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ABSTRACT

In the fluctuating and unstable supply chain environment, accurate demand forecasting is especially important.
To improve the prediction accuracy, one possible way is to improve supply chain visibility by sharing
information and knowledge among the supply chain entities. However, there is a potential risk that the
raw data may be leaked to the competitors, affecting the business opportunities. To avoid information
leakage, a secure demand forecasting with supply chain visibility is necessary. This paper proposes a
Federated Learning based approach to predict demand for supplier with supply chain visibility while
protecting the data privacy of other entities within the supply chain. To evaluate performance of forecasting
accuracy, we designed a supply chain simulation model to generate data. From the experimental results,
our proposed method outperforms the other demand forecasting methods without visibility and achieves a
similar performance to the method with full visibility.

1 INTRODUCTION

Forecasting demand is essential in firms’ operations to reduce management costs and provide considerate
plans (Nenni et al. 2013). Accurate forecasting results can lead to low inventory cost, high service level
stability, and reduction of bullwhip effects, which can help firms to increase profit and remain competitive
in the current market (Barlas and Gunduz 2011; Wang and Disney 2016; Feizabadi 2022).

There are many existing works focusing on demand forecasting problems. For instance, some researchers
use artificial neural network (ANN) to find patterns of future demand (Kochak and Sharma 2015; Feizabadi
2022). Other researchers used autoregressive integrated moving average (ARIMA) to study hidden patterns
of demand trends (Babai et al. 2013; Feizabadi 2022). Even though Zhang and Zhang (2007) demonstrated
that demand information sharing in supply chain helps to reduce total cost, the above mentioned approaches
do not have full visibility in the whole supply chain. They are only able to perform demand forecasting
using single firm data, e.g., forecasting only using the demand for supplier, and do not consider information
from the downstream firms in the supply chain. Due to the variance of downstream firms’ demand and
customer order, demand forecasting using single firm data cannot efficiently predict future demand.

Nowadays, due to the recent COVID-19 pandemic, supply chain uncertainties are also increased and
have a significant impact on firms (Nikolopoulos et al. 2021). The uncertainties increase the difficulty
of demand forecasting and make supply chains frailer. To overcome the negative effects and improve
forecasting performance, one possible solution is to improve supply chain visibility (Barlas and Gunduz
2011; Somapa et al. 2018; Hamadneh et al. 2021). Supply chain visibility means that firms share their
inventory and demand information with other firms residing in the same supply chain in a timely and
accurately way (Barratt and Oke 2007; Barratt and Barratt 2011).
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Undoubtedly, sharing detailed information is essential in accurate demand forecasting. However, supply
chain visibility brings a new problem that the shared information may be leaked (Chen and Özer 2019).
Information leakage may put firms in a dangerous situation, especially some firms are highly dependent on
private information to achieve their competitive edge (Tan et al. 2016). The privacy preserving concerns
of firms become a major obstacle in gaining supply chain visibility.

The arising of Federated Learning (FL) provides a possible solution to improve supply chain visibility
in privacy preserving manner. FL is a distributed machine learning approach that trains decentralized data
across multiple servers without direct data exchange or leak (Yang et al. 2019). As such, FL can be applied
to forecast demand – aggregate machine learning model across all firms can be trained without leaking
sensitive data information (Vepakomma et al. 2018; Yang et al. 2019).

In this paper, we propose an FL model to forecast demand for supplier, combining the advantages of
both increasing supply chain visibility and providing data privacy. The FL model can be considered as an
aggregator model that contains partial models of all firms in the supply chain. During training, the partial
model is updated by each firm separately. Then on a third party trust server, an aggregated model is used
to combine output from all firms’ partial models to forecast the demand for supplier. During this process,
the only data needs to be exchanged are the intermediate model results. As a case study, we constructed a
discrete event simulation model of a three-stage supply chain to train and evaluate our FL model. Compared
to the existing forecasting methods, the proposed FL model can achieve better performance than the methods
without supply chain visibility, and its performance is close to the method with full visibility.

The following are the contributions of our work:

• We propose a method to improve supply chain visibility for supplier forecasting while preserving
data privacy.

• To the best of our knowledge, this is the first study using FL across multistage firms for supply
chain demand forecasting.

• Using simulated data, the proposed method is shown to achieve better forecasting performance
compared to those methods without supply chain visibility and comparable performance compared
to the method with full visibility.

The remaining sections are organized as follows: Section 2 presents the background of supply chain
visibility, demand forecasting approaches, and FL. Section 3 introduces a three-stage supply chain simulation
model and the proposed FL model. Section 4 compares the performance of our method to the existing
methods using the simulation results. Section 5 concludes our paper and discusses future work and
limitations.

2 RELATED WORK

2.1 Demand Forecasting

Demand forecasting in supply chain has been well studied since accurate prediction can help firms remain
competitive by reducing operation cost and bullwhip effects, and growing profit (Seyedan and Mafakheri
2020). A variety of mathematics analysis approaches have been used for demand forecasting, including
regression analysis, time series modeling, and neural networks (NN) (Wang et al. 2016). Regression
analysis is widely used to describe the relationships between input features and target prediction value by
given continuous functions. Compared to deep learning approaches, regression models are easy to train and
have a better explanatory power. The weights of each input feature in the regression model demonstrate the
influence of prediction variables. Merkuryeva et al. (2019) applied multiple linear regression and symbolic
regression in pharmaceutical supply chain to predict demand. Based on the historical weekly sales data,
symbolic regression achieves the lowest accuracy error among existing works (Merkuryeva et al. 2019). In
addition, to improve prediction accuracy, Wang (2012) used genetic algorithm to optimize support vector
regression in demand forecasting.
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Time series analysis is used to discover unknown patterns over time sequence data (Ma et al. 2014).
For demand forecasting, the demand and other features are converted in equal size intervals, referred to
as time sequence data. The time sequence data are the input of the time series model to forecast future
demand. Babai et al. (2013) proposed an ARIMA model for demand forecasting of a huge superstore.
Feizabadi (2022) combines NN and ARIMA model in demand forecasting of a steel manufacturer problem.

Using NN models in demand forecasting is a way to find hidden patterns of input data. The NN is a
set of neurons organized by certain architecture. It maps the input features and target outputs by finding
the inherent correlations. Machine Learning (ML) can discover non-linear relations and fit a model with
historical data (Chase Jr et al. 2016). With the advancement of ML techniques and availability of big
data, NN approaches has became the most popular research methods in demand forecasting (Merkuryeva
et al. 2019). Abbasimehr et al. (2020) used a long short term memory (LSTM) neural model in demand
forecasting and demonstrated that the LSTM model achieves the highest prediction accuracy among other
approaches. Feizabadi (2022) implemented a two layers perceptron NN and achieved high performance in
demand forecasting scenarios.

2.2 Supply Chain Visibility

Supply chain visibility is defined as the ability of the firms within the supply chain to access accurate and
timely information which helps firms to make decisions (Barlas and Gunduz 2011). For example, firms
shared the demand information across the supply chain to increase the demand forecasting accuracy (Somapa
et al. 2018). With the supply chain visibility, all firms gain benefits, increasing revenue from lower inventory
cost, lower supply chain risk, and rapidly adjusted demand plans (Somapa et al. 2018). Furthermore, the
accurate demand forecasting helps to mitigate the bullwhip effects in supply chain (Barlas and Gunduz
2011; Feizabadi 2022).

The supply chain visibility requires different firms to share information among each other. Even
though firms may have trusted relationship with each other, sensitive information can be leaked to other
unauthorized parties (Tan et al. 2016). In recent years, information leakages are growing and become
major concerns and challenges for supply chain partners (Ried et al. 2021). Information leakage may lead
to less efficient and lower potential profits for all entities in the supply chain (Kong, Rajagopalan, and
Zhang 2013). Ensuring data privacy and supply chain visibility at the same time becomes an important
issue in demand forecasting.

In order to preserve privacy, there are mainly three approaches – trusted third party, secure transformation,
and secure multiparty computation (SMC) (Hong et al. 2014). The trusted third party approach requires
all firms upload their local private information to the third party (Özener and Ergun 2008). The secure
transformation approach suggests to randomized data and share the processed data to other entities (Hong et al.
2018). The SMC approach is to securely compute optimization function in a distributed computation (Hong
et al. 2014). SMC provides a secure joint computation function over multi-party to keep the inputs
private (Hong et al. 2014). Similarly, FL can be used to provide an efficient secure computation in different
distributed entities. Compared to the trusted third party approach, FL does not require to transmit any raw
data to third party. Atallah et al. (2004) applied SMC in ARIMA and linear regression to forecast customer
demand in a single supplier multiple retailer supply-chain model. They built an aggregate SMC model over
all retailers to protect retailers privacy, while our approach constructs an aggregate model across multiple
stages in the supply chain.

2.3 Federated Learning

Typical ML merges all local data sets as a whole and trains a centralized model. However, this becomes
an issue when sensitive data need to be shared and may be leaked in the process. To resolve this issue,
FL has been proposed to train NN models locally without sharing raw data (Konečnỳ et al. 2016). FL
has been widely used in privacy preserving cases (Yang et al. 2019). For example, Google built a mobile
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keyboard suggestion FL model by using client text data (Hard et al. ), and different medical organizations
can collaborate together using the FL model without sharing confidential patient data (Sheller et al. 2020).

There are many ways to achieve data privacy in FL, such as using homomorphic encryption to
encrypt gradient (Yang et al. 2019), exchanging intermediate model results (also called split neural
network) (Vepakomma et al. 2018), and using differential privacy (Abadi et al. 2016). Homomorphic
encryption enables the encrypted data to perform mathematical operations. Due to this property, FL models
can share and compute the parameter gradients in the encrypted manner. This encryption approach ensures
raw data will not be leaked but it is time-consuming (Yang et al. 2019). The split neural network (SNN)
divides the FL model and computes the partial model locally in different entities and only the intermediate
computation results will be shared (Vepakomma et al. 2018). Differential privacy is to add noises in the
gradients and share the noised gradient with other entities (Abadi et al. 2016). In this paper, we proposed
a FL approach to forecast demand for supplier using SNN.

3 METHOD

In this paper, we study a three-stage supply chain, in particular the demand forecasting for the supplier.
To generate the required data, we first develop a discrete event simulation model of the three-stage supply
chain. Second, we propose an FL model for demand forecasting at the supplier based on this three-stage
supply chain. The FL model will be trained and evaluated using the simulation model.

3.1 Three-Stage Supply Chain Model
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Figure 1: A three-stage supply chain model.

We design a three-stage supply chain model based on Barlas and Gunduz (2011). The main purpose
of this simulation model is to generate downstream data to improve the demand forecasting at the supplier.
The supply chain consists of a retailer, a wholesaler, and a supplier entity (see Figure 1). Each entity i in
the supply chain only orders from its upper stream entity i+1 and fulfils the orders from its downstream
entity i−1 immediately upon receiving the order from downstream if it has sufficient inventory. If there is
insufficient inventory, it fulfils the orders partially and the back order will be satisfied after the inventory
has been replenished. We assume that all goods require a constant shipment lead time (LT ) to be received.
We also assume that the supplier has an unlimited supply, hence there is no back order and inventory in
supplier.

The customer demand, i.e., demand for retailer, (DR
t ) at time t is generated by random sample from a

normal distribution (Kim et al. 2010), represented by:

DR
t = N

(
1

t −1

t−1

∑
τ=1

DR
τ +U(−c,c), d

)
[Products/Period]
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where N is normal distribution with standard deviation d and U is uniform distribution with the range
from −c to c. The fluctuation in customer demand can be increased by increasing d and c.

The local inventory (LI) of entity i is increased by the products (Si+1) shipped from the upstream entity
i+1 and decreased by the products (Si−1) shipped to the downstream entity i−1:

LIi
t = LIi

t−1 +Si+1
t−LT i+1 −Si−1

t [Products]

where LT i+1 is the shipment lead time from the upstream entity.
The shipment requirement (SR) for entity i at time t is the sum of the back order (BO) and demand

received (D):
SRi

t = BOi
t +Di

t [Products/Period]

If there is sufficient inventory (LI), the required shipment (S) is delivered immediately in one period. If
not, the unfulfilled part of the orders is added to the back order (BO).

Si
t = min(SRi

t ,LIi
t ) [Products/Period]

BOi
t+1 = BOi

t +Di
t −Si

t [Products]

Since the supplier (e.g., entity s) has unlimited supply, the products will be shipped according to the received
demand, i.e., Ss

t = Ds
t .

Inventory is replenished based on forecast future demand. A simple time window averaging is used
to forecast the demand. The expected demand (D̂i

t) at time t is the average of previous T time demand
multiply the shipment lead time LT of entity i:

D̂i
t = LT i ∗ 1

T

T

∑
τ=1

Di
t−τ [Products/Period]

The orders, i.e., demand for the upstream entity i+1, is calculated based on the difference between
the current inventory (LI) and expected demand (D̂):

Di+1
t+1 = |LIi

t − D̂i
t | [Products/Period]

3.2 Split Neural Network Federated Learning Model
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Figure 2: FL model based on the three-stage supply chain model.
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We proposed a FL-based approach to forecast demand for the supplier using SNN. All entities in the
supply chain need to cooperate together to build an aggregate FL model. The whole FL model composes of
four partial models – retailer, wholesaler, supplier, and aggregation model (see Figure 2). The NN needs to
be split into partial models as the retailer and wholesaler are not sharing their private data with the supplier.
The output of retailer and wholesaler models represent the hidden states of the retailer and wholesaler.

The aggregation model conceals the information from the retailer and wholesaler models by not sharing
the information directly with the supplier. Only the extracted information from the hidden states are shared
with the supplier model. Finally, the supplier model is used to map the extracted information to forecast
the demand.

As the demand for supplier is based on the order decision from the downstream firms, information
from the retailer and wholesaler are sufficient for model construction. The retailer model uses the time
sequence normalized state information of the demand for retailer and retailer inventory as the input features,
extracts the hidden patterns from data, and generates the intermediate model output. Correspondingly, the
wholesaler model uses the demand for wholesaler, wholesaler inventory, and wholesaler order as the inputs
to generate intermediate output. The intermediate model outputs from the retailer and wholesaler models
are combined at the aggregation model in a trusted third party server. The output from the trusted third
party server is then used as the input to the supplier model to generated the predicted demand.

The exchange of the intermediate output from the retailer and wholesaler models to the supplier
model can increase the supply chain visibility by enabling the supplier model to generate a more accurate
demand prediction. The data privacy is preserved by using a third-party trust server that only exchanges
the intermediate data instead of raw data between the entities (Vepakomma et al. 2018). All the partial
models are required to execute together in both training and evaluation steps. Since only intermediate model
outputs and gradients are involved in the exchange process, the original raw data can be well protected
without leakage.

The LSTM models in retailer and wholesaler contain two LSTM layers. Abbasimehr et al. (2020)
suggested that two LSTM layers structure achieves high demand forecasting accuracy comparing with
other NN structures. The LSTM layers can be considered as the encoder that extracts and classifies the
hidden information from input data and convert them to high dimensional data. The aggregation model
and supplier model contain fully connected (FC) layers. The FC layers can be considered as decoder that
converts the high dimensional data into demand prediction. To fit the structure mentioned in (Vepakomma
et al. 2018) and protect data privacy, our FL model has three FC layers – the aggregation model has two FC
layers and supplier contains one FC layer. Each partial model can be represented as a function – retailer
( fr), wholesaler ( fw), supplier ( fs), and aggregation ( fa). The FL models take the states of retailer (xr) and
wholesaler (xw) as input, which can be expressed by:

yr = fr(xr), yw = fw(xw)

Then, the intermediate output yr and yw are concatenated and sent to the third party server and compute:

ya = fa(concat(yr,yw))

Lastly, the supplier takes aggregated information ya as input to forecast the demand (ŷ):

ŷ = fs(ya)

Through simulation, detailed time series information regarding the states of the retailer and wholesaler
can be generated. The FL models are trained with data generated from the simulation model. Then
additional generated data is used to evaluate the FL model.

For the retailer and wholesaler models, the input features x(ti) are first normalized by min-max
normalization:

x̂(ti) =
x(ti)−min(x)

max(x)−min(x)
,
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where x̂(ti) is the normalized results of the ti element, min(x) is the minimum value of x, and max(x) is
the maximum value of x.

Secondly, they take the normalized states as input into two LSTM layers. For LSTM layers implemen-
tation, we apply an open source Python library Pytorch (Paszke et al. 2019). The LSTM layer in Pytorch
exactly follows (Hochreiter and Schmidhuber 1997) and can be formulated as follows:

ol
t = σ(W l

oX l
t +U l

ohl
t−1 +bl

o),

ilt = σ(W l
i X l

t +U l
i hl

t−1 +bl
i),

f l
t = σ(W l

f X
l
t +U l

f h
l
t−1 +bl

f ),

cl
t = ( f l

t ⊙ cl
t−1)+(ilt ⊙ tanh(W l

c X l
t +U l

chl
t−1 +bl

c)),

hl
t = ol

t ⊙ tanh(cl
t),

where l ∈ 1,2 represents the first or the second LSTM layer; X l is the input of the LSTM layer l where
the first layer takes x̂(ti) as input and the second layers takes h1

t as input; hl
t and cl

t are the hidden state
and cell state of layer l at time t; it , ft , and ot are the input gates, the forget gates, and the output gates
respectively; W , U , and b are the weights and bias in above mentioned gates respectively; σ is the sigmoid
function; and ⊙ is the Hadamard product.

Thirdly, the outputs of retailer and wholesaler models are sent to the third party trust server as input.
The trusted server concatenates the intermediate results and puts in FC layers:

FC1
t =W 1

FC · concat(yr,yw)+b1
FC,

FC2
t =W 2

FC ·FC1
t +b2

FC

where concat is the concatenation operation, W i
FC and bi

FC are the weights and bias in the i-th FC layers,
FCi

t are the results of the i-th FC layer outputs in the server at time t.
After the FC2

t output has been calculated, it will be sent to supplier model which computes the final
prediction as follows:

ŷt =W ·FC2
t +b,

where ŷt is the prediction of future demand at time t, W and b are the weights and bias in supplier model.
During the training, dropout layers have been implemented on LSTM layers and FC layers, which

randomly zeros the input tensor elements. Dropout layers help to reduce the dependence over the neurons
and prevent model overfitting. Moreover, by applying the mean squared error (MSE) between the prediction
output ŷ and actual value, the optimizer in supplier model computes the corresponding gradients and sends
them back to the trusted server and retailer and wholesaler models, using back propagation in NN. All the
models will update their own gradient via optimizers respectively.

4 EXPERIMENT & EVALUATION

4.1 Simulation Setup

The experiment dataset is generated by the three-stage supply chain model described in Section 3. In
our supply chain simulation, each time step represents a day, and we simulate for a total of 730 days.
The warm-up period for the simulation is the first 30 days. The shipment lead time (LT ) is assumed to
be 2, based on the settings from Barlas and Gunduz (2011). The initial states of all entities, inventory
level, raw material level and order quantity in entities, are randomly generated. The parameters used to
generate customer demand, c and d, are different in each experiment. In our three experiments, we use
three different parameters to generate data: c = 2 d = 30, c = 5 d = 50, and c = 10 d = 100 for three
experiments respectively. For each experiment, it repeatedly runs 10 times using the same parameters with
different initial states.
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4.2 Demand Forecasting Method Settings

We compared our proposed FL model with other demand forecasting methods under different supply chain
visibility to predict the future T days of demand for supplier. In the full visibility scenario, we assume all
firms are willing to share all of their data and centralized into a dataset. We construct an LSTM model with
full visibility (FV-LSTM) between all entities in the supply chain to forecast future demand for supplier
(see Figure 3a). In the partial visibility scenario, we assume all firms are willing to cooperate with each
other but not agree to share the raw data. Our proposed FL-model with partial visibility (PV-FL) is used to
forecast demand for supplier, where firms can cooperate while maintaining privacy (see Figure 2). In no
visibility scenario, only the supplier data is available. We apply ARIMA model (NV-ARIMA) (Babai et al.
2013) and NN model (NV-NN) (Feizabadi 2022) with no visibility to other firms to predict the demand
for supplier.

Retailer
Demand

Min-Max

LSTM

Forecasted
Demand

MLP

Retailer
Inventory

Wholesaler
Demand

Wholesaler
Inventory

Wholesaler
Order

LSTM

(a) LSTM model with full visibility (FV-LSTM) –
Retailer and wholesaler states as input.

Forecasted Demand

demandt demandt-1 ... demandt-n

(b) NN without visibility (NV-NN) – Only previous
T time steps of demand for supplier as input.

Figure 3: Model structure for demand forecasting.

FV-LSTM model is a NN model composed of two LSTM layers and one FC layer (See Figure 3a). It
takes the previous eight time step states of retailer and wholesaler as input, including inventory level and
total order quantity. Compared to our proposed FL model, FV-LSTM model has a similar model structure
with nearly the same total number of parameters inside the model and also uses Min−Max to normalize
the input. The hyper parameters of the ML layer are as follows: input layer dimension=5; number of
hidden states in LSTM=64; and the FC neurons=20.

The hyper parameters of the FL model are as follows – for supplier and wholesaler models: input layer
dimension=2, and number of hidden states in LSTM=64; for aggregation model: number of neurons=5;
and for supplier model: first layer neurons=5; and second layer neurons=2.

For the no visibility scenario, the input data are the time-series sequence of supplier data. NV-ARIMA
model takes previous eight time steps of demand for supplier as input and has three hyper parameters: p,
d, and q, which are non-negative integers. In this case, we apply grid search technique to tune the hyper
parameters where p = [0,1,2,4,6,8,10], d = [0,1,2], and q = [0,1,2]. The ARIMA model with the best
performance in grid search will be used. NV-NN model has 2 FC layers, similar to (Feizabadi 2022). There
are 5 neurons in the first FC layer and 2 neurons in the second FC layer (see Figure3b).

For all the above-mentioned NN and LSTM models, they are trained using the same parameters from
Kingma and Ba (2014): epochs number=150, batch size=32, learning rate=0.001, and optimizer=Adam.
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Table 1: Average MAE results.

Method Visibility c=2, d=30 c=5, d=50 c=10, d=100
NV-NN No 38.7554 35.4623 61.2887
NV-ARIMA No 31.0998 32.3612 46.8307
PV-FL Partial 25.5622 29.8184 41.8509
FV-LSTM Full 29.1657 23.7547 39.2612

4.3 Results

In our experiment, we evaluated different methods using the mean absolute error (MAE) between the
prediction value and actual demand. We use 3 different sets of parameters in the simulation, as mentioned
above, and each set of parameters repeatedly run 10 times with different initial simulation state. Then we
compare the average MAE in these 10 runs among all methods.

The simulation data are divided into 60% training data, 20% evaluation data, and 20% testing data. All
methods train on the same training dataset. For the ARIMA model, we first pick a set of hyper parameters
with the minimum loss in the evaluation dataset and compute the MAE of this set of hyper parameters in
test dataset.

Figure 4: Actual data vs prediction in full, partial and no visibility methods in a month.

First, we compare the actual demand for supplier with forecasted next day demand. Figure 4 shows
a month simulation time of the actual demand for supplier with the forecasted demand using different
methods across the time for Exp. 3 (c = 10, and d = 100). In the figure, the black line is the real demand
and the dashed lines represent forecast demand using various approaches. Table 1 shows the average
MAE for different methods in the three experimental configurations. Overall, the MAE illustrates that our
approach outperforms the methods with no visibility (i.e, NV-NN and NV-ARIMA), and achieves similar
performance to the full visibility method (i.e, FV-LSTM). In the first experiment, c = 2, and d = 30, our
model achieves even smaller MAE than the FV-LSTM model. A possible explanation for this could be that
the structure of PV-FV fits well for forecasting the next day demand. Since the PV-FV model takes retailer
and wholesaler inputs separately and the next day demand for supplier mainly depends on the inputs of
wholesaler, the PV-FV model with a separate structure has the advantage to handle the situation.

Figure 5 demonstrates the average MAE results of future 1 to 7 days demand for supplier among three
experiments. The blue line is the LSTM model with full visibility (FV-LSTM), the orange line is our
approach (PV-FL), the green line is the neural network without visibility (NV-NN), and the red line is the
ARIMA model without visibility (NV-ARIMA). The x axis represents forecasting of future T days and
the y axis is the average MAE results. From Figure 5, the average MAE of the methods without visibility
raise quickly due to lack of downstream information. The average MAE of our approach and FV-LSTM
increases at a slower rate compared to methods without visibility. In addition, we can see from the error bar
that our approach has small variances. This also indicates our stable performance under different scenarios.
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Figure 5: MAE of different forecasting methods with increasing forecasting days.

The above experiment results demonstrate that our method can increase supply chain visibility and
achieves similar performance to the method with full visibility. The reason is that our approach considers
inputs from downstream firms and those inputs are highly correlated with demand for supplier. As such,
our method is able to utilize the LSTM layers to extract the hidden state from the input features and uses
the FC layers to analyze the hidden state.

5 CONCLUSION

In this paper, we demonstrated an approach to forecast demand for supplier by increasing supply chain
visibility while preserving data privacy. We proposed a split-NN FL model using simulated data from
a three-stage supply chain model. Intermediate data from the partial models are aggregated at a third
party trust server to preserve privacy. The proposed FL model is evaluated with other demand forecasting
methods with different supply chain visibility. The experimental results show that the proposed FL model
has better performance than methods without visibility and manages to achieve close performance to full
visibility method. Hence, the work presented in the paper demonstrates that supply chain visibility can be
increased by exchanging intermediate data in the FL model.

In the future, we plan to improve the realism of our supply chain simulation with more transaction
details and entities. Alternatively, real data can be also used in the FL model depending on the availability
of the data. In addition, our FL model can be also extended to handle dynamic supply chains where different
entities can join and leave the supply chain network.
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