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ABSTRACT

Operations in a parcel sorting center (SC) are multi-fold which lead to multiple NP-hard optimization
problems, namely, parcel-chute assignment, online bin-packing, scheduling, and routing. The advent of
multi-agent robotics has accelerated the process of automation in sorting centers which has led to the
requirement of sophisticated algorithms to optimize these operations within an SC. To this end, we propose
RL — SORT: a simulation-aided deep reinforcement learning based algorithm which jointly optimizes
the parcel-chute assignment and online roller-cage (RC) packing problems. Through experimentation on
our simulation framework, we show that RL —SORT not only outperforms baselines, but also has a low
computational burden. Further, it is able to significantly reduce the number of RCs used, thereby, reducing
the transportation costs.

1 INTRODUCTION

The advent of the pandemic has significantly accelerated trends in the parcel delivery industry and it is
expected to grow at a rate of at least 10% year-on-year for the next few years (reaching a volume of $675bn
by 2027 from its current levels of $376bn) (Motor Intelligence 2022). Sorting of parcels is a key cog in
the supply chain that the parcels have to go through to reach end-users. Such a tremendous growth and
increased adoption of automation have started posing significant challenges to the existing hardware and
algorithms used for sorting operations (Harrison 2019; Benzi et al. 2019). The primary operations in a
sorting center (SC) are: scheduling of inbound parcels, segregation of parcels to destinations by means
of chutes, packing of parcels in roller-cages (RCs) in an online fashion, loading of RCs onto trucks, and
outbound routing/scheduling of trucks for transportation. Each of these processes yields an NP-hard/NP-
complete optimization problem (e.g., scheduling, assignment, knapsack, routing), finding optimal solutions
to which are generally very difficult.

Optimization of SC processes have attracted significant attention of the research community in recent
years. However, most of the existing research either focuses on layout optimization (Werners and Wiilfing
2010) or isolated solutions to these problems (McWilliams et al. 2005; Jarrah et al. 2016; Khir et al.
2021). Existing techniques include either mixed integer programs (Khir et al. 2021; Ghosh et al. 2021) or
meta-heuristics (Balcou and Yadavalli 2017). Independent optimization of these processes often leads to
sub-optimal solutions overall. Sophisticated algorithms, under the umbrella of Intralogistics are the need of
the hour which provide an end-to-end and joint optimization of these processes (Harrison 2019). However,
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exact optimization techniques leave a lot to be desired (computationally slow) when they are applied to
joint optimization of large-scale logistics problems.

On the other hand, deep reinforcement learning (RL) based methods have made significant progress
in producing nearly optimal results for several combinatorial optimization problems (such as vehicle
routing (Gupta et al. 2022), online bin packing (Zhao et al. 2021), and production scheduling (Hubbs et al.
2020)) with significantly reduced computational costs. Deep RL based approaches have also been used in
sortation control by routing parcels from ‘emitters’ to ‘receivers’ in an SC (Kim et al. 2020). Thus, one
naturally wonders if deep RL based algorithms can provide scalable and nearly optimal solutions to joint
optimization problems in sorting center logistics. We provide an answer to this question in the affirmative,
by formulating the first (to the best of our knowledge) simulation-aided deep RL based algorithm RL — SORT
for joint optimization two critical processes in an automated sorting center.

Our algorithm RL — SORT uses a combination of deep reinforcement learning and heuristics to jointly
optimize the parcel-chute assignment and online 3-D RC packing problem in an automated sorting center.
These two processes individually represent two of the most famous combinatorial optimization problems:
the assignment/allocation problem and the knapsack problem, both of which are NP-hard. Thus, existing
solution techniques only provide approximate solutions to large-scale versions of these problems. However,
as one would observe in Section 4, optimizing these processes in silos results in highly sub-optimal results
thereby, increasing transportation and other costs. RL —SORT not only resolves this by jointly optimizing
the two problems, but it does so at an impressive computational speed thereby, making itself amenable
for deployment in a real-world automated SC using multiple robots. Further, since RL —SORT cannot
be trained in a real-world SC, we also develop a queue and grid based simulation framework to train the
algorithm. To the best of our knowledge, our formulation and approach are among the very first ones to
provide Al based solutions for intralogistics problems in an SC. Specifically, the paper’s contributions are:

1. Formulation of a joint optimization problem related to processes in an SC;
2. Development of deep-RL based RL — SORT and other baselines for solution to the joint problem;
3. Experiments and simulations to showcase efficacy of RL —SORT compared to other baselines.

2 PROBLEM SETUP

The focus of this paper is to describe an algorithm that jointly optimizes the processes in a sorting center
in a scalable fashion. Figure 1 shows the basic setup of a sorting center under consideration (Ghosh et al.
2021; Fedtke and Boysen 2017). The following stages describe the initial processes of an SC:

o  Entry of parcels: The parcels received via inbound trucks are first processed through an OCR reader
before being placed onto the main oval shaped conveyor. The OCR reader captures the parcel’s
destination, dimensions, and weight; and redirects this information to the sorting logic algorithm.

o Assignment: Once the information about the parcel reaches the sorting logic, the parcel is sent to
a spiral chute for further processing. Each chute is mapped to multiple destinations and contains
at least one open roller-cage for each destination.

e Processing and Packing: Once a parcel enters a chute, it is processed in a first-in-first-out fashion by
either a human being or a robotic arm; i.e., parcels which enter the chute first are processed earlier.
This stage involves picking up the parcel and putting it into an RC earmarked for its destination.

Further downstream processes include moving out RCs to trucks as soon as they are filled, outbound
scheduling, and routing of trucks which are currently beyond the scope of this paper. The processing and
packing stage can involve either a human being or a robotic arm for packing of parcels. A human being
takes a larger time (= 30 sec/parcel) to process each parcel, but is able to achieve high efficiency in packing
(due to reshuffling capability of humans).

On the other hand, in an automated SC, a robotic arm carries out the processing and packing stage
with a much smaller time/parcel (=~ 10 sec/parcel) while maintaining a reasonable packing efficiency. This
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Figure 1: Schematic of a sorting center, showing the main conveyor belt, chutes, and associated (RCs). The
overall optimization comprises of two interlinked problems: parcel-chute allocation and online bin-packing.

results in a larger number of parcels processed in a day thereby, increasing the overall productivity of the
SC. However, in order to minimize the overall costs (which include transportation), one needs to design
scalable algorithms that jointly optimize the two processes: parcel-chute assignment and online 3-D bin
(RC) packing. As is well known, both of these problems are variants of well-known NP-hard combinatorial
optimization problems: the generalized assignment and knapsack, respectively; thereby, ruling out use of
exact optimization approaches for large-scale instances. In this paper, we present a simulation-aided deep
reinforcement learning approach to carry out these operations in an approximately optimal fashion.

2.1 Costs and Efficiencies

To make the overall joint optimization problem tractable; we make the following assumptions:

The parcels are cuboidal and non-deformable;

Parcels arrive in waves (with a max processing time Tp,.x) and each shift processes multiple waves.
Each chute has exactly one RC open per destination, and

If no feasible packing location is found for an incoming parcel, one of the open RCs is closed and
immediately replaced with an empty one.

.

Optimization of the sorting process involves acting on the following two levers:

o Sorting efficiency: This measures the number of parcels processed and packed in a sorting center:

# parcels assigned to chutes for a wave

= - x 100(%).
s # total number of parcels arriving in a wave (%)
We assume that if a parcel is not assigned to a chute, it is either re-circulated a fixed number of
times or rejected, both of which bring down 7;.

e Bin Packing efficiency: This measures the volume utilization of the RCs closed during the process.

total volume of boxes in a closed bin

N, = average ( > x 100(%).

Volume of the closed bin
In other words, 7, measures the average of fill-rates for all the bins that are closed and replaced
during a wave. We ignore the fill-rates of open RCs since they will be utilized in subsequent waves.
Improvement in 7], reduces the number of RCs in use, thereby, reducing the number of trucks,
which leads to decrease in transportation costs.
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2.2 Problem Statement

The overall objective in this paper is to simultaneously maximize the overall throughput/efficiency of the
sorting center and minimize the overall transportation costs. Mathematically, this leads to maximizing
w1 N5 + w1 respecting the constraints of bin packing (Ojha et al. 2021) and sorting of parcels (Ghosh
et al. 2021). The weights w; and w, can be tuned to designer’s preferences.

3 METHODOLOGY

In this section we describe the simulation and deep reinforcement learning-cum-heuristic frameworks for
joint optimization of processes in an automated sorting center.

3.1 Simulation Framework

We develop a queue and grid based simulation environment in Python to model the processes in a sorting
center which is used to train, test, and model what-if scenarios for our deep RL-cum-heuristic based
algorithms. The overall simulation environment can be broken down into the following stages:

Simulating Chutes: First-in-first-out (FIFO) queues are used to mimic the behavior of parcels entering
and leaving chutes. In other words, parcels entering chutes first are processed earlier. It is assumed that
each chute (queue) has a fixed length (L), and can hold parcels Py,..., P, as long as Zle ¢; < L where ¢;
denotes the length of parcel P, entering the chute. Further, each parcel is associated with a processing time,
t; (30 sec/parcel and 10 sec/parcel for human and robotic packing, respectively) after they exit a chute. To
simplify the problem setup, we assume that the time-taken by a parcel to move inside a chute is negligible.
If a parcel P, enters a non-empty chute C;, it must wait for the parcels ahead in the queue to be processed,
before its processing can begin.

Simulating bin-packing: A 2-dimensional cellular array is used to simulate the interior of a roller-cage
(RC) or bin. The size of the array is Lg x Wp where Lg and Wp denote the length and width of the bin
under consideration (in cms), respectively. Each cell (i, j) with i € {1,...,Lg} and j € {1,...,Wp} in the
array is comprised of a non-negative integer 4;; which describes the height of the object occupying the cell
This height is updated whenever an object is placed on top of the object already placed in the cell. Also,
hij < Hp, for every i € {1,...,Lg} and j € {1,...,Wp} where Hp denotes the height of the bin. One can
also see that the resolution of box placement in the bin is lcm. In other words, whenever a new parcel
P with dimensions (¢,b,h) is supposed to be placed at a location starting at (x,y) on the x —y plane, we
change the values h;; to h;j+h for i € {X,...,x+ ¢} and for j € {y,...,5+b} subject to constraints that
X+ <Lp, y+b < Wp, and h;;+h < Hp to ensure that the box fits within the bin’s dimensions.

Data-generation: We use a cutting plane technique to generate the set of boxes for experiments. In
other words, boxes of random integral dimensions are carved out from the interior of a bin. This ensures
that the dimensions of all the boxes match up to the dimensions of the bin. Each data-set contains a
pre-specified number of boxes (from 1,000 to 15,000) depending on use-case.

The environment records the time-stamp of entry 7; for parcel P, its intended destination Dy, and its
dimensions (¢; x b; x h;) at the outset. The time to entry each allowable chute C; (chutes C; where P,
can enter; i.e., the chutes to which Dy is mapped) for parcel P; denoted by 7;; is computed according to
T;; = T;+T;; where 7; is fixed time to reach C;’s entrance from the OCR reader. The parcel is then assigned
a chute using the sorting and bin packing logic, and are sent to the queue of the destined. Once a parcel
is processed at the chute, it is placed into the bin intended for their destination by changing the values of
the cells of the corresponding bin array.

3.2 RL-SORT: Deep RL based technique for Sorting

We begin this section with a brief description of the optimization problems under consideration. Further
details can be found in (Ghosh et al. 2021; Ojha et al. 2021).
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Figure 2: Representation of bin-packing using simulation.

3.2.1 The Sorting Problem:

This problem primarily deals with optimal allocation of parcels to chutes so that the throughput of the
system (alternatively, the sorting efficiency 7y) is maximized. This problem comprises of two (stages):

e Planning: This stage is carried out to create a sort-plan which consists of a many-to-many mapping
between destinations and chutes. This is carried out offline and is based on projected load with the
objective to maximize the number of processed parcels in the projected load.

e Execution: Once the sort plan is ready and the parcels start arriving, this stage involves assigning
chutes to parcels in real-time with the intent to maximize the number of parcels processed.

The approach titled OPTSORT in (Ghosh et al. 2021) used Mixed Integer Linear Programs (MILP)
improved iteratively via a digital twin based simulation to solve the sorting problem. However, while the
planning stage (carried out offline) can be solved using MILPs, real-time execution of large-scale waves
using an exact approach like MILP is infeasible due to large computational times. This is primarily due to
the fact that OPTSORT solved the execution problem for the entire wave in a single shot thereby maximizing
efficiency at the cost of the computational speed. Algorithms to be used for real-time deployment for
large-scale sorting need to have a dynamic point of view to solve the chute assignment problem for each
parcel individually, thereby achieving a trade-off between optimality and computational speed.

3.2.2 The Bin-Packing Problem

This problem deals with placement of 3-dimensional boxes arriving in an online fashion in a bin using a
robotic arm so that the bin-fill rate (1) is maximized. One may impose constraints on allowable rotations
for the robotic arm (depends of degrees of freedom of the arm) and computational time/box (since if the
computation time exceeds the processing time/box, the chute will start getting congested thereby blocking
the entry of subsequent parcels). Heuristic algorithms such as first-fit, best-fit as well as MILP and RL-based
algorithms perform with a reasonable degree of optimality (Ojha et al. 2021; Zhao et al. 2021).

3.2.3 RL-SORT": Description

In this section, we will describe RL — SORT, a deep reinforcement learning based technique for the joint
optimization of the sorting assignment and online 3-dimensional bin packing problem in an automated
sorting center. The overall problem comprises of three individual stages: (a) Planning; (b) Execution; and
(c) 3-D Bin packing. RL— SORT attempts to design a dynamic execution protocol that takes a feedback
signal from the downstream 3-D bin packing algorithm with the intent to optimize the overall efficiencies.
The planning phase which involves creation of sort-plan uses an MILP based technique and is exactly
similar to the sort plan creation stage in OPTSORT (Ghosh et al. 2021). On the other hand, we use an
online version of the extreme-point based best-fit heuristic (BF) for 3-D bin packing (Crainic et al. 2008;
Ojha et al. 2021). This choice is not mandatory, and one can replace BF with any other bin packing
heuristic such as first fit (FF), next fit (NF), Jampack (JP), or MPackLite (MPL) (Ojha et al. 2021). Online
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heuristics have the following aspects: (a) information about the boxes in future is unavailable; except for
a few upcoming boxes; and (b) computation time/box should be low enough to avoid chute congestion.

In the case of an automated sorting center, the robotic arm has to pack the box nearest to it; i.e., it
works with a look-ahead of one (1). Further, whenever the upcoming box cannot fit into any of the open
bins (one bin per destination per chute), BF heuristic mandates that the bin with the highest fill-ratio is
closed and is replaced with an empty bin.

The overall dynamic execution problem,; i.e., allocation of chute to a parcel can be viewed as a Markov
Decision Process (., %7, %,7), where S represents the three observed states (described later), <7 denotes
the set of actions, &% denotes reward and y denotes the discounting factor.

States: The RL agents gets three observations from the simulation environment described in Section
3.1. Normalized versions of these observations act as input states for the RL agent. For a parcel P; intended
for destination Dy, let the set %; contains the chutes to which Dy is mapped in the planning phase. The
vector S(i,j) contains the three states for each pair (P;,C;) with C; € ;. The first state represents how
quickly can a parcel P, reach a chute C; € ;. Let 7;; denote the time-stamp by which parcel P; can reach
the entrance of chute C; for a chute C; € ¢}, and let T denote the entire wave duration. The first state is
represented as T;; = %

The second state CO(j,i) represents whether or not the chute C; in consideration will be able to
accommodate parcel P,. We use parcel and chute lengths to determine this. To this end, we assume that
parcels never enter a chute simultaneously, i.e., at no moment, are two parcels placed side-by-side inside
a chute, and that every chute is wide and high enough for any parcel to enter. In other words, if (¢;,b;,h;)
and (L i, Bj,H j) denote the dimensions of the P; and C;, respectively; then ¢; < L;, b; < B}, and h; < H; for
any parcel P; and chute C;. In SCs, typically all chutes have equal dimensions and hence the notation j is
dropped. The second state CA(i, j) is described by:

CO(j, ) +CON(j, ;) +4£; —CL(j, ;)
L )

where CO(j, ;) denotes the total length of parcels already inside C; at time 7;, CON(j, 7;) denotes the total
length of parcels that are on the conveyor ahead of P; and are already assigned to C; (i.e., they will enter
C; before T7;; or by the time P, reaches C;), and CL(j, 7;;) denotes the length of the parcels inside C; at T
that will be processed (and hence leave C;) by 7;;. The third state acts as a feedback signal from the 3-D
bin packing algorithm, (in this case BF). It contains a priority score for the chute C; € 4; which depends
on the state of bin (RC) open for the destination D;. The chute corresponding to the bin with the highest
fill-rate is given the highest rank and so on (with the caveat that the bin should be able to accommodate P,).
Actions: The action space of the RL agent comprises of the following: assign P; to a chute from %;.
If no such chute is found, then send the parcel to the rejection chute. A parcel is assigned to a chute only
if all feasibility conditions (described later) are satisfied and it has the highest Q-value among %;.
Rewards: The objective of RL —SORT is to maximize both 7, and 7,. Thus, there are no obvious
step rewards for RL — SORT. Hence, we provide a discounted version of the episodic terminal reward as
a proxy for step reward for each parcel. The total terminal reward R, for the episode is represented as:

Rier =w1-Ng+wa -1, (D

where 7, and 1, denote the sorting and bin-packing efficiency of the episode under consideration. To give
equal preference to both 7, and 1, we set w; = 0.7 and w, =1 in (1). These values are chosen since
average values of 1, and 1), are around 90 and 63 respectively. If P; denotes the ith arriving parcel (i.e.,
Py,...,P,_1 have arrived before it) that is assigned a chute C; € ¢; and N denotes the total number of parcels
for the episode, then R(i, j) = ¥¥ = % R,., with the discounting factor y = 0.99.

Neural Network Architecture: A neural network with experience replay is used to train the RL agent
and approximate the values Q(i, j) corresponding to each allowable chute-parcel pair (P;,C;) with C; € ;.
The neural network has a fully connected architecture with 1 input layer: 3 nodes, 1 output layer with
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one node, and 1 hidden layer with 4 nodes. The input and hidden layers have ReLu activation functions
whereas the output layer has a linear activation function. The network is trained using Tensorflow 2.5.0
in Python 3.8.3 with SGD optimizer with a learning rate of 0.01, a momentum of 0.9, a batch size of 64
samples and mean squared error (MSE) loss. The replay memory buffer is the collection of 50000 latest
samples from which 64 samples are collected randomly for training.

For a parcel P; intended for destination D, with allowable chute set %;, we first evaluate whether it is
possible to place P; in any of the open bins earmarked for Dy at the chutes in %;. If none of the open bins
can accommodate P, then the bin with the highest fill-rate is closed and replaced with an empty one. On
the other hand, suppose there is at least one bin that into which P, can be placed. In such a situation, we
deliberately mask those bins (and their corresponding chutes) which will not be able to accommodate P;
to increase 1. Let the set of such chutes by denoted as %,. We then compute the the values Q(i, j) for
every Cj € 6\ %,. The chute C, = AZMAX - cop O(i, j) is chosen greedily (using e-greedy) for allocation
to P. At this point, we verify whether the chosen C; is feasible for P; i.e., whether C; can accommodate
P, length-wise and process it before the end of the wave. If any of the conditions are violated, P; is sent
to the rejection chute. The RL training procedure is described formally in Algorithm 1.

Algorithm 1: RL Training

1 Initialize the neural network with weights ¢, batch size = 64, and replay buffer B
2 for episode = 1 to TotalNumEpisodes do

3 Randomly choose data instance from training set. Reset environment and get initial states.
4 Initialise parcel index, i = 0 and temporary replay buffer B;.

5 while i <= NumParcels do

6 i=i+1

7 Compute %; for parcel P; intended for Dy with dimensions (¢;,b;, h;)

8 if P, cannot be packed into any open bins for Dy at ¢; then

9 L Close the bin with maximum fill-rate and replace it with an empty bin

10 else

11 L Mask chutes C,, € G; whose bins cannot accommodate P;. Let CKAI be the set of such C,,,.
12 Calculate Q;(j)= ¢(S(i,/)) ¥V C; € €\ 6.

13 Choose C, € %\‘5: pair using &-greedy assignment.

14 if P; can be accommodated and processed at C, then

15 L Allocate C, to P.

16 else

17 L P, is rejected.

18 Calculate R;.,. Compute R(i,0) for each (P;,C,) assignment in the episode.

19 Add [S(i,0); R(i,0); Q(i,0)] for each (P;,C,) assignment to B;.
20 Add B, to B. Delete oldest entries in B if size exceeds buffer capacity.
21 Draw 3 = 64 samples from B and update ¢ by min. MSE loss between Q(i,0) & R(i,0).

We also created a variant of RL — SORT known as RL — ISO which solves the sorting assignment
problem in silo without feedback from the bin-packing algorithm. The main differences between RL — SORT
and RL — ISO are: the state vector S(i, j) contains only two states omitting the bin packing priority score;
dimension of the neural network (2,4, 1), actions regarding bin packing (lines 11 — 15 in Algorithm 1) are
not carried out, and Ry, and consequently, R(-,-) contains only 17, terms.
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4 EXPERIMENTS AND RESULTS
4.1 Training Data and Performance

We train RL — SORT using instances drawn randomly from a sample of 50 data-sets. The bin sizes are fixed
at (80cm x 45cm x 45c¢m). Each of these data-sets has 1004 parcels, directed to 10 destinations and to be
assigned to 5 chutes. These training data-sets have varying destination densities; i.e., parcels/destinations.
Some of them have nearly identical densities for destinations and others are skewed in favor of one or
multiple destinations. To balance exploration and exploitation and explore the whole action space, we
implement an €-greedy policy for RL —SORT with € exponentially decaying from 1 to 0.001 over 2000
episodes. The value of € dictates the probability of choosing a random action over C,. Here each episode
implies one complete sorting and bin packing operation; i.e., either all the parcels are sorted and packed
or Thax units of time have elapsed. Figure 3 captures the training performance RL — SORT and shows the
evolution of episodic rewards (MER, 1, and 1) and the MSE loss. Here MER is the mean episodic reward
which is calculated as the average of total rewards of every processed parcel in an episode. In the first,
second, and fourth subfigures of figure 3, the ensemble of green curves represent the reward components
(MER/n/n) for eleven different runs with random initialization seeds (i.e., the environment instances for
each run are chosen randomly from the pool). On the other hand ,the blue and red curves represent the mean
of all the different seeds and a moving average of the mean with a window of 100 episodes, respectively.
One can observe 7, and 7);, stabilize around 90% and 63%, respectively. For subsequent testing, the same
trained model parameters are used without refinement.

4.2 Test Data

To test the performance of RL —SORT and RL — ISO over baselines, we generate various data-sets with
varying load profiles, destination densities and scale:

e Varying Load Profiles: The data-sets contain parcels that are either uniformly (relatively identically)
or non-uniformly (skewed in favor of a few) distributed among destinations.

e Destination densities: The data-sets classified into three types with respect to average number of
parcels per destination: (a) 100; (b) 125; and (c) 150.

e Scale: Data-sets comprise of various scales starting from around small-scale 1000 parcels/wave to
large-scale 15,000 parcels/wave scenarios for waves of Ti,x = 2000 seconds.

The number of chutes and destinations is chosen so that most of the parcels can be packed. Small scale
data-sets may have 10 destinations/5 chutes; large-scale ones can have up to 150 destinations/75 chutes.

4.3 Baselines

To test the performance of joint optimization carried out by RL— SORT , we develop the following baselines:

e HEURSORT: This algorithm takes into account two priority scores: namely sorting priority Sc;,
and bin-packing priority Bc; for a chute C;. The score Sc; is generated taking into account the
time-stamp by which P; at C; will be processed if P; was assigned to C;. Lower time-stamps yield
higher S¢;. The score B, is generated (only for feasible chutes) using fill-rates of the bin (higher
fill-rates will have higher Bc;), only if the bin is able to accommodate F;. If the bin is not able to
do so, an empty bin will be used to generate Bc;. The chute C; € 4; with the highest combined
priority Sc; + Bc; is selected for F;’s assignment.

o JOINTSORT: This is an MILP-cum-heuristic based algorithm (variation of MPackLite (Ojha et al.
2021)) and works in conjunction with priority score Sc; for integrated sorting and bin-packing. The
objective function of MPackLite is changed to reflect the priority score Sc; (rather than first-fit)
with the added constraint that bins corresponding to infeasible chutes are not selected.
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Figure 3: Training performance of RL — SORT.

4.4 Joint vs Individual Optimization

Table 1 shows the results of individual vs joint optimization. Individual optimization is carried out using two
baselines: (a) OP — M P which first uses OPTSORT for sorting and then MPackLite for bin-packing based
on output from OPTSORT; and (b) RL —ISO + BF which uses RL —ISO for sorting followed by best-fit
(BF) for packing. Since, sorting happens before bin packing, we follow the same chronology in creating
these baselines. We use RL — SORT, JOINTSORT, and HEURSORT as baselines for joint optimization.
Each row represents the mean of 30 different data-sets. The MILP based baselines needed significantly
large computation times for larger loads and hence, these results are unavailable. The computation time/box
t. is calculated by dividing the total time required for chute assignment of all the boxes processed in a
wave by the total number of boxes processed. One can observe the following:

1. OP—MP and RL—ISO+ BF achieve higher 1, than JOINTSORT, RL— SORT, and HEURSORT .

2. A significantly higher bin fill-rate 7, is achieved by joint optimization algorithms JOINTSORT,

RL—SORT, and HEURSORT compared to OP — MP and RL —ISO + BF'.

RL — SORT achieves the highest 1, among all algorithms;

4. RL and heuristic based algorithms maintain a low ¢, and therefore, are amenable for deployment
in real-world systems for large-scale scenarios in contrast to MILP based algorithms.

98]

The first observation is primarily due to the chronology of process optimization (since sorting optimization
is done first, a higher 1, and lower 1, is achieved for individual vs joint baselines). On the other hand,
joint optimization remarkably increases the efficiency 7, (relative improvement of up to 60%) sacrificing
marginal sorting efficiency in the process (up to 10%). This clearly reduces the number of RCs and hence
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trucks/transportation costs. Similar trends have been observed using other versions of RL —SORT which
use other bin packing algorithms such as first-fit (FF) and MPackLite versus BF (the detailed tables are
omitted due to space constraints).

Since RL and heuristic based algorithms solve the chute assignment problem for each parcel individually
(dynamic allocation), they achieve a high computational speed (low 7.) in comparison to MILP based
algorithm OPTSORT which solves the chute assignment problem for the entire wave simultaneously (this
increases ., but also achieves higher 1),). Furthermore, 1, maxes out at around 64%. There are two primary
reasons for this: first, the bin packing problem under consideration is a completely online one with no
information about upcoming boxes and wide variations in box dimensions; and second, robotic packing
constraints which rule out reshuffling of boxes. Further details can be found in (Ojha et al. 2021).

Table 1: Performances of baselines on independent and joint optimization.

OP —-MP JOINTSORT RL—1SO+ BF RL —SORT HEURSORT

Scale Ns U Ns U Ns M I Ns M I Ns U I
1k | 98.95 | 37.66 | 97.74 | 55.38 | 97.86 | 43.96 | 0.02 94 60 0.06 | 929 | 59.8 | 0.06
2k | 98.85 | 36.28 | 98.42 | 54.65 | 97.71 | 44.25 | 0.03 | 94.81 | 60.68 | 0.07 | 90.73 | 60.67 | 0.07
3k | 98.84 | 37.15 | 98.05 | 55.05 | 97.46 | 44.29 | 0.04 | 94.46 | 61.18 | 0.08 | 93.62 | 60.35 | 0.08

5k - - - - 96.3 | 4424 | 0.06 | 93.15 | 60.97 | 0.11 | 92.95 | 60.05 | 0.1
10k - - - - 944 | 4423 | 0.05 | 91.46 | 61.92 | 0.13 | 87.11 | 61.91 | 0.11
15k - - - - 92.08 | 44.02 | 0.06 | 88.67 | 63.68 | 0.17 | 84.75 | 62.57 | 0.15

4.5 RL-SORT vs HEURSORT

Table 2 shows the performance comparison of RL — SORT and HEURSORT for various destination
densities and scale with uniform load profiles. The performances of both are comparable at small to
medium scale, while for large-scale data-sets RL — SORT outperforms HEURSORT significantly in terms
of sorting efficiency 1;. This is due to the fact that while RL — SORT uses multiple states to evaluate
chute assignments, HEURSORT only uses the processing time-stamp. Furthermore, RL — SORT clearly
outperforms HEURSORT when one considers the mean of all data-sets of any particular destination density
(irrespective of scale). Exactly similar results were observed for non-uniform load profiles.

Table 2: Performance comparison of RL —SORT and HEURSORT across uniform data-sets.

RL —SORT HEURSORT
Density (Parcel/Destn) | Scale Ns M t, Ns M te

5k | 93.37 | 61.56 | 0.06 | 92.78 | 60.29 | 0.06

100 10k | 91.5 | 60.58 | 0.06 | 83.95 | 60.82 | 0.06
15k | 88.57 | 60.43 | 0.07 | 82.37 | 60.87 | 0.07

mean | 91.15 | 60.86 | 0.06 | 86.37 | 60.66 | 0.06

S5k | 93.71 | 64.49 | 0.09 | 93.47 | 62.18 | 0.08

125 10k | 91.42 | 63.1 | 0.07 | 85.04 | 63.46 | 0.06
15k | 89.04 | 63.15 | 0.06 | 83.81 | 63.23 | 0.06

mean | 91.39 | 63.58 | 0.07 | 87.44 | 62.96 | 0.07

5k 939 | 6681 | 0.1 | 94.58 | 63.69 | 0.08

150 10k | 89.93 | 64.85 | 0.08 | 84.66 | 65.02 | 0.07
15k | 89.08 | 65.31 | 0.08 | 84.73 | 65.12 | 0.07

mean | 90.97 | 65.66 | 0.09 | 87.99 | 64.61 | 0.07
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4.6 Chute Overloading

Table 3 shows the comparison of RL —SORT and HEURSORT for situations where chute(s) are overloaded;
i.e., multiple parcels arrive for a chute(s) in quick succession, thereby resulting in higher rates of rejection.
The data-sets are classified in three categories depending on when overloading happens (beginning, middle,
or end of the wave). RL — SORT outperforms HEURSORT in terms of both the efficiencies.

Table 3: Performance comparison of RL —SORT and HEURSORT in situations involving chute overloading.

RL —SORT HEURSORT
Scale | cat Ns Ul Ms M
I | 79.88 | 58.96 | 76.83 | 59.1
5k II | 81.08 | 59.85 | 77.81 | 59.47
I | 81.66 | 60.84 | 77.19 | 60.68
I | 73.03 | 61.16 | 67.76 | 60.74
10k | II | 75.02 | 61.8 | 70.44 | 61.42
I | 74.78 | 63.27 | 68.69 | 62.46

S CONCLUSIONS

In this paper, we studied and formulated a scalable deep RL based algorithm RL — SORT for joint optimization
of two NP-hard processes in an automated SC. Through experimentation, we demonstrated that RL — SORT
is able to reduce transportation costs and improve SC throughput while maintaining a low computational
burden. This makes RL — SORT especially useful for deployment in real-world situations. The future work
involve expanding the ambit of RL —SORT to include scheduling and routing of vehicles to solve the
integrated logistics problem; and increase its robustness against real-time uncertainties and variations.
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