
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

TOWARDS AI ROBUSTNESS MULTI-AGENT ADVERSARIAL PLANNING IN GAME PLAY

Yan Lu
Sachin Shetty

Virginia Modeling, Analysis and Simulation Center
Old Dominion University
Suffolk, VA, 23435, USA

ABSTRACT

This paper applied Monte Carlo Tree Search (MCTS) and its variant algorithm “Upper Confidence bounds
applied to Trees” (UCT) to Chinese checker game and visualized it in the Ludii games portal. Since
the MCTS approach cannot guarantee a finite game length in our simulation and the winning strategy is
inefficient, we developed a Convolution Neural Network (CNN) model formulated on top of the MCTS
algorithm to improve the performance of the Chinese checker game. Our experiment and simulations show
that by using the weak labels generated by MCTS algorithm, the CNN-based model could learn without
supervised signals from human interventions and execute the game strategy in a finite time. PyGame and
the Ludii game portal are used in our simulation to visualize the game and show the final game results.

1 INTRODUCTION

Adversarial games have become widely used for developing and testing the performance of learning agents.
They possess many of the same properties of real-world decision-making problems as we want to design
the agents (Dignum et al. 2009). The Chinese checker differs from other traditional games in two main
aspects: first, all checkers remain indefinitely in the game, and the branching factor of the search tree does
not decrease as the game progresses; second, there are also no upper bounds on the depth of the search
tree since repetitions and backward movements are allowed. As shown in Figure 1, there are at least ten
rows of spaces a piece must traverse before landing at the goal. The board’s geometry is not square but
rather hexagonal, with six stars on each segment of the hexagon. The spaces are not perpendicular but at
angles to each other, meaning movement to the final destination is not direct. The allowed moves include
rolling and hopping. Rolling is moving one checker in any adjacent space, hopping is jumping over a
neighbor piece and landing on a vacant space. Jumping over multiple neighbor pieces continuously is
allowed. Due to the fact that the pieces can “jump” over one another, the positioning of the pieces is crucial
for enabling friendly pieces to quickly traverse the board by hopping and obstructing the movement of
the opponent’s pieces. Even though the moves and interactions among the players are simple, the game’s
strategy is still complex. Monte-Carlo Tree Search (MCTS) (Liu et al. 2019), Upper Confidence bounds
Trees (UCT) (Wang et al. 2018), and Reinforcement Learning (RL) (He et al. 2016) are popular algorithms
had been applied to solve this game to determine the most optimal solution. Due to the high computational
complexity of the Chinese Checker Game, no established record shows that this game is “resolved” where
the game’s outcome can be predicted if all players play correctly to achieve their winning goals (Yisi et al.
2020).

In this paper, we applied Monte Carlo Tree Search (MCTS) and its variant algorithm Upper Confidence
bounds applied to Trees (UCT) to Chinese checker game and visualized it in the Ludii games portal (Piette
et al. 2020). To improve the game results, a Convolutional Neural Network (CNN) in conjunction with
MCTS and UCT approach is introduced in our paper. This research aims to develop an AI model which

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 2653

Lu and Shetty

Figure 1: GUI of Chinese checkers game with two players (Wikipedia).

uses the weak labels generated by MCTS and learns the game strategy to complete the game in finite time
in a self-supervised learning manner. We applied the algorithm to a three-player version of the game and
simulated and visualized the game in Pygame.

2 BACKGROUND

2.1 Chinese Checker and Ludii Game Portal

Chinese checkers is a board strategic game. It has German roots and can be played by two to six players,
either individually or with a partner (Morehead 2001). The object of the game is to be the first to use
rolling or jumping to get all of your checkers to the corner of the game board opposite your starting corner.
With ten pieces each, each player uses strategic positioning and moves to “jump” across the board. If two
pieces are near each other, the piece next to them may jump and keep jumping. The remaining players
carry on the game in the same manner. In a game with three players, each player will begin in one of three
triangles equally spaced apart. Play begins in two pairs of opposing triangles if there are four players,
and a two-player game should also be played from opposing triangles. We create and test our Chinese
checker algorithms in the Ludii portal (Piette et al. 2020). Ludii portal is a generic game system created
to play, rate, and create various games, such as board games, card games, dice games, and mathematics
games, enabling the entire variety of traditional strategic games from around the world to be depicted in
a single playable database. Games in the Ludii gaming system are structured groups of ludemes (units of
game-related information). As shown in Figure 2, it depicts the Chinese checker game interface in Ludii,
and the Chinese Checkers has a board with a total of 116 spaces and a maximum piece capacity of 60.

2.2 Game Learning Strategy

This learning strategy aimed to find a function that takes a board state and generates a probability distribution
of moves that represents the likelihood that a certain move is the best. In other words, the primary problem
can be stated as follows: Given a function f with parameters θ , how can we find parameters θ

′
? Specifically,

we can create a probability distribution for each move to calculate a new probability distribution. Artificial
neural networks (ANNs) could be used to find the best θ ′ due to their ability to be a highly general function.
This means a trained neural network could classify data from the same class as the learning data it has never
seen before. However, to train a neural network, it needs supervised signals from the “teacher” signals and
let the neural network learn if it outputs the correct answer. One way to find the “teacher” signals is to try
every possible move several times, then generate moves based on f until the game ends.

2654

Lu and Shetty

Figure 2: Ludii game portal.

In highly complex exponential systems with enormous actions and state space like in the game of
Chinese checker, it is often impractical to analytically determine the most optimized move to be made. To
mitigate this issue, given the law of large numbers from statistics, the more random trials performed, the more
accurate the approximated quantity will become. Monte Carlo methods defer to simulations of potential
outcomes and collect multiple samples from approximating the desired quantity. Each simulation in Monte
Carlo methods utilizes elements of “randomness” and provides distributions of results to identify the most
optimal deterministic solution to a problem (Bechhofer et al. 1991). Thus, through many simulations, the
algorithm trends to increasing precision because the resulting distribution is getting more clearly identifying
the solution. However, the computational complexity of evaluating all possible simulations is often limited.
Given the central limit theorem, the distribution of the samples will form a normal distribution, the mean
of which can be taken as the approximated quantity and the variance used to provide a confidence interval
for the quantity (Cheng and Kleijnen 1999). To enhance the quality of simulations provided by the Monte
Carlo method, the application of the Markov Chain Monte Carlo (MCMC) sampling model is formed by
a possible sequence of events in which the probability of the event is determined by the state achieved in
the previous event. This form of simulation manifests itself in Monte Carlo modeling as an equilibrium
distribution, and the simulations of a variable are done to create unique distributions. Each simulation
utilizes the information of the accuracy of the previous simulation (empirical mean) and modifies the
parameters of the simulation to tend towards the equilibrium distribution. If a problem has a probabilistic
interpretation, the probability distribution of a variable can be parameterized, and an MCMC sampler can
be utilized. Random states of the samples derived from MCMC can be utilized to approximate a stationary
distribution. The ultimate application of the Monte Carlo method in simulation is for optimization in
finding the best element or solution based on many sets of simulated elements/scenarios. The Monte Carlo
Tree Search (MCTS) with Markov Chain Monte Carlo (MCMC) sampling could be used to generate many
random possible simulations of possible moves and determine the ideal move for the player. Therefore,

2655

Lu and Shetty

we use the MCTS approach to collect the weakly labeled training data to train the neural network model
for better generalization of the game strategies, the workflow is as shown in 3.

Figure 3: MCTS+CNN: Weak/self-supervised learning.

3 METHODOLOGY

3.1 MCTS with Upper Confidence Bounds Applied to Trees (UCT)

Monte Carlo Tree Search works in four phases. There’s a tree traversal phase using Upper Confidence
Bounds for rewards that are either 0 or 1 (UCB1) formula (Auer 2002). Then there’s a node expansion
phase where you add extra nodes to the tree. This is followed by a rollout phase where you do a random
simulation of the game or the problem you’re solving to find a value. As shown in Figure 4. Then there’s
a back propagation phase where you take the values found from the rollout, and it is put in appropriate
places in the tree. Here is how it works in each phase:

Selection and Expansion: The selection starts at a node or state considered the root, then selects
a child node to move to. The selection is based on the Upper Confidence Bounds (UCB1) formula. The
selection steps are as follows:

• Step 1. Start with S0 as the initial state is the current state.
• Step 2. If the current node is not a leaf node, explore the child nodes of the current node by

calculating the UCB1 value of each of the states Si and then choose the one that maximizes the
UCB1 value as the current node to explore. The UCB1 value is calculated as :

UCB1(Si) = Mean(Vi)+C×Sqrt(Ln(N)/ni,

Si: Current given state, Vi: average value of that state, N: parent visits, ni: visits of this state, C is
the constant used for fine-tuning.

• Step 3. Repeat step 2. until getting to a leaf node in the tree.
• Step 4. If the leaf node in step 3 has never been sampled before, simply do a rollout form that leaf

node to find a terminal state with value; if it has been sampled before, then add a new child node

2656

Lu and Shetty

for all actions available at the current node into the tree, then move to the first of the child nodes
and begin a rollout.

Figure 4: Tree traverse, expansion and rollout.

Rollout or Simulation: The rollout or simulation is the phase in which random actions are taken,
retrieve the landing state, and then take another random action to land in a new state. This process is
iterated until a terminal state is reached. At that point, the value of the terminal stated is returned. The
pseudocode of the procedure is explained below and depicted in Figure 5.

P r o c e d u r e R o l l o u t (Si) :
Loop F o r e v e r

I f Si i s t e r m i n a l s t a t e :
Re tu rn t h e v a l u e (Si)

E l s e :
Ai = Random (a v a i l a b l e . a c t i o n s (Si)
Si = S i m u l a t e (Ai , Si)

Backpropagation: The backpropagation gets the value of the rollout and updates the nodes from the
start of the rollout till the root node. The update consists of adding the rollout results to the current value
of each node and increasing by one the count of visits at each of these nodes, as shown in Figure 6.

3.2 Game Model Formulation

In this study, a smaller six-piece variation is employed as an experiment to reduce processing complexity
instead of playing with ten pieces. The board size before the transformation is 13 by 17 square with the
original ten pieces; the board size turns 10 by 13 with six pieces after the transformation. A piece can
traverse is restricted by the board size: 10 units in the horizontal direction (x space) and 13 in the vertical
direction (y space), Any location a piece can move would be restricted to be inside the playable game
board. To represent the board in a program, we use a 10×13 matrix, called the game matrix, in which the
value 0 represents an empty slot, and value 1 represents the player’s checkers. We use three game matrices

2657

Lu and Shetty

Figure 5: Rollout or Simulation.

Figure 6: Backpropagation.

to represent three players. In applying the Monte Carlo method, we implement the following pseudocode
to simulate a simulation in the process that determines the possible moves. When reaching the ending
states and if there are only two moves between the player and the goal, a simple depth-first search will be
used instead of counting the sum of the taxicab distance to get valid moves. The pseudocode listed below
is for the simulation of finding new game states.

The pseudocode legit moves and simulate moves listed below show that assigning win rates to different
game state outcomes when applying the Monte Carlo Tree Search. Firstly it generates a specific win ratio
for each possible move a piece can make, and then the algorithm chooses a move that maximizes its chance
of winning the game. The delta terms represent the change in position from each move. Each possible
move the player could make is designated as a node object in the “tree search.” For each node, a Markov
Chain simulation is conducted, and the tree nodes are explored until they reach a final state. If it is a win
for the algorithm, it transfers that information as a property of that node going back up the tree to the initial
move to indicate that it has been successful. Through many simulations, the distribution of win rates tends
to be the true mean for a certain move. The total explorations into a node will be recorded, and the win

2658

Lu and Shetty

rate will be determined accordingly. Additionally, the initial step in each simulation iteration to determine
which node branch to explore will be determined by the highest win rate node. The random element enters
as for any move that does not have a win rate assigned to it, a random value will be generated, and the
highest value will be chosen to be explored.

P r o c e d u r e Leg i t Moves
Array moves = f u n c t i o n s i m u l a t e m o v e s

I f x s p a c e < 10 and y s p a c e < 13 Then
For i := 0 t o moves / 2 do

I f move < board Then
I f EMPTY Then

s e t move t o a r r a y
I f OCCUPIED Then

Array new moves = f u n c t i o n s i m u l a t e m o v e s
For j :=0 t o new moves / 2

s e t move t o a r r a y
end

F u n c t i o n S imu la t e moves
I f d e l t a Y + 1 mod 2 i s 0 Then

I f d e l t a X mod 2 i s 0 Then
moveY = p r e d i c t Y + ((d e l t a Y + 1) % 2)

I f d e l t a X i s n o t d i v i s i b l e by 2 Then
moveY = p r e d i c t Y − ((d e l t a Y + 1) % 2)

I f move < boa rd Then
I f EMPTY Then

s e t move t o a r r a y
For i := 0 t o 4 do

I f OCCUPIED Then
Array moves = f u n c t i o n s i m u l a t e m o v e s
For j := 0 t o moves / 2 do

s e t move t o a r r a y
r e t u r n a r r a y

3.3 Optimizing Results using Convolutional Neural Netowrk

Convolution Neural Network approximates the function f, and we use it to simulate the game strategy.
To encode the input for the CNN network, we convert the game board array from the size of 10x13 into
a 13x13 input frame with 1 where there is a piece for a given player, -1 for the filler places, and 0 for
everywhere else. There are three players, so the input is 3x13x13. The output of the neural network requires
that we choose a piece to move and a location to move it to. Additionally, to specify which piece moves to
which location, for six pieces, there are six 13x13 arrays. The correct moves were generated using a basic
depth-first search on the 13x13 grid. Additionally, to distinguish which piece in the input corresponds to
which layer in the output, another six 13x13 arrays need to be added to the input that corresponds to the
locations of each player piece. The input is a 9x13x13 matrix, and the output is a flattened vector of a
6x13x13 matrix.

2659

Lu and Shetty

As shown in Figure 7, the game state is mapped as an array with dimensions of 9x13x13 input into
the neural network, followed by the input layer, a convolution layer with 64 filters with the size of 5x5 is
added. Followed by the first convolutional layer, there is a batch normalization layer and rectified linear
unit (ReLu) layer. Then the second, third, and fourth convolutional layers are added. In these convolutional
layers, the filter sizes are all 3x3 but in different numbers of channels: 32, 16, and 16. There is no
pooling layer in between the convolutional layers. After this, each of the six input layers went through a
convolutional+batch+ReLU layer and then were flattened to go through a linear layer to get the output. The
layers were all processed separately because the indices of the other pieces are irrelevant to determining the
goodness of a move for a specified piece. Finally, the six output layers for each piece were concatenated,
and the softmax function was applied to ensure they were all positive and summed to one.

Figure 7: Convolution neural network structure.

4 EXPERIMENT RESULTS

Pygame is used to simulate the game. At first, We train the neural network for 3, 6, and 12 hours without
using MCTS to search for the best moves; the best moves are as long as each piece of the player is moving
towards the goal positions and the taxicab distance to the goal position of that piece is decreasing. We
save the networks as baseline models CNN-3, CNN-6, and CNN-12. Then, we transfer the weights of
the baseline model CNN-3 and train the neural network based on the pre-trained CNN-3 model without
MCTS for 6 and 12 hours. We then saved these networks as pre-trained models CNN-6p and CNN-12p.
At last, we train the CNNs using MCTS searching for the best moves on top of the pre-trained models of
CNN-6p and CNN-12p for 6 and 12 hours. We saved these networks as CNN-6MCTS and CNN-12MCTS.
To evaluate the results, we let a random network play against CNN-6 and CNN-12 for 300 rounds; let
the same random network play against CNN-6p and CNN-12p for 300 rounds, and let the same random
network play against the CNN-6MCTS and CNN-12MCTS for 300 rounds. The experiment results are
shown in Table I. From the result, it shows that with the 3-hour pre-trained model, the CNN’s performance
is improved than training the CNNs model from scratch. Furtherly, using MCTS to fine-tune the CNNs,
significantly improved the performance of the CNNs model, and it gives the best results. The playing time
is significantly reduced within the reasonable time limit.

5 CONCLUSION AND FUTURE WORK

In this paper, we implemented a Convolution Neural Network on top of the Monte Carlo Tree method to
improve the convergence of the Chinese Checker game. Our simulation results show that the CNN-based
model could learn from the weak label generated by MCTS, implement weak/self-supervised learning

2660

Lu and Shetty

Table 1: Experiment results.

Wins
Network Random CNN-6* CNN-12*
CNN-Baseline∗ 49 75 176
CNN-pretrained∗ 63 89 148
CNN-MCT S∗ 29 75 196

without human interventions and execute the game strategy in a finite time. We also applied the pre-trained
CNN model in different scenarios to compare its performance to reduce the playing time. To advance
this research in the future, we will consider implementing more players on top of our existing model to
furtherly refine the simulation results.

ACKNOWLEDGMENTS

This work is supported by the Air Force Research Lab while the author was visiting as visiting research
faculty in the Visiting Faculty Research Program and mentored by Dr. Benjamin Ritz. This work is also
partially supported by funding from the Commonwealth Cyber Initiative (CCI).

REFERENCES
Auer, P. 2002. “Using Confidence Bounds for Exploitation-Exploration Trade-Offs”. Journal of Machine Learning Re-

search 3(Nov):397–422.
Bechhofer, R. E., A. J. Hayter, and A. C. Tamhane. 1991. “Designing Experiments for Selecting the Largest Normal Mean

when the Variances are Known and Unequal: Optimal Sample Size Allocation”. Journal of Statistical Planning and
Inference 28:271–289.

Cheng, R. C. H., and J. P. C. Kleijnen. 1999. “Improved Design of Queueing Simulation Experiments with Highly Heteroscedastic
Responses”. Operations Research 47(3):762–777.

Dignum, F., J. Westra, W. A. van Doesburg, and M. Harbers. 2009. “Games and Agents: Designing Intelligent Gameplay”.
International Journal of Computer Games Technology 2009(837095):18.

He, S., W.-B. Hu, and H. Yin. 2016. “Playing Chinese Checkers with Reinforcement Learning”. Technical report, Stanford
University.

Liu, Z., M. Zhou, W. Cao, Q. Qu, H. W. F. Yeung, and V. Y. Y. Chung. 2019. “Towards Understanding Chinese Checkers
with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning”. https://arxiv.org/abs/1903.01747, Accessed
October 15, 2022.

Morehead, A. H. 2001. Hoyle’s Rules of Games. Berkley.
Piette, É., D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M. Winands, and C. Browne. 2020. “Ludii – The Ludemic

General Game System”. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), edited
by G. D. Giacomo, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarı́n, and J. Lang, Volume 325 of Frontiers in
Artificial Intelligence and Applications, 411–418: IOS Press.

Wang, Y., Z. Yang, H. Qiu, and X. Liu. 2018. “Application and Improvement of UCT in Computer Checkers”. In 2018
5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS). November 23rd-25th, Nanjing,
China, 274-278.

Wikipedia. “Chinese checkers”. https://en.wikipedia.org/wiki/Chinese checkers. Accessed October 15, 2022.
Yisi, W., M. N. A. Khalid, and H. Iida. 2020. “Analyzing the Sophistication of Chinese Checkers”. Entertain. Comput. 34:100363.

AUTHOR BIOGRAPHIES
YAN LU is a Research Assistant Professor of Virginia Modeling, Analysis, and Simulation Center at Old Dominion University.
She holds a Ph.D. in Modeling and Simulation, and her research interests lie in Deep Learning, Machine Learning, and
Trustworthy AI. Her email address is y2lu@odu.edu.

SACHIN SHETTY is a Sachin Shetty is an Executive Director for the Center of Secure and Intelligent Critical Systems in the
Virginia Modeling, Analysis and Simulation Center at Old Dominion University. He holds a joint appointment as a Professor

2661

https://arxiv.org/abs/1903.01747
https://en.wikipedia.org/wiki/Chinese_checkers
mailto://y2lu@odu.edu

Lu and Shetty

with the Department of Computational, Modeling, and Simulation Engineering. His research interests lie at the intersection of
computer networking, network security, and machine learning. His email address is sshetty@odu.edu.

2662

mailto://sshetty@odu.edu

	INTRODUCTION
	BACKGROUND
	Chinese Checker and Ludii Game Portal
	Game Learning Strategy

	METHODOLOGY
	MCTS with Upper Confidence Bounds Applied to Trees (UCT)
	Game Model Formulation
	Optimizing Results using Convolutional Neural Netowrk

	EXPERIMENT RESULTS
	CONCLUSION AND FUTURE WORK

