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ABSTRACT

Hyperparameter optimization (HPO) is one of the first tasks to be performed during the application of Machine
Learning (ML) algorithms to real problems. Tree-structured Parzen estimators (TPE) have demonstrated
their ability to find hyperparameter configurations in high dimensions with efficient evaluation budgets.
However, as is common in HPO procedures, TPE ignores the fact that the expected performance of the
algorithm, for any given HPO configuration, is affected by uncertainty. Building on the TPE algorithm
proposed by Bergstra et al. (2011), we propose a strategy to account for this uncertainty and show that its
management leads to better algorithm performance.

1 INTRODUCTION

The parameters that need to be specified before training an ML algorithm are usually referred to as
hyperparameters (HP). The selection of the values of the hyperparameters is a challenging task, as traditional
optimization methods are often not applicable (Luo 2016). Furthermore, the process is most often stochastic,
since we observe different algorithm performances for the same hyperparameter configuration. Instead
of focusing on the mean cross-validation error (as is common in the literature on HPO), we show that
accounting for this uncertainty during the optimization process can find HP configurations that lead to
better algorithm performance.

2 METHOD

The original TPE algorithm starts from observations X = {(x(1),y(1)), . . . ,(x(n),y(n))} where x(i) is a
hyperparameter configuration of dimension d and y(i) is the mean expected performance of the algorithm,
observed after the algorithm has been trained/cross-validated using hyperparameter configuration i. It
then splits these observations into a “good” set (Xl = {x(i)|y∗ > y(i)}) and a “bad” set (the remaining
observations), selecting y∗ as a quantile γ of the y values (so p(y∗ > y) = γ , where γ=0.15 in the original
paper). The algorithm then uses kernel density estimation on the set Xl to obtain a density function l(x),
and analogously on set Xg to obtain a density function g(x) (Bergstra et al. 2011). Finally, the ratio
g(x)
l(x) guides the search towards the estimated optimal HP configuration. The algorithm has been shown
to outperform (deterministic) Gaussian Process-based sequential optimization algorithms (Bergstra et al.
2011) tuning Deep Neural Networks. Yet, the original algorithm neglects the fact that the y(i) values are
noisy. Indeed, they typically result from a k-fold cross-validation protocol, yielding a random sample of
k independent y(i) per HP configuration i considered. Theoretically, the resulting sample mean y(i) is also
a random variable: according to the central limit theorem (for k sufficiently large), it will be normally
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distributed around the true mean (which is estimated by Y (i)), with a variance that can be estimated by
the sample variance divided by k. We thus propose a modified version of the algorithm, that takes this
uncertainty into account by ranking solutions x(i) in decreasing order of their probability of yielding a
“good” expected performance (prob(Y ≤ y∗), and selecting only the top λ percent of all solutions to enter
the set Xl (where λ is a user-defined parameter).

3 RESULTS AND CONCLUSIONS

We optimized five hyperparameters (neurons, training epochs, initial learning rate, and exponential decay
rate for estimates of first and second-moment vector in adam solver) of a Multi-Layer Perceptron (MLP) to
minimize the cross-validation classification error in the ILPD dataset (OpenML ID=41945). We used 20%
of the initial dataset as the test set and the remainder for HPO, and apply stratified k-fold cross-validation
(k = 10) to train/validate the ML algorithm. The experiment was repeated 10 times, each time starting
from a different random design (consisting of 11d −1 = 54 HP configurations). We used γ = 0.2 in both
algorithms and λ = 0.2 for our proposal. Figure 1 shows the expected classification error of the two
algorithms in the first 100 iterations of the optimization process. The result of a random search (sampling
randomly 11d −1 configurations) is displayed as a reference.

Figure 1: Mean classification error based on 10 macro-replications, for the in ILPD dataset. Shadowed
area corresponds to the mean± std of 10 macro-replications.

Our results show that considering the uncertainty during HPO can lead to higher performance of ML
algorithms. Further research will be focused on a sensitivity analysis of the parameters γ and λ , other
sources of uncertainty, and their influence on this HPO procedure.

ACKNOWLEDGMENTS

This work was supported by the Flanders Artificial Intelligence Research Program (FLAIR) and the Research
Foundation Flanders (FWO Grant 1216021N). The authors want to acknowledge their affiliation to the
Core Lab VCCM Flanders Make, Belgium

REFERENCES
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