understanding, especially 

when it comes to scalable, comprehensive benchmark image datasets. Such successful achievements and 
technological advances have motivated construction researchers to develop and share construction-specific 
benchmark image datasets. (Kim et al. 2018), for example, extracted 2,920 images of heavy equipment 
from ImageNet, a well-known and popular benchmark dataset in the computer vision community, and 
reformed them as a construction-specific image dataset. (Xiao and Kang 2021) also released a construction 
dataset composed of 10,000 images corresponding to 10 different types of equipment (e.g., excavators, 

mixer trucks, and tower cranes). Another research group recently publicized a more comprehensive 
benchmark dataset called Moving Objects in Construction Sites (MOCS), consisting of 41,668 onsite 
images of 13 different construction objects (Xuehui et al. 2021). Although several studies have endeavored 
to build benchmark datasets for construction scene understanding, DNN model development in the 
construction domain falls behind the computer vision community due to the large gap between the quantity 
and diversity of training image datasets available in each field. For instance, while computer vision 

researchers have actively published a variety of multipurpose, large-scale benchmark datasets (e.g., object 
detection and segmentation, pose estimation, action recognition, depth estimation, and object-to-object 
relationship detection), there are only few available datasets for limited purposes in the construction domain 
(e.g., object detection and segmentation) (Xiao and Kang 2021; Xuehui et al. 2021). Moreover, such 
construction training image datasets, developed at a few specific jobsites, may have limited applicability in 
new construction environments with their own unique visual characteristics and imaging conditions. It is 

also forbidden to release construction site images in many cases because they can involve confidential and 
privacy information. This shortage of construction training images has: (i) resulted in DNN models that 
misbehave and malfunction in real-world construction sites; (ii) missed the chance to explore deeper and 
wider DNN architectures; and (iii) blocked finding out the optimal trade-off between the size of training 
datasets and the complexity of DNN architectures.  

There have been a few studies to address the shortage of construction training images. Of these, virtual 

image synthetization has especially garnered increased attention as this process can automatically simulate 
diverse scene contexts (e.g., object poses and camera viewpoints) and create numerous synthetic images. 
(Braun and Borrmann 2019) synthesized virtual images of building elements (e.g., columns, walls, and 
slabs) using building information modeling. Their synthesized images were then used to train a vision-
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based building element detection model and the model worked well in real-world construction scenarios. 
Similarly, a 3D virtual equipment model was leveraged to synthesize construction training images. 
(Assadzadeh et al. 2022) adopted a 3D virtual excavator model and simulated its physical behaviors to 

develop a synthetic dataset for 2D excavator pose estimation. This method was made applicable to 3D 
excavator pose estimation (Mahmood et al. 2022) and activity recognition in other studies (Torres Calderon 
et al. 2021). Despite their promising results, there has been a major roadblock to fully leveraging the benefits 
of synthetic images for DNN training due to the following knowledge gaps. First, it is questionable whether 
synthetic images can offset the data shortage when there are only a small number of real construction 
training images with biased scene contexts. Although this is a common real-world scenario due to limited 

data collectivity and accessibility in practice, existing studies have not yet investigated how synthetic 
images can supplement and strengthen the limited quantity and diversity of a small, biased real image 
dataset. Second, the effects of the number of synthetic images on DNN performance is still unknown in the 
aforementioned scenario. It is recognized that the major advantage of image synthetization is to create and 
label limitless virtual images, but earlier works focused on training DNN models with a fixed number of 
training input. Last, since previous studies focused mainly on building elements and heavy equipment, the 

positive effects of synthetic images with human workers remain unclear.   
To fill these knowledge gaps, we aim to thoroughly investigate the effectiveness of synthetic images 

on DNN training, especially when a small, biased real training dataset is given. To this end, we (i) adopt 
and refine an image synthetization approach, i.e., SURREAL, and build a synthetic construction image 
dataset; (ii) combine a given small, biased real training dataset with the synthesized images; and (iii) train 
a DNN model with the combined dataset and evaluate its performance in real construction settings. 

3 CONSTRUCTION IMAGE SYNTHETIZATION 

In this phase of our research, we adopted and refined the SURREAL image synthetization framework 
(Varol et al. 2017) to assemble a virtual construction image dataset mainly capturing construction workers. 
Figure 1 illustrates the two main processes behind this phase: (i) construction worker modeling; and (ii) 2D 
image generation and automated labeling. Technical details of each process are described in the following 
subsections.  

Figure 1. Overview of construction image synthetization framework. 
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3.1 3D virtual worker simulation  

In this process, we designed a 3D virtual construction worker model and animated their kinematic behaviors 
in a virtual computer environment via four main steps. First, we adapted a well-known and precise human 

body shape model: a skinned multi-person linear (SMPL) model (Loper et al. 2015). The SMPL is a realistic 
human body model developed by 1,786 high-quality 3D scan data of real-world human subjects with a 
variety of Body Mass Index, including both males and females. The validity of SMPL has been proven for 
various visual scene understanding tasks, such as human detection and pose estimation (Bogo et al. 2016). 
Next, we refined the SMPL to be a more construction worker-looking model because it was originally built 
for humans in their daily lives (e.g., building occupants). In detail, we textured human skin by sketching a 

UV map for construction worker clothing, which is a 2D matrix that involves skin-texture information about 
the vertex of a 3D object model. As shown in Figure 1, hardhats and safety vests were built in the UV map. 
Third, we animated a wide spectrum of worker behaviors to diversify the visual characteristics of our 
construction worker model. The Carnegie Mellon University Graphics Lab Motion Capture Database 
(CMU Graphics Lab 2008) was adopted, containing more than 2,000 video-streams of 23 different types of 
human behaviors (e.g., standing, bending, and walking). As there were more than ten hours of 3D human 

behavioral video, it was possible to generate a large amount of synthetic worker images. Last, we varied 
the illumination of a synthetic 3D worker model using Spherical Harmonics with nine variables. The 
variables were randomly selected from a uniform distribution-based probability function between -0.7 and 
0.7. This setting enabled us to simulate different levels of illumination in outdoor construction workplaces.  

3.2 2D image capturing and augmentation 

Using the 3D worker model, this process automatically captured a set of 2D synthetic images and generated 

label information via three main tasks. First, we overlaid the one single 3D worker model onto real-world 
construction images as shown in Figure 1. The use of real-world images as the backgrounds of virtual 
environments enabled DNNs to learn how to localize target objects (e.g., workers) in real construction 
settings while distinguishing them from other non-target objects (e.g., surrounding environments). In this 
study, a total of 529 construction images (without real workers) were collected from a website (e.g., Google) 
and used as the backgrounds. Next, we installed a virtual camera and captured 2D worker images in the 

well-controlled environment. As cameras can be installed at any distance with any viewpoint in a virtual 
environment, we were able to easily capture a great number of training images with diverse construction 
worker contexts (e.g., sizes and viewpoints). Camera distances were set to be randomly selected from a 
Gaussian distribution function (𝜇=30 m, 𝜎=1 m) and camera viewpoints were set to be randomly selected 
from a range between 0 and 𝜋. This setting enabled us to obtain training images with varying image-capture 
conditions although the camera’s intrinsic parameters (e.g., focal length and principle points) were fixed. 

Last, the virtual worker model was automatically labeled in the captured images by applying a 3D-to-2D 
projection algorithm, which translates 3D virtual-world coordinates into 2D image pixel coordinates. 
Conceptually, known 3D coordinates [𝑋, 𝑌, 𝑍] can be geometrically transformed into 2D pixel coordinates 
[𝑥, 𝑦] using a virtual camera’s intrinsic (i.e., focal lengths and principal points) and extrinsic parameters 
(i.e., rotation angles and translations), which are obtainable in a computer environment. As a result, a total 
of 20,386 construction worker images with the label information (i.e., bounding boxes) were synthesized. 

4 EXPERIMENT, RESULTS, AND DISCUSSION 

We conducted an experiment to investigate if synthetic construction images can offset the shortage of real 
training images. Specifically, we assumed a common real-world application scenario wherein only a small, 
biased real training image dataset was available. In this scenario, we targeted construction worker detection 
because human workers are the main players in both current construction projects and future co-robotic 
construction and because object detection is an essential visual understanding task for robotic automation 

and digitalization. It should be also noted that, however, our image synthetization approach can be easily 
extensible to other types of construction objects (e.g., excavators and dump trucks) and visual scene 
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understanding tasks (e.g., pose estimation and activity recognition). The third version of you only look once 
(YOLOv3) was selected as a DNN architecture since its validity has been proven by existing studies (Kim 
et al. 2019). The DNN’s performance was evaluated with an average precision (APworker), which is one of 

the most commonly used metrics in object detection tasks.  
 In this setting, we conducted an experiment with three cases to generalize our results: when 500, 1,000, 
and 2,000 real training instances (i.e., bounding boxes for workers) are given. In all cases, the real training 
dataset was combined with our synthesized construction images. In more detail: 

• Training dataset (Case #1: 500 real instances): Of the publicly available MOCS dataset, we 

randomly selected 500 real worker instances. To strengthen this small, biased real dataset, we 

randomly sampled 1,000–10,000 synthetic worker instances at 1,000 intervals from our synthetic 

dataset and added them as supplementary training images.  

• Training dataset (Case #2: 1,000 real instances): All settings were identical to Case #1, except that 

the number of real worker instances was set to be 1,000.  

• Training dataset (Case #3: 2,000 real instances): All settings are identical to Cases #1 and #2, except 

that the number of real worker instances was set to be 2,000. 

• Test dataset (Cases #1, #2, and #3): We randomly chose images having 10,000 worker instances 

from the publicized MOCS dataset, excluding the images included in the real training datasets from 

Cases #1, #2, and #3. Note that this test dataset was used in all cases. 

• Weight initialization: The initial weights of our YOLOv3 architecture were set to be the weights of 

the model pretrained by the Common Objects in Contexts Dataset (Lin et al. 2014). 

• Training-related hyper-parameters: We adopted an Adam optimization algorithm with a batch size 

of 8 and an epoch of 50. The learning rate was determined with a cosine annealing learning rate 

scheduler with initial and end values of 1e-4 and 1e-6.  

 Figure 2 shows the model performance by the number of synthetic training instances for all three cases. 
Compared to when adopting only real images (𝑥 = 0 in the graph), the additional use of synthetic images 
could improve the DNN’s performance from a minimum of 43.4% to a maximum of 59.0%. This 
remarkable improvement can be a clear indicator that synthetic images are able to supplement and 
strengthen a given small, biased real training dataset in terms of data quantity and diversity. In addition, it 

was observed that the maximum performance was achieved at 2,000 synthetic instances in all cases 
(real_500, real_1000, and real_2000) (Figure 2). It seems that 2,000 synthetic instances were sufficient to 
secure the quantity and diversity of a training image dataset.  
 Figure 3 illustrates that the model trained with 2,000 real and 2,000 synthetic instances performed well 
in outdoor and complex construction scenes. For example, the model could correctly localize multiple 
workers with varying poses and in cluttered backgrounds. The model also succeeded in detecting target 

workers under severe occlusions and in crowded scenes. These capabilities may be attributed to the fact 

Figure 2. Model performance by the number of synthetic instances. 
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that the synthetic 3D worker model and virtual environments were carefully controlled and the 2D images 
were captured at different locations and viewpoints. These results denote that, although there is only a small, 
biased real training dataset in practice, a promising DNN model can be developed by combining it with our 

synthetic images. 
 It was also interesting that the mixture use of real and synthetic training images always yielded a higher 
DNN performance than when using only real images. For example, the performance of the mixed image-
trained model (500 real and 2,000 synthetic instances) was 59.5%, whereas the real image-trained one 
(2,000 real instances) remained in the vicinity of 8.3% (Figure 2). This result indicates that the 
supplementary use of synthetic images can significantly improve DNN performance by 51.2% while 

reducing the number of real instances by 75%, from 2,000 to 500. This finding suggests that practitioners 
could combine a small, biased real training dataset with synthetic images, rather than expending resources 
and time to gather and label real onsite images.  
 As shown in Figure 2, DNN performance peaked at 2,000 synthetic instances in all cases and then 
started to decline steadily when 3,000 or more synthetic instances were added to a given real training 
dataset. Particularly, the decrease in performance was more significant when (i) fewer real training 

instances and (ii) more synthetic instances were given. For instance, the performance dropped the most 
when combining 500 real instances with 10,000 synthetic ones (7.5% dropped). This result may be 
associated with adverse effects caused by the gap in visual characteristics between real and synthetic 
images. If the two different data sources with different characteristics are combined for training, a DNN 
model can become confused and disoriented. This finding implies that, when enlarging a small, biased real 
training dataset, we should carefully control the number of synthetic training images to reduce adverse 

effects on DNN performance.  

5 CONCLUSION 

We proposed an image synthetization approach and investigated the potential of synthetic images as DNN 
training images in a common real-world scenario: there is only a small, biased real training image dataset 
available. Specifically, we created synthetic construction images in a virtual computer environment; added 
the synthesized images to supplement and strengthen a small, biased real training dataset; and trained a 

DNN model with the combined dataset and evaluated its performance in real construction settings. In the 

Figure 3. Examples of construction worker detection by the model trained with real and synthetic 
construction images. 
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experiment, it was observed that the model trained with the combined dataset always had a much higher 
performance than the one trained with a small, biased real dataset. Quantitatively, performance 
improvement was reported with an average of 58.1%. This result shows that synthetic images have 

promising potential in enhancing a small, biased real training dataset in terms of data quantity and diversity. 
With these technical benefits, the combined dataset-trained model could successfully localize construction 
workers in diverse real-world settings (e.g., small-size workers, varying poses, night conditions, occlusions, 
and cluttered backgrounds) (Figure 3). This finding is more noteworthy since construction image 
synthetization and labeling can be fully automated in a virtual environment. Additionally, our approach can 
be flexible and applicable to many different types of visual scene understanding tasks, such as activity 

recognition, 2D/3D pose estimation, and depth estimation. These benefits can help build multipurpose, 
construction-specific training image datasets and ensure the accuracy and scalability of DNN models for 
visual scene understanding.  
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