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ABSTRACT

Research has examined the process of engaging end-users in co-designing a simulation model and using it
within workplace settings. In contrast, few studies document the software development aspect of creating,
packaging, and deploying a simulation platform that satisfies end-users’ needs. In this case study, we detail
these aspects regarding a platform involving Agent-Based Modeling for youth suicide prevention. Goals and
constraints are detailed in three categories of needs, each showing how competing demands are addressed
via software solutions: 1) data, encompassing data security (e.g., no direct access to individual-level
data) and data updates (e.g., changing a model’s initialization without coding expertise); 2) deployment,
to satisfy security protocols (e.g., secure intranet communications) and the end-users’ experience (e.g.,
ease of installation); 3) accessibility, ensuring that individuals with impairments are not excluded from
using simulations. By presenting practical solutions to each category, our case study supports modelers in
addressing their own deployment needs.

1 INTRODUCTION

Simulation experts frequently work within interdisciplinary teams by creating models and accompanying
platforms intended for end users who are domain experts. Best practices for producing these simulation
models include identifying the needs and capacities of end users (Treasury 2015) as well as characterizing
the environment within which they operate, since it shapes constraints in terms of platform dynamics
(e.g., updating modules or data) and security (e.g., data access, authentication). These constraints impact
our ability to successfully integrate a simulation platform within the existing software ecosystem of the
end-users. In this paper, we describe the development and deployment of a simulation platform that must
be operable within a government agency. Specifically, we examine a new suicide prevention simulation
platform for which the end-users are public health researchers in suicide prevention.

Studies have emphasized the early and continuous involvement of end-users with models that support
their decision-making activities (Gilbert et al. 2018), thus advocating for a ‘participatory modeling’
approach (Voinov et al. 2018; Giabbanelli et al. 2021). However, the nature of this involvement is often
limited to the conceptual design (Barbrook-Johnson et al. 2019) of the model (e.g., which factors are
important? which relationships are known? what level of abstraction is adequate? which intervention
scenarios should be supported?) and its validation (e.g., how do results compare with expectations?). For
example, participatory modeling studies document the involvement of stakeholders (who are also often the
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end-users) in co-designing (Ahrweiler et al. 2019; Adams et al. 2021) a model or using it either within a
workshop setting (Minyard et al. 2014; Lawler et al. 2018) or as part of a usability study (Giabbanelli et al.
2016). Complementary studies examined the early step of commissioning a model (Cox and Barbrook-
Johnson 2021), developed frameworks on how interventions should be modeled (Skivington et al. 2021),
or provided cautionary tales of overlooking a model’s purpose and its limitations (Edmonds et al. 2018).

In contrast, little is known about the software part of the process, which is devoted to developing and
integrating a simulation platform within an existing software ecosystem. Forgetting about the integration
ultimately results in delivering platforms that suffer from low usability or cannot be adequately maintained
for long term use. As noted by Gilbert et al. (2018), “securing long-term maintenance arrangements is thus
a challenge that is so far rarely met properly”. This challenge parallels a concern in the field of Modeling
& Simulation (M&S) regarding the inability to either access models (Squazzoni et al. 2020) or reuse
them (Vendome et al. 2020; Giabbanelli et al. 2019). The paucity of studies on the integration of modeling
platforms in daily thus constitutes a key limitation in M&S, emphasized in calls to consider simulation
platforms as tools subject to evaluation by their intended users (Giabbanelli et al. 2021; Giabbanelli and
Crutzen 2017) rather than merely the final product or after-thought of a modeling process.

Our case study contributes to the research on the development and integration of a simulation platform
built on an Agent-Based Model (ABM). In this model, each agent represents a youth (ages 10 to 19 years)
whose trauma is updated yearly and can lead (depending on a balance of protective and risk factors) to
suicidal thoughts, attempts, or death. Since the end-users are researchers who may operate in government
agencies, our case study is subject to a comprehensive set of requirements. By presenting how each of these
requirements was addressed, our study thus constitutes a ‘case library’ that augments the problem-solving
capacity of modelers who may be faced with some of these requirements for the first time.

To facilitate this uptake of our experiences, our contributions are grouped into three subsets of require-
ments. The first subset is centered on data, which is both an essential input (to initialize a model) and
the main output subject to interpretation by end-users. Several competing demands apply to data: data
security prohibits the direct use of identifiable individual-level data for the platform, yet simulations are
performed at an individual level with ABMs. In addition, data updates are necessary since population
characteristics change over time and the platform is designed for long-term use, yet an update by one user
could (unknowingly) affect the simulations performed by others without proper compartmentalization. For
instance, a user could update the data once after-school programs have been implemented, while another
user continues to research the potential effect of after-school programs by relying on the data as a baseline
without such programs. The second subset is devoted to deploying a simulation platform, which is again
subject to competing demands. Security protocols can prohibit a third-party simulation team from directly
deploying software on a target system thus a platform must be packaged for easy deployment, yet the
characteristics of the target system may be partly unknown and/or subject to change (e.g., as the end-user
updates dependencies). In addition, performing large-scale simulations on a single machine can lead to
a poor user experience when one attempts to use a system already under significant computational load,
hence a client/server architecture is often used to separate a simulation web portal from the computations,
which adds to the complexity of deploying the platform. Finally, accessibility in simulation platforms has
primarily been investigated in the context of student learning (Winters et al. 2020; Smith et al. 2018)
rather than with respect to inclusion for when end-users are domain experts. For example, in participatory
modeling, a common perception is that visualizations are a universal medium (Marzouki et al. 2022) to
engage with simulations, thus implicitly ignoring individuals with visual impairments. However, electronic
and information technology (EIT) accessibility laws and policies (e.g., Section 508 of the Rehabilitation
Act of 1973) require federal agencies to make their EIT accessible to people with disabilities. This, again,
results in competing demands: we need to support the user experience through interactive elements (e.g.,
to view feedback about simulation results or set-up a new scenario), yet the user may have impairments
(e.g., visual, motor control restrictions affecting hands). Each of these subsets of requirements is addressed
in a dedicated section, following a brief overview of the objectives of our platform.
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2 BACKGROUND: PURPOSE OF THE SIMULATION PLATFORM AND PRIOR WORK

Suicide is the second leading cause of death among adolescents ages 10-14, and third leading cause of death
among adolescents ages 15-19 in the United States, accounting for 17.0% of all deaths among those aged
10-14 and 18.0% of all deaths among those aged 15-19 (Centers for Disease Control and Prevention 2020).
Suicide prevention policies do not only seek to prevent death, but also to decrease their precursors: adverse
childhood experiences (ACEs), and suicide ideation and attempts, which saw 461,980 emergency department
visits and in-patient hospitalizations for adolescents in 2018 alone (Agency for Healthcare Research and
Quality 2021). Suicide ideation, attempts, and fatality are caused by a complex web of factors including
individual-level factors (e.g., mental health, substance abuse), relationships (e.g., bullying), the community
(e.g., availability of mental health services), and the broader society (e.g., social norms). Previous efforts
at mapping this complex system have captured from 18 concepts and 42 interactions (Page et al. 2017)
up to 361 concepts and 946 interactions (Giabbanelli et al. 2021). These conceptual models have been
operationalized as simulation models using various methods, such as System Dynamics (Occhipinti et al.
2021; Chung 2016) or Agent-Based Models (Keyes et al. 2019). Given the broad number of suicide-related
concepts and the various socio-ecological levels at which they are situated (e.g., individual or societal), it
is no surprise that there exist very diverse patterns in suicide epidemiology (Patel and Gonsalves 2019).
Agent-Based Models (ABMs) can be a powerful tool to represent this heterogeneity provided that there is
sufficient data to calibrate and validate them, as well as adequate computational power to run population-wide
simulations at the individual level; these two constraints will be examined in sections 3 and 4.

A model must be fit for purpose or ‘adequate’ rather than replicating the entirety of the real-world, it
should fulfill its role of decision-support tool for suicide prevention strategies of interest to end-users. These
policies are “intersectoral, coordinated, and collaborative actions that target the range of risk factors” (Patel
and Gonsalves 2019). Specifically, a comprehensive technical package of policies, programs, and practices
to prevent suicide was developed to help communities and states prioritize prevention strategies based on
the best available evidence (Stone et al. 2017). The model is thus fit for purpose if each of the actions
articulated in this technical package can be tested in the ABM, with respect to its effects over three outputs
(suicide ideation, suicide attempts, and suicide fatality). Hence, we started by identifying corresponding
concepts in our large systems map (Giabbanelli et al. 2021) for each of the suicide prevention strategies.
These strategies or ‘inputs’ must eventually lead into observable effects over the outputs, thus we need to
take a sufficient subset of the map that connects these inputs to outputs. This task then was guided by data
availability, using graph algorithms that favored selecting concepts and interactions for which data was
available in one of four U.S. based surveys or surveillance data sources that collect information on adolescent
suicidal behaviors (Freund and Giabbanelli 2021). As a result, we have (i) a set of evidence-based policy
actions as model inputs, and (ii) a sequence of rules leading to outputs and involving individual-level data.
These were translated into an ABM executed via a platform that is the subject of the present manuscript.

3 PROVIDING BOTH DATA SECURITY AND DATA UPDATES

In our ABM, each agent is initialized (i.e., assigned a starting value for each attribute) and then repeatedly
updated annually until the agent either (i) becomes an adult, in which case the agent leaves our model; or (ii)
dies by suicide. The update is driven by a set of evidence-based rules, such as calculating the cumulative
trauma of an agent (e.g., from adverse childhood experiences) and whether it exceeds a user-defined
threshold. Simulation parameters such as this threshold can easily be exposed to end-users who can then
make changes, for example via text fields or sliders in the Graphical User Interface of platforms such as
NetLogo. For long-term maintainability of a simulation platform, it is necessary to also allow end-users to
change how agents are initialized, for example to reflect changes in population demographics, the physical
or social environment. If a user has direct access to individual-level data, then changing the initialization
can be as simple as selecting an updated version of the data file, which is then read by a platform to
initialize each agent based on a row of data describing a real-world individual (Giabbanelli and Crutzen
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Figure 1: The regression editor allows end-users to edit the data that initializes each of the agents’ attributes.
Regressions must pass automated checks before being passed onto the simulation.

2013). A challenge arises when such individual-level data is not available to the end-user, for example
due to access control policies as part of broader data security constraints. Indeed, end-users may not have
access to national statistics files at the individual level, or access to these files is only granted in restricted
environments which are not connected to the internet hence preventing linking with a remote simulation
platform. In this case, the initialization is normally coded into the model. The matter of enabling end-users
to modify the initialization of agents thus turns into the problem of exposing some of a model’s inner logic
(i.e., code that initializes agents) in a way that is both safe for the platform (e.g., user modifications cannot
have impacts beyond the initialization) and feasible for users without programming backgrounds.

In our platform, these constraints are addressed through a ‘dataset editor’ (Figure 1). Each of the
agents’ attributes is governed by one regression, calibrated by a statistician with either direct access to
data (in our case) or potentially from publicly available aggregated data. To change the initialization of an
attribute, an end-user edits the corresponding text field. Changes are then locally saved and submitted for
checking, which is an essential step both to give feedback to the user and to ensure that the regressions
will run adequately once in the simulation. Two categories of checks are performed. At a low-level, we
ensure that each variable cited in a regression does exist; our experience found that this frequently helps
end-users to identify typos and it also prevents any form of code injection into the simulation. A ‘variable
name key’ quickly reminds users about existing variables, while a more comprehensive ‘data cards’ section
of the platform provides standardized definitions and recommendations for each variable in context. At a
higher-level, we check that the dependencies in the regressions are satisfiable. This means that all factors
involved in a regression must have been defined first; for example, in Figure 1, ACEs involve four other
attributes which must have a value by the time the simulation attempts to initialize ACEs. We also check
that there are no circular dependencies, such as when the initialization of a variable A depends on C, which
itself ultimately involves A. These higher-level dependencies are checked by automatically building and
analyzing a graph from the regressions (e.g., it must be acyclic to forbid circular dependencies).

When new data is released (e.g., yearly or biyearly), some regressions may change (e.g., population
distribution by race and ethnicity) while others may still be valid (e.g., social norms). On one hand,
re-writing all regressions from scratch just to change a few would be a frustrating user experience. On the
other hand, directly making changes into a ‘main set’ of regressions would be risky (e.g., if users make
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mistakes) and would prevent the comparison of simulations between data sources. To address these needs,
users can have several sets of regressions (i.e., ‘datasets’), obtained either by (i) making a blank new one
and then writing all regressions; or (ii) copying the most closely related dataset and then only changing
what is needed. When a simulation is configured, users also select the relevant dataset.

Because our platform supports teams of users, it is possible that one user modifies the dataset employed
by another user. While this supports teamwork, it also shows that the ‘ability’ to modify data should not be
taken lightly. Consequently, the user permission system for the platform allows administrators (typically
team leads) to decide which team members to entrust with changing the datasets (typically statisticians).
The platform is also configured to ensure that there is always at least one administrator in a team.

Figure 2: The user management system allows administrators (‘admin’) to promote a general user into a
‘data manager’, which lets them modify the datasets. Red boxes are added for emphasis or data privacy.

4 DEPLOYING A MODULAR ARCHITECTURE SUBJECT TO SECURITY PROTOCOLS

The model is stochastic, as the initialization of agents (c.f. regressions in section 3) decide the probability
of certain baseline values. Consequently, every run of the model must be performed several times to obtain
a distribution of the outcomes (suicide ideation, attempts, fatality). The duration for each of these runs
increases as a function of the virtual population size (i.e., number of agents) chosen by the end-user. While
a model does not need a virtual agent for every real-world person (i.e., 1:1 scale), a user may still require a
sufficiently large population to study the specific experiences of agents with multiple characteristics (e.g.,
Non-Hispanic Black, 8-10 year old, Male, using healthcare services), which can become computationally
intensive. Performing these runs on the same machine used to access the simulation platform (i.e., sharing
CPU cycles) would thus become a problem, as either (i) heavy computations from simulations deteriorate
the responsiveness of the platform and hence impact the user experience or (ii) user actions on the platform
impact how long it takes to perform the simulations, resulting in fluctuating estimates for users to obtain
their results. Consequently, we dissociate the front-end of the simulation, consisting of the Graphical
User Interface through which users configure and analyze simulations, from the back-end, which performs
simulations. This leads to a classic web client and server architecture, akin to how AnyLogic offers a
web platform and then runs computations elsewhere (via a cloud). When a new simulation is requested
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from the web portal, it is sent to the server, which then estimates how long it will take (depending on its
current load and the requested population size) and informs the user. The overall architecture is shown in
Figure 3.

Figure 3: Blueprint of the client/server architecture and Docker containers.

Similar to other platforms (Bogach et al. 2017), we use C++14 to execute a simulation (due to
performance) and Python 3.9 to analyze parameters (e.g., check regressions) and package the results. To
package the complete architecture and facilitate its deployment with end-users, we use Docker 20.10,
which is a platform as a service (PaaS) that uses operating system level visualization to deliver software
in packages called containers. Unlike Marrocco et al. (2019) where some simulation components were in
containers and others (e.g., GAMA and a client) were not, we ensured that the entire simulation platform
could be deployed with Docker. This leads to four containers (Figure 3): the database, back-end, front-
end, and web server. The MySQL 5.7 database stores user data (e.g., to differentiate admins from data
managers), simulation data (for later retrieval and analysis), and the regression sets. The back-end built with
Laravel Lumen checks the regressions and performs the simulations, whose results are both reported to
the front-end and archived in the database. Reporting to the front-end allows the visualization of results
upon their completion (Figure 4), while archiving in the back-end serves the dual purpose of (i) comparing
results across simulations (e.g., identify which prevention strategy performs best); and (ii) supporting
replicability efforts, in line with best practices in M&S. The front-end container holds the user interface.
In the front-end, a user signs up or logs in to their account and can request new simulations or analyze
previous ones. Administrative users also have the ability to add regression sets as well as add/remove
users and change user roles (c.f., section 3). The last container is the web server using NGINX, which
serves the front-end such that it is accessible to users on the deployed server. The web server handles the
HTTP/HTTPS requests when a user seeks to access the site and, if successful, then displays the front-end.
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Figure 4: Results passed by the back-end are then visualized in the front-end. Ideations, attempts, and
fatalities are broken down by race and ethnicity, which can be used as filters by end-users.

For security, the server can only be accessed through HTTPS (i.e., via port 443), which is achieved
by OpenSSL certificates. A certificate and corresponding private key were generated and placed inside the
web server container; that is, the configuration file of the web server directly points to the certificate and
key. After these steps, the server is compliant with end-users security protocols by using secure sockets
layer (SSL) and HTTPS, hence we can proceed with packaging.

Due to security protocols, we cannot assume that the end-user has access to the internet, hence the
deployment can (i) neither rely on pulling from repositories such as the Docker Hub nor (ii) download
dependencies. These constraints affect how the platform is packaged. We thus pre-install all dependencies,
then package each docker container individually (as tar files) to maintain the dependency installations.
These four files, the database migration file, and the main application configuration file, are finally gathered
into a single archive (zip file) which is ready for deployment. Once the end-user has moved the archive to
their machine, they follow a simple three steps process. First, they unzip the archive. Second, they load
all containers (i.e., tar files), which will also load the installed dependencies. Then, using Docker compose
3.8, they can run the server and perform the database migration. At this point, the platform is ready and
users can access it via their local machine (e.g., via localhost:8001).

Overall, our client/server architecture combined with several Docker containers and pre-installed
dependencies was able to support a successful integration of the ABM platform on a secure server within
one group of public health researchers. Security protocols were satisfied through the use of appropriate ports
(using OpenSSL to generate a certificate/key then communicating via HTTPS) and a complete packaging
of the platform such that no internet access is required for deployment.

5 DESIGNING A SIMULATION PLATFORM FOR ACCESSIBILITY

End-users of simulation platforms represent a broad range of skills and backgrounds, thus it is important
to consider platforms from an inclusive perspective. This can also be a legal requirement for government
organizations, for example relevant U.S. guidelines such as Section 508 (https://www.section508.gov/)
requires to provide access to users with disabilities. To appreciate the applicability of this guideline, it is
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Figure 5: The homepage illustrates the ordering of tabs (for navigation via a keyboard), the clarity of
terminology (e.g., ‘search’), and the visible highlights when a button is in focus.

important to characterize the end-users of the simulation platform. Indeed, the 508 guidelines require the
ability to provide manual assistance to anyone using the platform, should it be needed. If the platform was
openly accessible, that requirement may need a dedicated help-desk with a ticket system. Given that our
end-users are public health researchers, our objective is to maximize compliance with accessibility guidelines
and hence minimize the possibility of needing manual assistance. At a high level, this includes making
all content readable by a screen reader (Moore et al. 2018) (including providing captions for complex and
dynamic images of simulation results), navigating through pages involved in defining/analyzing simulations
with the keyboard alone, and using color schemes mindful of people with color blindness.

Ensuring our content is always readable starts with paying close attention to the terminology and keeping
it uniform throughout the platform. For example, simulations that have been executed (i.e., previous runs)
are available through a list. While ‘filtering’ a list is a common keyword for developers, ‘search’ is a more
frequently used term for the operation at-hand and users can then assume that they will be presented with
a search result instead of having to search through a filtered list. Similarly, the habit of editing a user’s
account by clicking on their name is not as meaningful as a button labeled ‘account options’ (Figure 5).
To make the content readable, the code also had to be extended with ARIA-labels and descriptions for
input fields, links, and tables. An ARIA-label is an additional markup to the HTML, which provides a
more detailed description of the HTML element and its context; these descriptions are then read by screen
readers. A challenge is to support screen readers when visualizing simulation results. When visuals are
simple and static, standard practice to make them accessible is to add alternative text that describes the
visuals. As charts and graphs get more complex (Figure 7), practice switches to providing a caption and
a data table to supplement the visualization. Our platform thus sends these results in two ways: as a
table summarizing the outcomes of the model (which can be used by screen readers given row/column
names) and as detailed charts which can be used for visual, interactive data exploration. To avoid reading a
massive amount of data at once, our platform offers the ability to break down these charts (and their tabular
counterparts) by differing demographics. In addition, the complete data from the simulation (Figure 6) or
rendered in a specific chart can be downloaded, to be handled by third-party accessible software (e.g., as
Excel spreadsheets that conform to the Revised 508 Standards). Note that there are also innovative browser
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extensions, such as deep neural networks that decode charts on a webpage for screen readers (Choi et al.
2019); our platform has no direct control over the extensions adopted by a user and further studies are
needed to evaluate the quality of transcriptions for visualization of simulation results.

Figure 6: Improving accessibility for simulation results included the ability to download all results as a
spreadsheet, or export an automatic executive summary (including simulation parameters and results).

Overall, the 508 guidelines contain a total of 79 specific items; for full disclosure, the complete list
of items together with our explanations for compliance are provided on the Open Science Framework
at https://osf.io/7nxp4/. Since 23 items are not applicable to a simulation platform (e.g., if a page uses
multiple languages), our compliance with 42 items covers 75% of the guideline. The remaining points for
non-compliance thus require third-party software or manual assistance. For example, guideline 6A states
that all functionalities should be available using the keyboard, except for tasks such as drawing. We do
not meet this guideline as it is not currently possible to drive interactive charts of simulation results with
the keyboard. To allow this interaction, the HTML canvas element for each type of chart would need to
include event handlers, ensure that keyboard controls do not override any existing accessibility control, and
provide the exact same functionality as the user can get with a mouse. There is thus still a need for greater
accessibility in libraries that commonly support interactive visualizations within simulation platforms.

6 CONCLUSION

Despite the growing use of Agent-Based Models in public health, few studies (Buckeridge et al. 2011)
have examined the software infrastructure that supports them via custom simulation platforms. Our case
study documents how this infrastructure is created as a result of competing demands in terms of security
protocols (thus preventing direct data access or cloud-based resources), user experience, and accessibility.
Our work thus contributes to a research gap in the development and integration of ABMs within the
software ecosystems of end-users, which is critical for both the immediate success of a modeling project
and its long-term maintainability. Although another team may not commonly be faced with the complete
combination of goals and demands from our case study, our approach to grouping constraints into three
categories can support teams into reusing some of our solutions to address their own practical needs.
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Figure 7: Results allow end-users to examine why agents had ideation, attempts, or fatalities with respect
to key protective (connectedness, healthcare service use) and risk factors (e.g., physical abuse, poverty).
Numbers show the fraction of agents who experienced each of these factors. Results can be further filtered
by race and ethnicity, exemplified here by filtering out Hispanic. For example, Non-Hispanic Blacks (red
curve) had the highest poverty and physical abuse, but the lowest (albeit elevated) level of sexual abuse.
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