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ABSTRACT

Through discrete-event simulation, we evaluate the impact of using a fleet of electric and autonomous vehicles
(EAVs) to decouple inbound trucks from the internal freight flows in a seaport located in the Netherlands.
To support the operational control of EAVs, we use agent-based modeling and support the decision-making
capabilities using a reinforcement learning (RL) approach. More specifically, to model the assignment of
EAVs to container transport or battery charge, we introduce the Internal Electric Fleet Dispatching Problem
(IEFDP). To solve the IEFDP, we propose an RL approach and benchmark its performance against four
different assignment heuristics. Our results are compelling: the RL approach outperforms the benchmark
heuristics, and the decoupling process significantly reduces congestion and waiting times for truck drivers
as well as potentially improve the traffic’s sustainability, against a slight increase in length of stay of
containers at the port.

1 INTRODUCTION

Freight transport volumes have been increasing for decades and are expected to more than double by 2050
(ITF 2021). This, combined with containerization, greatly affects the intermodal logistics areas that are
at the heart of international freight networks, such as ports and business parks in the hinterland (Behdani
et al. 2020). At these locations, a promising solution to increase throughput, and reduce congestion and
operational costs is the use of automated vehicles (AVs). AV systems are a type of vehicle-based internal
transport system traditionally used in manufacturing plants, distribution centers, container terminals, and
other confined environments (Le-Anh and De Koster 2006). Recent advances in technology have increased
the popularity of AVs along the logistics chain, where companies can now automate their logistics operations
outside of private yards, for example, with AVs shunting containers between terminals in a port area.

Currently, research is focused on electric automated vehicles (EAVs) due to increasing sustainability
concerns and decarbonization goals (Vdovic et al. 2019). By implementing EAV systems, organizations
aim to improve sustainability, flexibility, and efficiency. Furthermore, following the improvements in EAV
technology and the increase in freight volumes, the authorities of logistics areas, e.g., ports and business
parks, are now looking at scaling up the use of EAV systems for the whole area, thus servicing multiple
logistics companies (LCs), e.g., terminals, warehouses, and cross-docking centers. The goal is to share an
EAV fleet and coordinate transportation to increase operational efficiency and reduce congestion in logistics
areas, thus improving both safety and throughput of goods. By sharing EAVs, the LCs can benefit from
economies of scale and risk sharing, e.g., with regards to the cost of EAV ownership. The shift of paradigm
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from an intra-company to inter-company fleet of EAVs, e.g., for inter-terminal transport (ITT), brings many
operational challenges regarding the dynamic mixed-traffic environment, the efficient fleet management
considering operational constraints, and the coordination of decisions and information.

In this work, we address the first two problems by means of a detailed simulation model, and solve
the third by a reinforcement learning (RL) approach, i.e., the centralized dispatching of a shared EAV fleet
for internal transport at a logistics area, considering charging schedules, time-windows for delivery, and
uncertain arrivals of shipments. We refer to this problem as the Internal Electric Fleet Dispatching Problem
(IEFDP). We provide a Markov Decision Process (MDP) formulation that minimizes logistics costs and
lateness, and solve the IEFDP using the RL approach. We train the RL algorithm in a simplified environment
and test its performance in a detailed simulation model of the Port of Moerdijk (PoM), the Netherlands,
to consider complex traffic dynamics and operational constraints. We aim at (i) modeling a detailed
logistics system that faces uncertain events, where the delayed reward of current actions is considered in
the decision-making process, and (ii) designing a centralized dispatching algorithm to efficiently manage
a shared EAV fleet with operational constraints. The main contributions of this paper are the following.

1. We show the applicability of a general simulation framework for logistics areas to a major port
within the Netherlands (i.e., PoM), for the analysis of freight flows and emerging technologies,
such as EAVs for ITT.

2. We provide an MDP formulation for a new ITT problem called the Internal Electric Fleet Dispatching
Problem (IEFDP). The IEFDP focuses on the dispatching of EAVs with containers, considering
uncertain arrival of containers, energy consumption, and time-windows.

3. We provide insight into how the PoM could benefit from an EAV fleet and RL approach for the ITT
of inbound containers between a pre-gate parking site and various LCs at the port. We compare
this new scenario against the current situation in a detailed simulation model.

The remainder of this paper is structured as follows. A concise literature review is presented in Section
2. We formally introduce the problem as an MDP and provide the RL algorithm for the IEFDP in Section
3. The simulation model and specific elements of the port simulation are described in Section 4. Numerical
experiments and results are presented in Section 5. Finally, we draw conclusions in Section 6.

2 LITERATURE REVIEW

The growth in freight volumes greatly impacts intermodal logistics areas, such as ports and business parks in
the hinterland. In this context, several ports such as Shanghai and Rotterdam are investing in multi-terminal
systems, which inherently result in highly complex transport systems within the port (Hu et al. 2019). As
a result, companies face new challenges in the field of ITT problems.

At the operational level, companies need to properly plan transport, deciding which vehicle transports
which container and using what route. Literature displays a wide range of problems to perform the freight
consolidation, which may involve different transportation services such as truck, rail, and barge (Heilig and
Voß 2017). In port areas, it is crucial to adopt digital platforms that share real-time information to plan,
control, and coordinate vehicle movements in ITT networks (Evers 2006). Heilig et al. (2017) propose
the Inter-Terminal Truck Routing Problem (ITTRP) that considers economic and ecological factors, and a
prototype decision support system for managing and planning ITT. To solve the ITTRP, they implement
two greedy heuristics and two hybrid simulated annealing algorithms, evaluating real-life instances based
on the port of Hamburg. Results show that the two hybrid heuristics achieve better performance than
the greedy heuristics. Hu et al. (2018) focus their study on the integrated planning of an inter-terminal
network connected with a hinterland rail network. They develop a tabu search algorithm, where results
show that the connection of ITT and external hinterland transport processes yields a reduction of 20%
in ITT costs and 44% in operational railway costs. In addition, most of the research on ITT focuses on
land-side vehicles in port areas (Hu et al. 2018). However, since in certain terminals the travel distances are
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much shorter by water, Zheng et al. (2021) propose a dynamic waterborne ITT problem with autonomous
guided vessels to face ITT requests. A tabu search algorithm with a restart strategy, in combination with
a rolling horizon, is developed to solve this problem. Simulation results based on the port of Rotterdam
show that larger fleet sizes and longer prediction horizons result in better scheduling performance. For an
extensive review on ITT, we refer the reader to Heilig and Voß (2017). When considering electric vehicles
for the ITTRP, research on the electric vehicle routing problem with time-windows and recharging stations
(E-VRP-TW-RS) (Schneider et al. 2014) is relevant.

Although extensive research has been carried out on AVs and ITT separately, to our knowledge, optimal
dispatching policies for EAVs in ITT have not been studied. This becomes particularly important due to
the high costs of EAVs, the cost and environmental impacts of battery replacements, and the effects on
operational service levels. Consequently, we aim to determine optimal charging actions of EAVs, following
a similar approach for mixed RL and simulation as in Asadi and Pinkley (2021). Usually, simulation studies
on port logistics tend to implement human-like heuristics to support decision-making. These strategies
might be accurate and fast but typically lack the ability to look ahead utilizing past experience. As a result,
we aim at analyzing the simulation of a port using an RL algorithm for the assignment of EAVs to delivery
and charging tasks, and to compare this system with a traditional internal logistics process.

3 REINFORCEMENT LEARNING APPROACH

The IEFDP is formally introduced in Section 3.1 using an MDP formulation. We solve the MDP approxi-
mately using a value-based RL algorithm as presented in Section 3.2.

3.1 Markov Decision Process Formulation

In the IEFDP, a logistics area comprises a single parking site (PS), at which trucks arrive with containers,
and several LCs, at which the containers should be delivered. As such, this problem models the daily
situation of a central fleet dispatcher that should transport containers from the PS to the LCs during working
hours. The transport of containers is carried out by EAVs and the delivery should meet the containers’
time-windows for delivery. The EAVs perform the deliveries in round trips that start and end at the PS and
have a re-chargeable battery with several energy levels. If unable to fulfill these transport jobs, a manned
vehicle takes care of the transport. Figure 1 illustrates a logistics area with a PS and several LCs.

Figure 1: Visualization of the IEFDP with three distance classes for the LCs.

The problem can be defined as a set of EAVs that should transport containers j 2 J = f1;2; :::;Jg in
round trips from a PS to LCs of distance class d 2 D = f1; :::;Dg, which refers to the distance between
the PS and the LC to which the container will be transported. An arbitrarily long horizon is discretized
in consecutive time periods t 2 T = f1;2; :::;Tg, from now on called stages. This finite horizon allows all
input to the model to be time-dependent and enables incorporating anticipated or forecasted fluctuations
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between stages. At the last stage, the final costs are computed to evaluate the dispatcher’s performance.
Furthermore, containers arrive at the PS from outside the system according to a stochastic process with a
rate l j;t ;8 j 2 J; t 2 T . Every container should be delivered within its corresponding time-window of length
k 2 K stages, which starts when its release period r 2 R = f0; :::;Rg is equal to zero. For example, a given
container that has r = 2 and k = 1 will become available for pickup after the next two upcoming stages
and it will have only one stage to be transported. If the shipment is not delivered on time, an alternative
transportation mode, i.e., a manned yard tractor, performs the transport at a high cost CL. Furthermore,
EAVs have one unit load capacity and b 2 B = f0;1;2; :::Bg incremental battery levels, where b = 0 means
that the EAV ran out of battery and can only recharge. There are Q charging stations located at the PS.
Transporting a given container j 2 J to an LC of distance class d 2 D takes d stages and battery levels.

The goal of the central dispatcher is to manage the fleet of EAVs, with regards to transport and charging
decisions, and thereby minimize the logistics costs under uncertainty, i.e., to maximize the use of the
EAV fleet and minimize the use of the manned vehicle while considering stochastic container arrivals and
anticipatory information. In the IEFDP, we make the following assumptions. First, we assume that charging
the battery by one level requires one stage. Second, we do not consider transportation costs for the EAVs’
deliveries, as the system should always bear those costs. Third, the manned yard tractor is always available
and transports all late containers at the end of the stage instantaneously. Fourth, for the same LC, the route
choice is negligible and the travel times are deterministic. Fifth, all LCs of distance class d 2D require the
same travel time and battery consumption at any given moment. Last, we assume that container arrivals
are independent and identically distributed events, and their destination is a random LC.

We now formulate the MDP for the IEFDP described above. In the IEFDP, each period of time t
corresponds to a stage in the MDP formulation. Thus, stages are discrete and consecutive. Furthermore,
at each stage t, there are Jt;d;r;k containers with destination d, release stage r, and time-window length k at
the PS, and there are Vt;r;b EAVs with release stage r and battery level b to transport the containers. The
state of the system St consists of all container and vehicle variables at stage t, as seen in (1). We denote
the state space of the system by S, i.e., St 2 S.

St =
h
(Jt;d;r;k;Vt;r;b)

i
8d2D;r2R;k2K;b2B

(1)

At each stage t, the decision consists of (i) how many EAVs should transport containers of a certain
type and (ii) how many EAVs with a certain range should charge their battery. This decision is restricted by
the release day of the shipments, the battery level of the vehicles, and the number of vehicles available. We
use continuous variables XV

t;d;k;b and XC
t;b to represent the number of vehicles used to transport containers

to an LC of type d with time-window k and battery level b, and the number of vehicles with battery
level b sent to charge the battery, respectively. Decision xt consists of all decision variables at stage t,
i.e., xt 2 Xt =

h
(XV

t;d;k;b;XC
t;b)
i
;8d 2 D;k 2 K;b 2 B. Here, the decision space Xt is subject to constraints

that establish that (i) the maximum number of EAVs used cannot be larger than the available number
of EAVs, i.e., åk2K åd2D XV

t;d;k;b + XC
t;b � Vt;0;b;8b 2 B; (ii) the EAVs used to transport containers to

LC’s of type d cannot exceed the number of containers available with the given destination type d, i.e.,
åb2B XV

t;d;k;b � Jt;d;0;k;8d 2D;k 2 K; and (iii) the number of EAVs sent to charge the battery at any stage t
cannot be larger than the number of charging stations, åb2B XC

t;b � Q.
The transition from St�1 to St is influenced by the decision xt 2 Xt and the containers that arrive after this

decision. Note that arriving containers and their characteristics, i.e., the destination, the time-window length,
and the releasing stage, are stochastic and characterized by probability distributions. To model these stochastic
processes, we introduce Ĵe

t;d;r;k to represent the number of newly arriving containers to be transported. This
variable is defined with respect to stages t�1 and t, such that at t all information is known. The exogenous
information Wt at stage t consists of all the new information Ĵe

t;d;r;k, i.e., Wt = [(Ĵe
t;d;r;k)]8d2D;r2R;k2K . The

state St at stage t occurs as a result of the state of the previous stage St�1, the decision of the previous stage
xt�1 plus the exogenous information captured in Wt that became known between the stages. Accordingly,
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the transition of the jobs is set by the time-window k of the container, relative to the release time r, the
number of containers transported in the previous stage t�1, and the stochastic arrival of new containers.
All of these factors, and index relations, are used to capture the transition of the system. We represent
them using the transition function SM, i.e., St = SM(St�1;Xt�1;Wt(Ĵe

t )) 8t 2 T j t > 0.
The objective function C(St ;Xt) = åd2DCL � zt;d in stage t depends on the use of the alternative

transportation mode. We define the variable zt;d as the number of containers delivered to d by the alternative
transportation mode at stage t. This variable is constrained by the given state and the decision variables, as
zt;d = Jt;d;0;0�åb2Bnf0gXV

t;d;0;b 8d 2D. Our goal is to find the policy that minimizes logistics costs over our
planning horizon. Therefore, we define a policy p 2P as a function p : St ! xt that maps each state to a
corresponding decision. The optimal policy p� may be found by solving the well-known Bellman optimality
equations for each state: V p�

t (St) = minxt2X(St)fC(St ;xt)+åSt+12SP(St+1jSt ;xt)V p�
t+1(St+1)g 8St 2 S.

3.2 Approximate Value Iteration Algorithm

This section presents the Reinforcement Learning approach to approximately solve the MDP formulation
from Section 3.1. More specifically, we use approximate value iteration (Powell 2011; Sutton and Barto
2018), as outlined in Algorithm 1. Before explaining the steps of this algorithm, we first introduce some
notation. We formulate the value functions around the post-decision state Sx

t , which is defined as the state
of the system directly after a decision xt has been made but before the arrival of the next-stage exogenous
information Wt+1. The transition from a state St to a post-decision state Sx

t is given by the transition function
SM;x(St ;xt). After the arrival of the exogenous information, we have the transition SM(Sx

t ;Wt+1).
The expected value V t(Sx

t ) of a post-decision state Sx
t , i.e., the value function approximation (VFA),

is given by a linear regression model using a set of features f
f

t (Sx
t ) 8 f 2 F with corresponding weights

q
f

t 8 f 2 F , which are iteratively updated. The downstream cost v̂t provides the direct reward C(St ;xt) plus
the approximated downstream costs of the post-decision state V t(Sx

t ). That is, a one-step look-ahead with
a bootstrap estimate (Sutton and Barto 2018). The input data are the number of iterations N, the feature set
F , the value e , the learning rate g , and the initial values for V ; v̂; and q f . The output data are the learned
weights q f 8 f 2 F , which indirectly determine the policy through the VFA V t(Sx

t ).

Algorithm 1: Approximate Value Iteration

Data: (N;F;e;g;V ; v̂;q f )
1 V 0; v̂0;q f

0  Initialize(); 8 f 2 F
2 n = 1
3 for n < N do
4 for t < T do
5 if t > 0 then

6 v̂t = minx2Xt

�
C(St ;xt)+ g V t

�
SM;x(St ;xt)

��
7 q

f
t = update(q f

t�1;f f
t�1; v̂t); 8 f 2 F

8 x̃t  e-greedy(Xt)
9 Sx

t = SM;x(St ; x̃t)

10 f
f

t  Compute(Sx
t ); 8 f 2 F

11 Wt+1 Random(W)
12 St+1 = SM(Sx

t ;Wt+1)

13 return q f 8 f 2 F
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Algorithm 1 starts by setting initial values for V 0; v̂0;q f
0 ; and n (lines 1 - 2). Next, line 3 loops over N

training iterations and line 4 loops over T stages. When the current stage is different from 0, lines 6-7 update
the weights of the linear regression model. More specifically, line 6 computes the expected downstream
costs v̂t of the best possible decision given our current knowledge, i.e., the lowest sum of direct costs plus
expected downstream costs. Line 7 updates the feature weights q

f
t based on the least-squares error (Powell

2011) between V t�1 (given by q
f

t�1 and f
f

t�1) and v̂t . In Line 8, a decision x̃t is chosen based on the
e-greedy decision policy (Powell 2011). The system then transitions towards the post-decision state Sx

t in
line 9. Next, in line 10, we compute the feature weights q

f
t corresponding with the current post-decision

state Sx
t such that we can update them in the next stage. In line 11, we generate the next-stage exogenous

information Wt+1 and with this we transition to the next state St+1 in line 12.
To select a suitable set of features F , we analyzed the predictive value of a wide set of features. We

first ran a long simulation and stored each feature value for all encountered states. Next, for each of the
encountered states, we sum the costs over the states encountered in the subsequent ten stages, and chose
the feature set resulting in the lowest error and the highest predictive power explaining the upcoming 10
stage horizon costs. Accordingly, the selected set of features consists of the number of available EAVs
per battery level, the number of containers per release time, the number of urgent containers, i.e., that
cannot wait one more stage, the number of non-urgent containers, the number of non-urgent containers per
distance class, the total number of containers in the system, the number of newly arrived containers, the
average distance class over all containers, and the total travel time to transport all containers at the PS.

4 SIMULATION MODEL

We perform a simulation study for the authority of the PoM to evaluate the performance of an EAV fleet
for internal transport. For this, we follow the simulation framework described in Brunetti et al. (2020)
and implement a simulation model of the PoM in Siemens Tecnomatix Plant Simulation. In this section,
we introduce the PoM and present several characteristics and elements of the resulting detailed simulation
model that make it a challenging environment for the RL algorithm, as the latter is trained in a simplified
simulation environment based on the MDP model. Hence, we also describe our approach to adapt the
stage-based approach of the MDP model to a discrete event simulation with a virtually continuous horizon.

The PoM is the fourth largest seaport in the Netherlands. It services approximately 14,000 vessels
per year, for a total of 18.5 million tons of transshipment. In its area of 26.35 km2, there are about 430
companies, of which more than a third are purely logistics companies. The main problem in PoM is its lack
of maneuvering space on certain roads and intersections in the central area, leading to congestion during
peak hours. Furthermore, trucks wait for an available docking bay in front of the LC gate, leading to more
congestion, safety issues, and inefficiencies for the drivers, as they cannot leave or take an official break.
In PoM, all freight flows, i.e., hub-to-hub, first-, and last-mile transport, rely on manned tractors or trucks
and simple planning logic. We support the port authority by providing information on the potential impacts
of decoupling inbound and internal freight flows by means of a PS and an EAV fleet, to ease congestion
and improve hub-to-hub transport.

The simulation framework provides inputs, outputs, assumptions, process flowcharts, and a multi-agent
system for the simulation of emerging technologies at logistics areas, e.g., EAV fleets. In the multi-agent
system, independent LCs send transport requests to a central dispatcher, which, in this study, corresponds
to the RL dispatching algorithm. To obtain accurate infrastructure, we create a 3D visualization of the
PoM, shown in Figure 2, using the large-scale model generator from van Steenbergen et al. (2021) and the
LC data from the port authority. Specifically, we model road flows and roadside operations at LCs, as road
traffic is the current concern of the port authority. Moreover, we restrict ourselves to inbound shipments, as
in the IEFDP. Therefore, the outbound process for containers is not modeled and it is assumed that trucks
(i) leave the LCs after unloading their container or (ii) leave the PS right after decoupling their container.
In Figure 2, we see four port entrances for road modalities (white squares with truck images), more than a
hundred LCs (green squares), and the PS in the bottom left corner (blue rectangles). Furthermore, shipment
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