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ABSTRACT 

The emergence of autonomous vehicles (AVs) provides a sustainable solution to reshape the current 
transportation system and help mitigate the negative environmental impacts from transportation activities. 
However, the AVs may undergo unreliable and insufficient perception by the onboard sensors due to 
occlusion issues and complex traffic conditions, especially in crowded urban intersections. This study 
proposed a vision-based method for automated detection and localization of road users in traffic scenarios 
by leveraging surveillance videos. In this method, the traffic scenario is surveilled in a large visual range 
and the locations of all surveilled road users are determined. The field experiment was conducted to evaluate 
the performance of the proposed method. The experiment results demonstrated the promising accuracy of 
the proposed method for road user location estimation and its potential to provide the AVs with a full-
participant perception in complex traffic scenarios and assist them to make the right driving decisions. 

1 INTRODUCTION 

Over the last three decades, greenhouse gas emissions from the transportation sector have been continuously 
increasing worldwide as primarily the result of the increased demand for the movement of people and 
goods. According to the recent report released by the U.S. Environmental Protection Agency, the 
greenhouse gas emissions from the transportation sector were responsible for 27.1% of total U.S. 
greenhouse gas emissions in 2020, having made it the leading contributor of U.S. greenhouse gas emissions 
(EPA 2022). In European countries, the transportation sector generated 31.3% of total EU-28 greenhouse 
gas emissions in 2019, which was the sixth consecutive year that transportation-related emissions had 
increased (Ghazouani et al. 2021). It was also estimated that transportation emissions need to fall by around 
two-thirds by 2050 in order to meet the net-zero greenhouse gas emission target as set out in the Transport 
White Paper 2011. In China, although the transportation sector only accounted for 9% of the country’s total 
greenhouse gas emissions in 2019, it was still the second-largest contributor (following the U.S.) to global 
transportation emissions to date. Meanwhile, it is projected that the amounts of transportation emissions 
will continue to increase in the coming years on the account of the country’s current low vehicle ownership 
level (Yin et al. 2015). The growing transportation emissions worldwide will contribute to the higher 
concentration of greenhouse gas trap in the atmosphere, which will accelerate global warming and natural 
climate change and consequently pose a significant threat to various species on the earth (Massar et al. 
2021). Therefore, viable measures necessitate being taken to change the current transportation situation. 

The emergence of autonomous vehicles (AVs) provides a sustainable solution to reshape the current 
transportation system and help mitigate the negative environmental impacts from transportation activities 
(Kopelias et al. 2020; Taiebat et al. 2018). By incorporating advanced vehicular automation, the AVs are 
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expected to operate in an automated eco-driving manner with smoother speed and fewer stop-to-go 
movements, thus capable of improving fuel efficiency and reducing transportation emissions thereof. In 
addition, the introduction of AVs also brings benefits in relation to improved safety, increased traffic 
capacity, reduced travel time, optimized traffic flow, and less traffic congestion, all of which will in turn 
contribute to less transportation emission indirectly. Greenblatt and Saxena (2015) carried out simulation 
experiments to estimate the emissions of shared electric AVs. The experiment results indicated that right-
sizing electric AVs incorporated with a low-carbon electricity network could reduce greenhouse gas 
emissions by about 90% in comparison with the current conventionally driven vehicles. Stogios et al. (2019) 
developed an integrated traffic microsimulation and emission model to explore the effects of AVs on 
greenhouse gas emissions. It revealed that the emission intensities could be reduced by up to 26% on the 
expressway when the AVs operate in an aggressive driving setting (i.e., drive with low headway). Hwang 
and Song (2020) investigated the impacts of different AV penetration rates on road capacity and 
transportation emissions. The simulation results disclosed that the increase in AV penetration rate can 
significantly improve road capacity and reduce transportation emissions by up to 30%. 

The enabler of autonomous driving primarily relies on the onboard sensors of AVs to perceive the 
surrounding environment and infrastructures and coordinate with other road users to make optimal real-
time driving decisions (Van Brummelen et al. 2018). However, the AVs may undergo unreliable and 
insufficient perception due to occlusion issues and complex traffic conditions, especially in crowded urban 
intersections (Kloeker et al. 2020). This will result in false driving decisions by autonomous algorithms and 
pose serious safety risks to AVs and passengers. Although these issues can be partially solved by exploiting 
the vehicle-to-vehicle (V2V) communication technology, the safety risks remain because of the 
concurrently moving non-AVs and pedestrians, to which the communication units are not applied. 
Therefore, it will be of significance to provide the AVs with a full-participant perception in complex traffic 
scenarios. To this end, the authors are devoted to developing a vision-based method that allows for 
automatically detecting and localization of all road users using surveillance cameras. Multiple surveillance 
cameras are utilized to cover the entire area of desired traffic scene with each camera monitoring a certain 
region. By fusing and merging the visual information from different surveillance cameras, the real-time 
locations of all surveilled road users can be estimated and the relative location relationship between the 
AVs and other road users can be determined thereof. The perception results of entire traffic scenarios from 
the surveillance cameras are timely sent to the passing AVs through vehicle-to-infrastructures (V2I) to 
assist them to make the right driving decisions. The proposed method is promising and provides a measure 
in the infrastructure manner to help improve the reliability and safety of the AVs. In the meanwhile, the 
collected traffic data can be stored and utilized for simulation and further development of highly automated 
driving functions. In the scope of this study, the vision-based method for road user detection and localization 
was elaborated and its performance was preliminarily evaluated by one single camera for the surveillance 
of a traffic intersection. 

2 METHODOLOGY 

The proposed vision-based method contains three main modules: road user instance segmentation, 3D 
bounding box construction, and road user localization. First, the deep learning model – mask region-based 
convolutional neural network (Mask R-CNN) is used to detect and segment the road-user instances 
(silhouettes) in the images. Then, the 3D bounding box is constructed for each identified road user by 
leveraging the detected silhouette and three orthogonal vanishing points in the traffic scene. Constructing 
the 3D bounding box for objects can overcome the difficulty of accurate object location estimation in 2D 
images resulting from the absence of depth information, which is a shared hurdle in existing vision-based 
methods for road user location estimation. This way, the road user’s location can be identified and 
represented by the four bottom vertexes (or better, the bottom surface) of its 3D bounding box. Finally, the 
road user’s physical location is determined by mapping the four bottom vertexes from the image plane to 
the road plane. In the following subsections, each module is explained in detail. 
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2.1 Road-user Instance Segmentation Using Mask R-CNN 

In this study, Mask R-CNN is applied to detect the instances of road users in the images, whose performance 
has been well evaluated and documented in many studies. Mask R-CNN is a two-stage framework: the first 
stage is responsible for feature extraction and generating object proposals, and the second stage is 
responsible for classifying the proposals to generate bounding boxes and masks in parallel (He et al. 2017). 
The architecture of Mask R-CNN is depicted in Figure 1. In the first stage, the feature pyramid network 
(FPN) integrates a bottom-up pathway and a top-down pathway to construct an in-network feature pyramid 
for each input image. By leveraging lateral connections (element-wise addition), multiple-scale feature 
maps are independently produced by merging the low-resolution but semantically strong features from the 
top-down and the high-resolution but semantically weak features from the bottom-up pathway. Therefore, 
this architecture enables the detection of objects across a large range of scales, particularly suitable for this 
study, that is, the large-size road users near and the small-size road users far from the camera. The extracted 
feature maps are then handed to the region proposal network (RPN), in which a series of object proposals 
are generated by pixel-wisely sliding a set of predefined anchors with aspect ratios of 0.5, 1, and 2 on the 
top of each feature map. After that, each generated proposal is mapped to a lower-dimensional feature and 
passed through two siblings fully connection layers, one pertaining to object-ness scores for classification 
and the other one to bounding box offset regression. 

In the second stage, the region of interests align (ROIAlign) layer is implemented to cast the fixed-size 
(7×7) ROIs based on the proposals from the RPN and the shared feature maps from the FPN. In comparison 
to the ROIPool layer adopted in Faster R-CNN, the ROIAlign layer subdivides the ROIs in a quantization-
free manner by the use of bilinear interpolation; thus, it can faithfully preserve the exact per-pixel spatial 
locations of the proposals. It has been proven that the ROIAlign layer is capable of improving the accuracy 
of per-pixel segmentation masks by 10%-50% (He et al. 2017), thus allowing for obtaining more fine-
grained road users’ silhouettes that are greatly favorable to the proposed method. The generated ROIs are 
fed into the last network head embracing three branches for classification, bounding box regression, and 
instance segmentation. To achieve per-pixel segmentation without competition among different classes, the 
mask branch predicts a binary mask for each class independently. It is worth noting that the detection branch 
(classification and bounding box regression) and mask branch (instance segmentation) run in parallel to 
each other. Therefore, the classification of particular classes does not depend on the mask predictions. 

 
Figure 1: Architecture of Mask R-CNN. 
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2.2 3D Bounding Box Construction for Road Users 

The pipeline of 3D bounding box construction was developed in the authors’ previous work (Lu and Dai 
2022), which consists of two steps: vanishing point estimation and 3D bounding box construction. In order 
to make this manuscript self-contained, the proposed pipeline is briefly illustrated herein. For details, 
interested readers can refer to Lu and Dai (2022). 

As for the vanishing point estimation, a random sample consensus (RANSAC)-based method was 
proposed. Different from the traditional vanishing point estimation methods, the proposed method skips the 
step of line segment cluster and directly performs on the detected edgelets in the images, thus avoiding 
causing significant loss of line information along certain directions and introducing an unfavorable system 
basis. Also, it eliminates the need for trial-and-error parameter tuning thus allowing for the easy 
implementation of the proposed method across a variety of traffic monitoring scenes with much less human 
input. The edgelets distributed on the building outlines, road surface (i.e., those from road markers and 
lanes), and vehicle appearances can be utilized for vanishing point estimation. Herein, the three orthogonal 
vanishing points are defined as follows. The first vanishing point 𝒗𝒗1 is in the direction of the dominant 
traffic flow, the second vanishing point 𝒗𝒗2 is in the direction perpendicular to 𝒗𝒗1 and parallel to the road 
surface, and the third vanishing point 𝒗𝒗3 is in the direction perpendicular to the road surface. Note that 𝒗𝒗1, 
𝒗𝒗2 , and 𝒗𝒗3  are vectors defined in homogenous coordinates. Figure 2 shows an example of identified 
concurrent edgelets along three orthogonal vanishing points, in which the edgelets along different directions 
are annotated by different colors. 

 
Figure 2: An example of edgelet detection and vanishing point estimation in traffic scene. 

Upon identification of the three orthogonal vanishing points in the traffic scene, the 3D bounding box 
can be constructed for each road user in the surveilled view. Taking an on-road truck for illustration, Figure 
3 depicts the schematic pipeline of 3D bounding box construction. First, five lines (L1~5) are generated by 
constructing the lines passing through three vanishing points and tangent to the truck’s silhouette (see 
Figure 3a). based on this, four intersection points (B1~4) can be obtained, which correspond to the four 
vertices of the truck’s 3D bounding box. Following that, line L6 passing through the point B1 and the 
vanishing point 𝒗𝒗2 is constructed. Together with line L7 passing through the point B3 and vanishing point 
𝒗𝒗3, the vertex B5 can be subsequently determined, which lies at the intersection of lines L6 and L7 (see 
Figure 3b). Likewise, vertex B6 is constructed as the intersection of line L8 passing through the vertex B2 
and the vanishing point 𝒗𝒗1 and the line L9 passing through the vertex B4 and vanishing point 𝒗𝒗2. With the 
known vertex B6, the vertex B7 can be obtained from the intersection of the line L1 and the line L11 passing 
through the vertex B6 and the vanishing point 𝒗𝒗3 (see Figure 3c). Similarly, the final vertex B8 can be 
defined by the intersection of line L4 and line L10 passing through the vertex B5 and the vanishing point 
𝒗𝒗1 . Once all eight vertexes are obtained, the truck’s 3D bounding box can be enclosed eventually by 
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connecting these vertexes recursively (see Figure 3d). The same 3D bounding box construction strategy 
can be also applied to other road users, such as cars, buses, vans, pedestrians, motorcycles, and cyclists. 
Figure 4 shows some examples of 3D bounding box construction for different road users. 

 
Figure 3: Pipeline of constructing 3D bounding box. 

 
Figure 4: Examples of 3D bounding box construction for road users. 

2.3 Localization of Surveilled Road Users 

Once the road user’s 3D bounding box has been constructed, its location on the road can be represented by 
the four bottom vertexes (or better, bottom surface) of its 3D bounding box along with converting them into 
the physical coordinates in the real world. Assuming that the road shape is approximately flat, which stands 
in most traffic situations, the projective relationship between the road plane and image plane can be 
described as (Lu and Dai 2021) 
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Or more concisely 

 
 𝛾𝛾𝐦𝐦𝑖𝑖 = 𝐇𝐇𝐌𝐌𝑖𝑖. (2) 
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where 𝐦𝐦𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 1)T and 𝐌𝐌𝑖𝑖 = (𝑋𝑋𝑖𝑖, 𝑌𝑌𝑖𝑖, 1)T (𝑖𝑖 = 1,2,⋯ , 𝑛𝑛) are the homogeneous coordinates of 𝑖𝑖th pair 
of point correspondences on the image plane and road plane, respectively. 𝛾𝛾 is the non-zero scale factor. 𝐇𝐇 
stands for the homography matrix, depicting the projective transformation relationship between the image 
plane and road plane. Since 𝐇𝐇 is meaningfully defined up the scale factor 𝛾𝛾, there are only eight degrees of 
freedom in it and thus 𝐇𝐇 can be determined from at least four image-to-world point correspondences in 
general condition with the help of the direct linear transformation method (Lu and Dai 2021). 

The reference points used for homography estimation are shown in Figure 5, whose image coordinates 
and physical coordinates were manually measured on the image plane and road plane, respectively. By 
exploiting the obtained homography matrix, each road user’s location on the road can be determined by 
mapping the bottom vertexes of its 3D bounding box from the image plane to the road plane. An example 
is shown in Figure 6. 

 
Figure 5: Reference points for homography estimation. 

 
Figure 6: Road users’ location on road by applying projective mapping: (a) before projective mapping and 

(b) after projective mapping. 

3 DATASET CONSTRUCTION AND MODEL TRAINING 

An urban traffic dataset was established by the authors for Mask R-CNN model training, which contains 
684 images at a resolution of 1920×1080 pixels. The traffic images were recorded under different traffic 
scenarios and surveillance view angles. The labeling work was done by the VGG Image Annotator, which 
is an image annotation software developed by the Visual Geometry Group (VGG) (Dutta and Zisserman 
2019). The road user instances are grouped into seven categories, i.e., car, van, bus, truck, pedestrian, 
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cyclist, and motorcycle. Some collected urban traffic image samples as well as their annotations are 
displayed in Figure 7. 

The model training task was conducted on the platform of Amazon Web Services (AWS) with a single 
graphics processing unit (GPU, NVIDIA Tesla V100). The residual neural network ResNet-101 was 
employed as the backbone of FPN in the Mask R-CNN model, on the account of the fact that it outperforms 
other deep convolutional architectures in tackling the gradient vanishing issues (He et al. 2016). The pre-
training strategy was used to achieve better model performance and reduce the training time. To this end, 
the Mask R-CNN model was firstly trained from scratch on the COCO dataset (Lin et al. 2014), and then 
the weights and biases in the network head were finetuned on the established urban traffic dataset. The 
established traffic dataset was split into a ratio of 7:3 (479:205) for model training and validation. The 
hyperparameters, that is, learning rate, learning momentum, weight decay, and batch size were set as 0.001, 
0.9, 0.0001, and 2, respectively. 

 
Figure 7: Collected urban traffic image samples and their annotations. 

4 PERFORMANCE VALIDATION 

4.1 Experimental setup 

The field experiment was carried out on the campus of West Virginia University to preliminarily evaluate 
the performance of the proposed method for road users’ localization. One commercial camera (Panasonic 
HC-W580K) was employed to surveil the traffic scene in a full-HD resolution (1920×1080 pixels) with a 
sampling rate of 30 fps. The camera was installed on one pole at an elevated height of 6 m above the road 
surface. The surveilled traffic scene is shown in Figure 8(a). In the meanwhile, one unmanned aerial vehicle 
(UAV, Phantom 4 Pro+ V2.0) equipped with a high-resolution camera was utilized to surveil the same 
traffic scene also in a bird’s eye view, whose clock was synchronized with that of the Panasonic camera by 
the Internet time server. By setting the optical axis of the UAV perpendicular to the road surface, the road 
users’ locations can be easily and accurately identified in the images recorded from the UAV via the 2D 
bounding boxes, as illustrated in Figure 8(b). Therefore, the road users’ locations estimated from the UAV 
served as the ground truths for comparison purposes. The resolution of the onboard camera is 3840×2160 
pixels and the sampling rate was set to 30 fps. By leveraging the same reference points as set in Figure 5, 
the projective relationship between the ground plane and the image plane of the onboard camera can be 
estimated through Equation (2). By doing so, the road users’ locations can be converted from the pixel unit 
to the physical unit. However, due to the self-motion of the UAV, the corresponding projective relationship 
differs for different frames. Therefore, the homography matrix needs to be estimated for each frame 
individually. 
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Figure 8: Dataset collection in field experiment: (a) dataset collected from surveillance camera and (b) 

dataset collected from UAV. 

4.2 Experiment results 

Two video datasets were recorded from the surveillance camera and UAV in the field experiment, 
respectively. The video duration of either dataset was 10 minutes. During date postprocessing, both videos 
were converted into a sequence of images with a resampling rate of 2 s, resulting in 300 images for each 
video dataset. The image dataset from the surveillance camera was fed into the trained Mask R-CNN model 
to test its performance for road user detection and instance segmentation. It should be pointed out that no 
frame in the field video dataset was included in the model training process. Namely, the trained Mask R-
CNN model has never “seen” these testing images before. The testing result is depicted in Figure 9 in the 
form of a confusion matrix, in which the cells in the first row except for the first one correspond to the false 
positives such that the textures in the image background (BG) were falsely predicted as road users, and the 
cells in the first column except for the first one correspond to the false negatives such that the actual road 
users were not successfully detected. The road users regarding cyclists and motorcycles did not appear in 
the field experiments, thus the performance of the trained model for these two types of road users was not 
validated. It can be seen that the overall precision and recall for the recognition of each type of road user 
were above 87.5% and 82.4%, respectively. 

 
Figure 9: Confusion matrix of road user recognition results. 
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Table 1 lists the statistics of localization errors of different road users by the proposed method with 
reference to the ground truths obtained from the UAV. The localization error of each object was computed 
by averaging the differences between the measured locations of four bottom vertexes and their actual values. 
The apparently false 3D bounding boxes of road users resulting from occlusion issues were excluded for 
performance validation. It is worth pointing out that this issue can be easily tackled by setting other 
surveillance cameras at different locations and surveillance view angles. The results showed that the mean 
error maximum error of road user localization errors were 12.3 and 20.5, 20.8 and 30.7, 17.2 and 26.8, 23.7 
and 35.4, 8.0 and 19.8 cm, respective. Additionally, the standard deviation of localization error for these 
five types of road users were 4.6, 6.8, 6.7, 7.3, and 3.1 cm, respectively. It is evident that the localization 
error of pedestrians is much less than those of other types of road users, it is mainly attributed to its less 
occupation of road spacing that makes it more easily and accurately identified on the road surface. 

Table 1: Statistics of road user localization errors (cm). 

 Mean Error Standard Deviation Maximum Error 
Car 12.3 4.6 20.5 
Bus 20.8 6.8 30.7 
Van 17.2 6.7 26.8 
Truck 23.7 7.3 35.4 
Pedestrian 8.0 3.1 19.8 

5 DISCUSSIONS 

Once the road users’ locations are identified from the proposed method, their dynamic characteristics, such 
as trajectory, velocity, acceleration, etc., can be easily obtained by tracking their locations over a sequence 
of frames. This valuable information can then be sent to AVs in real time through V2I technology so that 
the AVs can have a full-participant understanding of the entire traffic scenario to help them make the right 
driving decisions. Furthermore, all types of data collected can be processed and stored in a central database 
and used for traffic and transportation infrastructure simulations as well as the development of highly 
automated driving functions. By utilizing the collected dataset, the responses of road users to others can 
also be thoroughly studied and as an input for simulation. Collectively, virtual traffic scenarios can be 
established to test and optimize the driving algorithms for AVs in response to the motions of surrounding 
road users. In addition, since the proposed method is able to achieve a full-participant perception of the 
surveilled traffic scenes, the collected dataset can be used to conduct the simulation experiments and 
develop the macroscopic models to optimize the route planning algorithms for AVs, which can help them 
travel through complicated traffic situations, such as crowded intersections, more smoothly and effectively. 

6 CONCLUSIONS AND FUTURE WORKS 

In this study, a vision-based method was proposed for the automated detection and localization of road 
users in urban traffic scenarios. The field testing was conducted to preliminary evaluate the performance of 
the proposed method. The experiment results demonstrated the promising accuracy of the proposed method 
for road user localization and its potential to provide the AVs with a full-participant perception in complex 
traffic scenarios and assist them to make the right driving decisions.  

On top of the current study, there are still some works worth future investigation. First, more 
comprehensive field experiments need to be carried out to evaluate and improve the performance of the 
proposed method under different traffic conditions. Second, in order to recover the entire traffic scenario 
and address the occlusion issues, multiple surveillance cameras need to be installed at different locations 
and with different surveillance view angles. Therefore, some efforts should be made to develop guidance 
for camera location choice and surveillance view angle optimization. Based upon this, the information 
fusion and integration from different cameras also deserve further investigation in the future.  
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