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ABSTRACT

Modern neural networks are able to perform at least as well as humans in numerous tasks involving object
classification and image generation. However, small perturbations which are imperceptible to humans may
significantly degrade the performance of well-trained deep neural networks. We provide a Distributionally
Robust Optimization (DRO) framework which integrates human-based image quality assessment methods
to design optimal attacks that are imperceptible to humans but significantly damaging to deep neural
networks. Through extensive experiments, we show that our attack algorithm generates better-quality (less
perceptible to humans) attacks than other state-of-the-art human imperceptible attack methods. Moreover,
we demonstrate that DRO training using our optimally designed human imperceptible attacks can improve
group fairness in image classification. Towards the end, we provide an algorithmic implementation to speed
up DRO training significantly, which could be of independent interest.

1 INTRODUCTION

Deep learning models are making strides into our daily life with tremendous successes in diverse areas
of applications, such as self-driving cars and face recognition. However, we still lack a fundamental
understanding of how deep neural networks (DNNs) perceive and process information. One behavior of
DNNs that we do not fully understand is how they are impacted by adversarial attacks. The potential
implication of these attacks involves threats in safety and robustness. On the other hand, adversarial attacks
provide a method to study the relationship between machine perception and human perception. Over the
years, neural network design has been inspired by the ways in which the human brain responds to visual
stimuli (Xu and Vaziri-Pashkam 2021; Voulodimos et al. 2018). Although adversarial attacks are intended
for DNNs, they may cause differences to human vision systems as well (Zhou and Firestone 2019; Elsayed
et al. 2018). In our work, we study adversarial attacks that are designed to primarily affect machine
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(a) Adversarial training with our human imperceptible attack aligns machine
perception and human perception more closely.

(b) Images from Pakistan (Left) and
the US (Right)

perception and are human imperceptible. We demonstrate that, by training against our human imperceptible
attacks, we can improve the attributes of the classification models, such as fairness in classification.

A formal definition of adversarial attacks on image classification (Moosavi-Dezfooli et al. 2016) is
the following. Given a classifier f , an image xxx, and a cost function c on the image space, an optimal
adversarial attack solves ∆∆∆ that can change the model’s classification results via the smallest budget:

min
∆∆∆

c(xxx,xxx+∆∆∆), with f (xxx+∆∆∆) 6= f (xxx). (1)

Traditional adversarial attack methods use Lp distances as the cost function (Goodfellow et al. 2015;
Madry et al. 2018; Moosavi-Dezfooli et al. 2016; Tramr et al. 2018). However, as reported in recent
literature (Sharif et al. 2018; Wang et al. 2004), Lp distances do not accurately measure differences in
human perception. One goal of this paper is to systematically generate adversarial attacks which can
mislead DNNs and the differences to the original images are imperceptible to humans.

To design adversarial attacks that humans cannot perceive, the choice of cost function c in Eq. (1) is
important. As mentioned before, Lp cost functions may not constrain adversarial attacks to be imperceptible
to humans. In our work, we constrain the attacked images to be close to the original image in two choices of
cost functions which measure human perceptual distances: structural similarity index measure (SSIM) (Wang
et al. 2004) and PieAPP (Prashnani et al. 2018). These human perceptual distances are introduced by
works in image quality assessment (IQA) methods. By qualitative and quantitative comparison, we show
that our attacked images induce less human perceptual differences to the original images than other state-
of-the-art (SOTA) works. Moreover, we aim to better align machine perception with human perception
by using the Distributionally Robust Optimization (DRO) framework incorporated with our attack method
and we hypothesize that the aligning process reduces the models’ biases. As shown in Figure 1a, the left
image shows the relationship between human imperceptible attacks and other attacks that are perceived by
both humans and machines. As DRO training with our imperceptible attacks discourages the model from
perceiving human imperceptible perturbations, it pushes the machine perception circle away from the green
circle. Thus, in the right image, machine perception and human perception align more closely, which will
be later shown to make the model to perform better on underrepresented groups.

Recently, the DRO framework has been studied extensively in machine learning, because it can be used
to compute the most reliable model under distributional uncertainty (Blanchet et al. 2022; Rahimian and
Mehrotra 2019; Esfahani and Kuhn 2018). DRO-trained models are able to achieve uniform performance
across all groups of data, even on out-of-sample data (Blanchet and Kang 2021; Volpi et al. 2018). In our
work, we simulate the worst distributions using our attacked images and apply DRO training to the model
with the worst distributions. As shown in Figure 1a, the benefits behind training with our proposed attack
is that the models to focus more on perturbations that humans can perceive and use in classification.

As we start to apply DNN models in daily applications, fairness has become more crucial, especially
the question of whether the models perform equally well on the data from underrepresented groups. Recent
paper reveals that current datasets do not have a uniform distribution on images from all geographical
groups and models may infer biases from the unbalanced data. In both of the two popular open-source

2642



Hua, Xu, Blanchet, and Nguyen

datasets: ImageNet and Open Images, approximately half of the images are collected from 2 countries: the
United States and Great Britain (Shankar et al. 2017). Moreover, DNNs are suspected to learn spurious
features to help classification and the spurious features are learned from the majority groups (de Vries
et al. 2019; Khani and Liang 2021). Both works studying classification fairness (Shankar et al. 2017;
de Vries et al. 2019) group images by the country where images are collected, so we follow the convention
and collect our ImageNet geo-location dataset, where each image has its country information. Figure 1b
shows two images of our dataset from the class grocery store, grocery, food market, market. The image
from Pakistan is misclassified and the image from the US is not. We assume that humans are more fair
in classifying images from different countries. By DRO training algorithms with our proposed adversarial
attack method, we prevent the models from learning biases that humans cannot perceive and do not use,
and become fairer in image classification task. Finally we show that DRO training with our adversarial
attack reduces more biases from the model, when compared to DRO with the Projected Gradient Descent
(PGD) attack method (Madry et al. 2018) and PerC attack method (Zhao et al. 2020).

Our work’s contributions are summarized as follows:

1. We connect human perceptual distance PieAPP with the DRO framework to generate adversarial
attacks that are imperceptible to humans and attack classification models successfully. We use
methods in the human vision learning area to show that our attacks are less perceptible to humans
than other SOTA imperceptible attacks. We add a confidence parameter to our algorithm, so our
method with high confidence is the most successful method against two defense methods.

2. We collect a dataset from ImageNet (Russakovsky et al. 2015), a real-world dataset, with country
information, and design a general framework to quantize biases in classification models. We design
two hypothesis tests to test whether a model has biases in classification significantly and compare
if our training method significantly reduce biases than other methods.

3. We provide an algorithmic implementation of independent interest which can speed up DRO training
and sample models efficiently.

This paper unfolds as follows. In Section 2, we conduct a comprehensive literature review. In Section 3,
we introduce our adversarial attack method that computes optimal imperceptible attacks. We also show
numerical comparison results and image comparisons. In Section 4, we solve the DRO problem and
compare fairness in DRO trained models with two other adversarial attack methods.

2 RELATED WORK

Adversarial attacks. Since the seminal work of Goodfellow et al. (2015), there is a surge of papers on
adversarial attacks (Carlini and Wagner 2017; Madry et al. 2018; Moosavi-Dezfooli et al. 2016; Kurakin
et al. 2018; Dong et al. 2018). Some papers deploy different distances: Wasserstein distance (Wong et al.
2019) or the human perceptual distance (Zhao et al. 2020; Laidlaw et al. 2021). There are a number of
adversarial attacks with different mechanism: sparse adversarial attacks (Zhu et al. 2021; Su et al. 2019),
spatial perturbations (Zeng et al. 2019; Aydin et al. 2021), contour region attack (Na et al. 2021), and
black-box attack methods (Guo et al. 2019; Ilyas et al. 2018). A comprehensive review for the adversarial
attack methods can be found in a recent review paper (Akhtar et al. 2021).

Adversarial attack and human vision. Despite the fact that adversarial attacks are designed towards
DNNs, two recent papers discover that attacks also have influences on human vision (Zhou and Firestone
2019; Elsayed et al. 2018). Zhao et al. (2018) generate adversarial attacks that are semantically meaningful,
that can be perceived by humans. Madry et al. (2018) also reports that L2 based attacks can be large
enough to cause misclassification by humans.

Human perceptual distance. We need distance functions to measure differences in human perception
to truly constraint adversarial attacks in human perception. Image quality assessment (IQA) methods study
how to measure human perceptual distance. Traditional IQA methods include SSIM (Wang et al. 2004),
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MS-SSIM (Wang et al. 2003) FSIM (Zhang et al. 2011), and PSNR (Hor and Ziou 2010). DNN-based
IQA methods include DISTS (Ding et al. 2022), PieAPP (Prashnani et al. 2018), LPIPS (Zhang et al.
2018), and PIM (Bhardwaj et al. 2020).

Distributionally Robust Optimization (DRO). As people care more about models’ robustness in the
extreme circumstances, DRO framework gain a lot of interests recently. There have been a number of
theoretical work on DRO and Optimal Transport (Kuhn et al. 2019; Kuhn et al. 2019). Especially, Blanchet
and Murthy (2019) proves the useful strong duality results enabling to solve the DRO problem. Sinha et al.
(2018) first introduces combining DRO framework and adversarial attacks.

Fairness. Many recent papers discover unfairness in image classification and object detection mod-
els (de Vries et al. 2019; Buolamwini and Gebru 2018). Specifically, these papers point out that neural
network models discriminate against underrepresented groups. One possible explanatory factor of unfairness
is that the open-source datasets are unbalanced (Shankar et al. 2017). Yang et al. (2020), Gong et al.
(2012) starts to fix the datasets by collecting data that are representative among all demographics. In the
natural language processing community, recent works discover that word embedding models learn biases
from data (Bolukbasi et al. 2016; Caliskan et al. 2017). A comprehensive review on fairness in machine
learning can be found in Mehrabi et al. (2021).

3 METHOD

We consider the following DRO problem which finds the model that minimizes the expected loss under
the worst-case distribution:

min
θ

sup
P:D(P,P0)≤δ

EP[`(θ ;X ,Y )], (2)

where θ is the model parameter and ` is the pre-specified loss function. The distribution P0 is the empirical
distribution of the joint random vector (X ,Y ) constructed from the training data, D is a distance metric
between probability distributions, and δ is the size of the distributional uncertainty. Similar to (Sinha et al.
2018), we choose the Wasserstein distance as our metric D. Specifically, let c((xxx,y),(xxx′,y′)) denote the
cost function to measure the similarity between two samples (xxx,y) and (xxx′,y′), and Γ(P,P0) denote the set
of all joint distributions of (X ,Y ) and (X ′,Y ′) with marginals P and P0, then the metric D is given by

D(P,P0) = inf
γ∈Γ(P,P0)

Eγ [c((X ,Y ),(X ′,Y ′))].

By (Blanchet and Murthy 2019, Theorem 1), the DRO problem Eq. (2) is equivalent to

min
θ

inf
λ≥0

λδ +EP0 [φλ (θ ;X0,Y0)], (3)

where the robust surrogate loss φλ is defined by

φλ (θ ;xxx0,y0) = sup
xxx

`(θ ;xxx,y0)−λc((xxx,y0),(xxx0,y0)). (4)

Here we use a separable ground cost c((xxx,y),(xxx′,y′)) = c0(xxx,xxx′)+∞ ·1{y 6= y′}, which penalizes infinitely
the discrepancy between the image labels y and y′, and c0 measures the dissimilarity between the images
xxx and xxx′. In this paper, we focus on the PieAPP model for the ground cost with c0(xxx,xxx′) = PieAPP(xxx,xxx′).
The PieAPP measure (Prashnani et al. 2018) uses a deep neural network to measure the visual differences
in terms of human judgment between images. The PieAPP can be applied on images of any size larger
than 64×64. Further, PieAPP is unique in its novel pairwise preference probability: when compared to a
reference image, PieAPP encodes the probability that humans think one image is more similar than another
image. Pairwise comparison is more robust because humans may have clear preferences between all pairs
of images but cannot assign scores to all images. Another advantage is that PieAPP does not depend on
any existing architectures or pretrained models, as opposed to LPIPS and DISTS.

Given a fixed training image (xxx0,y0), we solve problem (4) to obtain the adversarial attack.
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(a) The predictions are: 0, 2, 2 (b) The predictions are: 1, 4, 4 (c) The predictions are: 4, 9, 9

Figure 2: Left: Original image, Middle: Our one-step attack, Right: One-step PGD attack (L2). We show
three examples in MNIST that are successfully attacked by both methods. Although all the attacks have
the same L2 distance to the original image, our attack does not change the structure of the numbers and
PGD attack method makes the images to resemble the images of predicted labels (2,4,9).

3.1 SSIM-based Attack

In this subsection, we show a teaser example of c0 = 1−SSIM. The structural similarity index measure
(SSIM) (Wang et al. 2004) is a reward function on two grayscale images that captures structural similarity
in the two images. Because SSIM≤ 1, we use 1−SSIM as a cost function. We derive a one-step solution
when using this c0 function, and compare with one-step PGD attack in Figure 2.

3.2 PieAPP-based Attack

Now we focus on choosing PieAPP as our human perceptual distance c0. We attack RGB images of size
3×299×299 and use gradient descent to solve problem (4), described in Algorithm 1. We incorporate a
confidence parameter a≥ 0 in our early-stop mechanism to enhance the strength of our attacks, shown at
line 5, so they can attack the defended images successfully. At line 10, we truncate xxxadv to have the same
precision as an RGB image. In our experiments, we choose a ResNet-50 model pretrained on ImageNet (He
et al. 2016) as the model θ , cross-entropy loss as `, N = 100, ε = 0.1, λ = 1 and confidence a = {0,1,5}.

Algorithm 1 Attack an image
Input: image xxx, label y, classification model θ , loss function `, confidence a, cost function c0, number of
iterations N, step size ε

Output: adversarial image xxxadv

1: Initialize: xxxadv← xxx
2: for k = 1,2, . . . ,N do
3: logits = θ(xxxadv) . logitsi is the logits before softmax for class i
4: if maxi logitsi6=y− logitsy > a then
5: return xxxadv
6: end if
7: ∆∆∆ = ∂`(θ ;xxxadv,y)

∂xxxadv
−λ

∂c0(xxx,xxxadv)
∂xxxadv

8: xxxadv← xxxadv + ε∆∆∆

9: Validate xxxadv . Validate xxxadv as an RGB image
10: end for
11: return xxxadv

We compare our method with PGD (L2) with 100 iterations and early-stop mechanism. The formulation
is xxx0 = xxx0, xxxn = xxxn−1 + ε∇xxx`(θ ;xxxn−1,y0)/‖∇xxx`(θ ;xxxn−1,y0)‖2. We also compare with two latest SOTA
methods on human imperceptible attacks, NPTM (Laidlaw et al. 2021) and PerC (Zhao et al. 2020).
Specifically, we compare with NPTM (PPGD) and NPTM (LPA), the two main methods in the NPTM
paper, and with PerC AL, the faster and less perceptible method in PerC paper. Other methods, for example,
FGSM (Goodfellow et al. 2015), C&W (Carlini and Wagner 2017), DDN (Rony et al. 2019), PGD (L∞),
StAdv (Xiao et al. 2018), and ReColorAdv (Laidlaw and Feizi 2019), are compared in the PerC and NPTM
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paper, so we do not repeat the comparison. Different from PerC and NPTM, our attack method directly
solves the inner optimization problem (4). PerC AL alternates between the two goals of attacking the
image successfully and minimizing the perceptual distance, while our method combines the two goals in a
single step. NPTM (PPGD) and NPTM (LPA) require an extra projection step, while our method does not.

Our attack method is evaluated on a subset of the ImageNet, which contains real-world images and
is the same dataset as (Zhao et al. 2020). Since the dataset has 1000 images and we plan to compare
against four other methods, involving humans to judge every pair of images is expensive. Thus, we apply
two human perceptual distances and one salient object detection network as proxies of human vision to
measure the differences in human perception. Note that the two human perceptual distances do not include
PieAPP, because our method minimizes PieAPP distance and we want to objectively compare our method
with other methods. In our comparison table, the success rate is defined as the number of attacked images
that labels change from correct to incorrect divided by the number of correctly classified images.

Figure 3 provides two examples to visually compare the quality of attacks. First, we apply two Image
Quality Assessment (IQAs) methods, LPIPS (Zhang et al. 2018) and DISTS (Ding et al. 2022), to quantify
the perceptual distance between two images in human vision. The numerical results are given in Table 1.

Figure 3: The comparison between the original image and adversarial attacks. We do not include PGD
attack images here due to similar visual quality as ours. We zoom in the regions where we can perceive the
differences.The PerC AL images have noticeable marble effects in both images. Both LPA images have
noticeable sandy noises compared with other images and both PPGD images have an area of noises.

Table 1: The distances measure the difference between attacked images and original images. The LPIPS
and DISTS values are scaled by 1000. We embolden the smallest distance values in each column. Our
method with a = 0 has the smallest human perceptual distances (LPIPS and DISTS), despite larger Lp

distances than PGD.

Approach Success Distance in adversarial images
Rate (%) L1 L2 L∞ LPIPS DISTS

PerC AL 100 633.12 2.22 0.085 33.96 33.82
PGD (L2) 100 592.74 1.56 0.005 7.82 8.77
NPTM (PPGD) 95.75 2544.21 6.60 0.115 81.57 51.08
NPTM (LPA) 99.78 2157.77 5.31 0.049 51.64 35.92

Ours (a = 0) 100 783.86 1.91 0.006 7.30 8.17
Ours (a = 1) 100 1965.10 4.45 0.014 22.24 21.47
Ours (a = 5) 100 3925.55 8.53 0.029 44.89 40.05
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Then we test our adversarial attack method’s effectiveness against defense methods. Without knowing
which adversarial attack is applied to the image, there are generic defense methods against attacks. We
test our method on two such defense methods: JPEG compression (Das et al. 2018; Guo et al. 2018) and
bit depth reduction (Guo et al. 2018; He et al. 2017). The comparison in Figure 4 shows that our attack
method is more successful when comparing with attack methods with similar perceptibility.

Figure 4: Left: JPEG compression ratio defense. Right: Bit depth defense. Our method with a = 5 has
the highest attack success rate on both defense while being less perceptible than NPTM (PPGD)’s images
(Table 1). Our method with a = 1 generates less perceptible attack images than PerC AL and has a higher
attack success rate in JPEG compression defense. Note that a higher confidence value make the adversarial
attacks more perceptible, as there is a trade-off between the attacks’ imperceptibility and the strength.

4 GEOGRAPHICAL FAIRNESS IN CLASSIFICATION

The nature of training DNNs, which is minimizing the summation of the losses evaluated on the training
samples, means that the models may favor features from the majority group and their performance may
degrade on the underrepresented groups. Recent works reveal that two open-source large image datasets,
such as ImageNet and Open Images, are severely unbalanced in the geographical location, and many object
recognition systems do not perform equally well across different geographical groups (Shankar et al. 2017;
de Vries et al. 2019). Our collected ImageNet geo-location dataset contains 43.2% images from the US
and 12.8% images from the UK. The top five countries that the most images come from are the US, the
UK, Canada, Australia, and Germany. This leads to our concern that image classification models train
better on the images from higher income level countries, so we want to study and alleviate models’ biases
related to the images’ income levels. We assume human are rather fair in classifying images of different
income levels. Since we can successfully attack a classifier by human imperceptible attacks, the classifier
utilizes features that humans cannot see and do not use, which tend to be features causing biases. By
adversarial training with the human imperceptible perturbations, we reduce the model’s dependence on these
imperceptible features. In that way, the model performs more equally well across geographical groups.

4.1 Bias Metric

We first introduce a general method to measure a model’s biases on images from countries with different
income levels. Let µ be a probability model defined on the space X ×Y of image and label pairs, and
dataset D is a sample of N independent and identically distributed (image, label) pairs, each following
distribution µ . Let (xxx,y) be one test sample independent of the training set D following distribution µ
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and Q be the joint distribution of the N +1 samples from µ . We write E as the expectation under Q. We
use 1(xxx,y;θ) to represent a Bernoulli event that model θ classifies correctly the input image xxx in class y
or not. For each image xxx, we can access its country information. For this country, we can get its income
level and define as g(xxx). For a fair classifier and a random out-of-sample image, the classification accuracy
should be independent of the income level of the image. We choose the following condition to test:

E[1(xxx,y;θ(D))] = E[1(xxx,y;θ(D))|g(xxx)].

This means the classification accuracy is uncorrelated with the income level of the image, which is a
necessary condition for the independence to hold. Given this necessary condition, we group the images by
the country where they are from and each country is associated with a corresponding income level. Then
we study the correlation between the income level and the classification accuracy of each country.

We test θ on D and compute the accuracy by groups. We denote the groups as {gi,pi}, where gi
is the per capita GDP of ith country in log scale and pi is the accuracy of classifying the images in ith
country. We assume that the error in accuracy of each country is negatively related to the country’s number
of images, so we write a diagonal covariance matrix as ΣΣΣii = 1/

√
ni, where ni is the number of images in

the ith country. Then we run generalized least squares with ΣΣΣ on data {gi,pi} and obtain a linear estimator
p = βg+ ε . We use the slope β as our metric, since it captures how severely the accuracy is linearly
correlated with the income. In Section 4.3, we introduce two hypothesis tests to test and compare the
significance of the biases. We use a significance level of 0.05 in the statistical tests.

4.2 DRO Algorithms

We design Algorithm 2 to generate an augmented dataset Drob and Algorithm 3 to approximate the solution
to the DRO problem (3). To conduct hypothesis testing, we run Algorithm 3 50 times to sample 50 values
of θ ’s based on Drob and the randomness of θ comes from stochastic gradient descent.

Algorithm 2 Generate an adversarial dataset Drob

Input: initial model θ0, learning rate α , dataset D = {xi,yi}i=1,...N , number of steps T1
Output: robust dataset Drob = {xi,yi,Pi}i=1,...M

1: Initialize: θ = θ0,D = {xi,yi,Pi}i=1,...N with Pi = 1
2: for k = 1,2, . . . ,T1 do
3: Sample {xi,yi,Pi}i=1,...N proportionally to the weights Pi with replacement from dataset D
4: for i = 1,2, . . . ,N do
5: θ ← θ −αPi∇θ `(θ ;xi,yi)
6: Input θ ,xi,yi to Algorithm 1 to generate attack {x′i,yi}
7: Append {x′i,yi,Pi} to dataset D with weight Pi = (k−1)N + i
8: end for
9: end for

10: return dataset Drob

The intuition behind Algorithm 2 is that the outer loop chooses batches of size N and the batches
are sampled biased towards recent iterations. In turn, the adversarial examples are added in the inner
loop corresponding to the current optimization model parameters, which are updated according to standard
stochastic gradient descent. The overall result is similar to a two-time-scale stochastic approximation
algorithm (Borkar 1997), which will be analyzed in future work. Compared with the algorithm in (Volpi
et al. 2018), our approach’s benefit is that we can sample approximately-solved DRO models efficiently.

2648



Hua, Xu, Blanchet, and Nguyen

Algorithm 3 DRO training with a given adversarial dataset
Input: initial model θ0, learning rate α , robust dataset Drob = {xi,yi,Pi}i=1,...M, number of steps T2
Output: DRO trained model: θ

1: Initialize: θ = θ0
2: for k = 1,2, . . . ,T2 do
3: for i = 1,2, . . . ,M do
4: Sample {xi,yi} proportionally to the weights Pi with replacement from dataset Drob
5: Set θ ← θ −αPi∇θ `(θ ;xi,yi)
6: end for
7: end for
8: return model θ

4.3 Results

Given a pretrained ResNet-50 model as θ0 and computed linear regression model p= β0g+ε (see Figure 5a),
we test whether there exists a significantly non-zero linear relationship between p and g using the following
null and alternative hypotheses: H0 : β0 = 0 versus H1 : β0 6= 0. An F-test (Hahs-Vaughn and Lomax
2020) returns the computed score F0 = 5.392 with the degrees of freedom ν1 = 1,ν2 = 39 and the probability
value IP( f >F0)= 0.02554. Thus, we can reject the null hypothesis and conclude that there exists a significant
linear relationship between g and p. For this pretrained model, group-fairness is not satisfied. After we
train 50 models and compute 50 linear estimators with the PGD, PerC and our attack method respectively,
we use two standard t-tests (PGD versus Ours and PerC versus Ours) to compare the distributions of
β s (Sheynin 1995) to evaluate the magnitude of biases. We denote βm as our model’s mean and β ′m as the
comparing model’s mean and conduct the hypothesis testing: H0 : βm ≥ β ′m versus H1 : βm < β ′m.

(a) We show a linear regression model with independent
variable g and dependent variable p, which are tested with
the pretrained model θ0. Each dot represents one country
and the color denotes the number of images in this country.

(b) Each box shows the distribution of β obtained from
each method. The blue dashed line represents β0 of
the original pretrained model. Training with our attack
method reduces the biases the most significantly.

Figure 5: Geographical Fairness Results.

Against the PGD method, we compute the t-value to be 3.85 with a probability 0.00017. Against the
PerC method, we compute the t-value to be 2.95 with a probability 0.00242. Thus, we can reject the null
hypothesis for both competing methods, and we may conclude that the PGD and PerC trained models have
higher biases than our trained model. Figure 5b illustrates the three distribution of β s, which illustrates
our β s are of smaller magnitudes than the other two methods’ β s. All of our algorithms are run on one
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NVIDIA V100 Tensor Core GPU. Alg. 2 with T1 = 3 takes about 9 hours and Alg. 3 with T2 = 3 50 times
takes about 25 hours. The memory usage of Alg. 2 is the same as other adversarial training algorithms.

5 CONCLUSION

In this work, we present a method to generate human imperceptible adversarial attacks and design two
DRO training algorithms to simulate the most difficult distributions. We show that our adversarial attack
method can generate successful and least human perceptible attacks compared with other SOTA methods.
For the ImageNet dataset and a model trained on it, we test the existence of inherent unfairness, such
as geo-location biases. After testing two collections of models that are respectively trained by the DRO
algorithm with our attack method and with the PGD attack method, our method improves fairness more
significantly than the PGD method. Our hypothesis tests provide a general framework to test fairness on
the space of models conditioned on datasets. The limitation of our method is that we do not have enough
computational resources or data to sample datasets, so we can only condition on one dataset and randomize
the models. By generating a variation of adversarial attacks, our method mitigates biases in the given
dataset. We hope future work will incorporate the randomness in datasets and conduct the complete test
in fairness. We also hope our work can help understand the differences between machine perception and
human perception, and bridge the two areas of adversarial attacks and fairness in machine learning.
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