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ABSTRACT

The industrial sector is going through a digital transformation with a high emphasis on Artificial Intelligence-
driven operations. In this transformation, the combination between simulation and machine learning has
been a key enhancer to provide state-of-the-art solutions to complex systems by training algorithms over
virtual representations of industry. In recent years, Reinforcement Learning (RL) has gained traction in
this field and shown success in solving sequential decision-making problems. The purpose of this paper is
to show how to implement simulation-based Reinforcement Learning. The proposed framework integrates
Simio, as a discrete-event simulation environment, and Python, to include the RL algorithm. To demonstrate
the applicability of this framework, a job-shop scheduling problem under different scenarios is tested and
its results are compared with benchmark heuristic dispatching rules.

1 INTRODUCTION

Today, one of the prevalent technologies is Digital Twin (DT), which is a replica of a real-world system.
The DT creates an identical, and virtual version of a product, service, or process informed by real-life data.
It enables enterprises to simulate and configure their system without disrupting the real-world environment.
Due to its promises and the agility it offers, DT is positioned as one of the top 5 strategic technology
trends for 2021 and 65 percent of executives expect their organization’s investment in the intelligent DT
to increase over the next three years (Accenture 2020).

Simulation software packages are widely accepted tools to implement DT. Although these packages can
capture the dynamics of business processes in detail, they fail to utilize Artificial Intelligence (Al) to its’
full potential and process the data to reveal actionable insights. In addition, applying Al to the simulation
packages requires different skill sets with expert knowledge which is challenging for many enterprises.

Therefore, itis essential to equip the existing DT platforms with advanced analytical solutions empowered
by Al to make systems autonomous. The two technologies effectively capture systems’ complexities and
leverage data analytics to support enterprises to gain operational excellence.

This can be achieved by developing a practical and user-friendly implementation of Al with the simulation
environment to support DT. Such a platform requires to seamlessly connect a simulation environment with
an Al model to i) train and test the best Al practices for their systems, ii) transform large quantities of data
into meaningful insights, and iii) recommend the best plan for future challenges.

An area of Al that has been gaining traction on DT related problems is Reinforcement Learning (RL).
This machine learning family of algorithms consist of an agent learning to take the best actions to achieve
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a goal in an uncertain, potentially complex environment. This is a technique that particularly works well
with simulation as it requires large number of trials-and-errors to train.

This paper provides a showcase on how to integrate an RL agent with a Discrete Event Simulation
(DES) environment. This integration uses Simio software package with a Python coded agent that learns
to prioritize jobs in a job-shop problem. To complete this, an API is developed to seamlessly transfer
data between Python and Simio in both directions. In addition, multiple test scenarios are conducted to
analyse different problem sizes, and two different RL agents Q-Learning and Double Deep Q-Learning
Networks(DDQN) are showcased. The experimental results indicate how an RL agent can learn the dynamics
of the model and obtain a policy to optimally make decisions.

The rest of the paper is organized as follows: Section 2 provides an overview of applications and
evolution of RL in conjunction with simulation; Section 3 provides the framework for the environment
and agents algorithms; Section 4 shows the results of the experiments and compares their performance to
benchmark heuristic dispatching rules. This paper is concluded in section 5 by providing a summary of
work done and possibilities in the future.

2 LITERATURE REVIEW

There is a strong body of literature that discusses a variety of simulation optimization approaches. In
recent years, the increasing popularity of machine learning (ML) methods triggered many developments
and have opened a new avenue of research in the filed. As a key methodology of Al, ML is a preferred
approach to solving large-scale data analysis. Therefore, ML is a perfect fit for simulation environments
where an abundance of high-quality data is generated. Since this paper emphasizes using RL, a brief review
of existing simulation papers that apply this ML method is provided below.

2.1 An overview of Reinforcement Learning

RL is a concept evolved from work done by Rich Sutton and Andy Barto in the 1980’s (Powell 2019).
However, its foundation comes from Markov Decision Process (MDPs) dated back in the 1950s. The
inspiration for its development came from solving the problem of a mouse exploring a maze (Powell 2019).
Furthermore, this field attracted significant attention when in 2016 it was credited with solving the Chinese
game of Go using AlphaGo, the first system to beat world-class players (Powell 2019).

The main idea behind RL is to capture the most important aspects of the problem facing an agent
interacting with its environment to achieve a goal (maximize a reward) (S. Sutton and G. Barto 2014). The
agent’s goal is to push the boundaries of what is currently possible through learning the optimal mapping of
situations to actions through trial-and-error (Nian et al. 2020). The two major components of an RL model
are (i) agent and (ii) environment that interact using actions, observations, and rewards. By interacting with
the environment, an agent can take an action and receive the next observed states and its corresponding
reward (2.2). After trying a variety of actions, the agent can progressively favor those that appear to be
best (S. Sutton and G. Barto 2014) and learn the optimal policy.

In recent years, there has been an increasing interest in RL driven by its successful applications. One of
the main developments was in 2013, when Mnih et al. introduced the deep Q-learning (DQN) framework
(Mnih et al. 2013). They introduced a combination of Deep Learning and RL (DRL) to play seven Atari
games from raw image pixels. Their model was able to achieve human player-like performance and even
surpass them in three of the games tested.

In its early years, there were few RL use-cases in industrial or commercial settings compared to the
ones of video games (Gros et al. 2020). Due to its success, RL is now becoming one of the promising
Machine Learning approaches to address real-life problems in multiple industries such as healthcare (Yu
et al. 2019), manufacturing (Nian et al. 2020), supply chain (Barat et al. 2019), among many.

In the healthcare domain, RL is being used to develop effective treatment regimes that can dynamically
adapt to the varying clinical states and improve the long-term benefits of patients, called Dynamic Treatment
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Regimes. RL is capable of achieving time-dependent decisions on the best treatment for each patient at
each decision time, thus accounting for heterogeneity across patients (Yu et al. 2019).

RL has also demonstrated success in the process control area. In 2018, a cooling system for a Data
Center control policy was modeled using DRL framework, leading to an 11% cooling cost saving on the
simulation platform compared with a manually configured baseline control algorithm (Li et al. 2020).

Another application that has shown promise is supply chain management. In 2019, Barat et al. proposed
a framework with an RL controller integrated with an actor-based simulation of a grocery retailer networked
system, in order to enable deployment of the RL agent in the real system with minimal live operation
experimentation (Barat et al. 2019). The objective of the model was to optimally regulate the availability
of the entire product range in each store at all times, subject to the Spatio-temporal constraints imposed
by available stocks, labor capacity, truck capacity, transportation times, and available shelf space for each
product in each store. They concluded that this option is computationally feasible and effective compared
to traditional approaches (Barat et al. 2019).

2.2 Importance of Simulation for RL

To effectively train an RL model, the agent needs to receive an abundance of trials and errors from the
environment. To overcome this problem, simulation becomes a cost-effective and risk-free alternative
that can be directly transferable to the real process (Figure 2.2). As an example, DRL with simulated
environments has been used for room-navigating robot policy training with successful deployment to the
real robot (Tai et al. 2017). It helps in the process of first training the RL agent in a process simulator
to obtain general knowledge of the process (Nian et al. 2020). DRL has already demonstrated to perform
well in real-time decision making in car manufacturing process (Gros et al. 2020). This work combined
a simulation model with DRL algorithms and found this model to be performing extremely well and the
resulting strategies provide near-optimal decisions in real-time, while alternative approaches were either
slow or with poor quality strategies (Gros et al. 2020).

SIMULATOR

Figure 1: Reinforcement Learning with a simulated process framework.

Simpy is an open-source package for process-based DES available in Python available since 2002 and
widely used for simulation modeling. In the Supply Chain industry, it has been used for complex tasks
such as routing and schedule simulation (Pinho et al. 2020). In the telecommunications industry, Simpy
has been leveraged to build an event-driven simulator to perform small and large scale simulations on
architectures such as Cloud-Fog Radio Access Network (CF-RAN) used to decide the best architecture for
energy-efficient access networks to mobile users in the upcoming 5G technology (Tinini et al. 2020).

2821



Devanga, Diaz Badilla, and Dehghanimohammadabadi

Another example of an open-source Python-based library is OR-Gym (Hubbs et al. 2020), which
provides RL environments consisting of classic operations research and optimization problems. From
the experiments by Gros et al., RL approach outperforms the benchmark in many of the more complex
environments where uncertainty plays a significant role. Such platforms would ensure accessibility of RL
to solve industrial optimization problems where models do not exist or are too expensive to compute online
(Gros et al. 2020).

Inrecent years, commercial software packages have been bridging simulation features with RL. Pathmind
is a SaaS platform that provides RL modeling with simulation leveraging AnyLogic simulation software.
One use case provided is a coffee shop simulation built to train a barista to make correct operational
decisions and improve efficiency that directly affects customer service time (Farhan et al. 2020). There
have also been advancements in making RL available without the need for coding. This is because of the
fact that simulation model developers may lack expertise in the software tools and coding abilities needed
for the development of Machine Learning algorithms from scratch (Greasley 2020). The authors developed
a DES that incorporates the use of an RL algorithm to determine an approximate best route for robots in
a factory moving from one physical location to another whilst avoiding collisions with fixed barriers. The
study showed how the object modeling and graphical facilities of the Simio commercial software package
enable an RL capability without the need to use program code or require an interface with external RL
software (Greasley 2020).

Although many studies such as (Peyman et al. 2021) and (Kabadayi and Dehghanimohammadabadi
2022) tried to integrate DES models with optimizers to perform simulation-optimization, there is a lack
of successful RL implementation. This paper also contributes to the literature by demonstrating how to
connect an open-source coding language such as Python, to a DES model. This work will create a new
avenue of research to apply multiple RL agent settings and libraries. In addition, the DES package can
model any system to its details and enable the RL agent to provide accurate actionable insights.

3 REINFORCEMENT LEARNING FRAMEWORK

The proposed simulation-based RL model in this study is an integration of Simio, a commercial off-the-
shelf (COTS) software package, and Python, an open-source programming language. To implement this
connection, an API is coded in C# to enable the RL agent in Python easily interact with its simulated
environment built in Simio. Using this connection, the RL agent can perform actions in steps and receive
the corresponding rewards from the simulation model. The interaction continues in a recursive manner
until the RL agent gradually completes its training and converges to an optimal policy.
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SIMULATOR RL
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System

Figure 2: Simio-Python Integration.
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It needs to be noted that the study represents a proof-of-concept to demonstrate how to implement a
simulation-based RL in Simio. Therefore, the developed simulation examples discussed below are simplified
to enable readers to focus on this integration feasibility and get practical insights. In addition, the developed
framework is independent of the simulation complexity and the RL agent algorithm. Depending on the
users’ needs, the simulation can include any kind of architecture to represent a process in real-life. In a
similar way, the applied RL algorithm can be adjusted in Python based on tabular or function approximation
methods.

3.1 Simulation Environment

The simulation model is a job scheduling problem that includes a single machine with multiple jobs with
different characteristics. Figure 3 shows the simulated environment built in Simio. There are 30 jobs to
be processed each with its unique arrival time, processing time, and setup time (see Table 1). The goal is
to train an RL agent that can learn how to prioritize the jobs based on their characteristics (features) and
optimize the long-term reward. In this case, the objective is set to minimize the average time in the system
after processing all jobs.

K
e
=
Server1 T
~ B

Figure 3: Simulation model in Simio.

Table 1: Simulation model distributions.

Characteristics | Distributions/Pattern
Arrival | Arrival Table
Processing Time | Normal(l,o)
Setup Time | Normal(u,o)
Due Date | Deterministic

3.2 RL Agents

The RL agents are the algorithms which train on the simulation and learn to optimise the required parameters.
It has multiple implementations. The ones used here are Q-Learning and DDQN.

3.2.1 Q-learning

Q-learning (QL) is one of the most popular RL algorithms. It is a model-free algorithm that learns the
value of an action in a particular state. It provides agents with the capability of learning to act optimally in
Markovian domains by experiencing the consequences of actions, without requiring them to build maps of
the domains (Watkins and Dayan 1992). Q refers to the function of RL that calculates the expected rewards
for an action taken in a given state. Each Q-table value will be the maximum expected future reward that
the agent will get if it takes that action at that state. By trying all actions in all states repeatedly, it learns
which are best overall, judged by long-term discounted reward (Watkins and Dayan 1992). The steps of
the algorithm are shown in Algorithm 1.
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Algorithm 1 : Q-learning (off-policy TD control) for estimating Policy Values.

Algorithm parameters: step size o € (0, 1], small € >0
Initialize Q(s,a), for all s € .1, a € o/ (s), arbitrarily except that Q(terminal,-) =0
1: for episode do

2 Initialize S

3 for step of episode do

4 Choose A from S using policy derived from Q (e.g., e-greedy)
5 Take action A, observe R, S’

6: 0(S,A) + O(S,A) + a[R+ ymax, Q(S',a) — Q(S,A)]

7: S« S

8 end for

9: end for

3.2.2 Double Deep Q Networks (DDQN)

DDQN is an algorithm that leverages deep learning by using two neural networks to approximate Q-learning
function. Q-learning algorithm is known to overestimate action values under certain conditions. The idea
of Double Q-learning is to reduce over-estimations by decomposing the max operation in the target into
action selection and action evaluation. Although not fully decoupled, the target network in the Deep Q
Network (DQN) architecture provides a natural candidate for the second value function, without having to
introduce additional networks (Hasselt et al. 2016). The steps of the process are shown in algorithm 2.

Algorithm 2 : Double Deep Q-learning Network (DDQN).
1: Initialize Q4,05 s
2: repeat
3: Choose a,based on Q*(s,-)andQP®(s,-),observer,s

4: Choose (e.g. random) either UPDATE(A) or UPDATE(B)
5: if UPDATE(A) then
6: Define a* = argmax,Q"(s',a)
7: QA (s,a) + Q(s,a) + A(s,a)(r+yQB(s',a*) — Q(s,a))
8: else if UPDATE(B) then
9: Define b* = argmax,Q®(s',a)
10: 0%(s,a) + QP(s,a) + A(s,a)(r+yQ*(s/,0*) — 0% (s,a))
11: end if
12: s s

13: until End

3.3 Simio Python API

To transfer data between Python and Simio, an API was developed so that it can communicate between
the simulation environment and the RL agent. There are two versions of this API. One which can call a
Python function (in this case, RL algorithm) from Simio (CallPython API, a user-defined step), and the
other calls Simio from Python (CallSimio API). Both these APIs have advantages and disadvantages when
it comes to using them for RL.

All results showcased in this paper use CallPython API which is embedded in the model as a user-defined
step in Simio and set inside the processes of the model. This is what calls the RL agent written in Python
to choose the priority value of that job. The experiment is set to run the model for the expected number
of iterations of training. The APIs are written in C# as Simio itself is a standalone C# application.
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4 EXPERIMENTATION AND RESULTS

To evaluate the performance of the developed model, multiple scenarios are conducted to understand how
the RL agent performs under different conditions. The following section elaborates on experiments and
the obtained results.

4.1 Base model

The base model for this work consists of 4 possible actions, or priorities in this context, to be taken by the
agent. This can be an integer value between 1 to 4 that represents the priority in the queue. Therefore, jobs
get processed by the server based on the priority they received by the RL agent. The reward function is
focused on minimizing the average time in the system (cycle time) which was translated to a maximization
for the RL agent as shown in equation (1).

R(i) = CTper —CT (i), Viel (1)

where CT,,,, is an estimated worst cycle time that the model can take, and CT (i) represents the achieved
cycle time by the end of episode i. In every episode, agent updates its policy, and the simulation model is
executed to observe its corresponding reward (R;). On the base model, the reward is determined at the end
of each episode and no intermediate reward is considered between action steps (Rynt = 0). I represents
number of all Jobs.

Since both Q-Learning and DDQN are off-policy Learning Algorithms, they benefit from exploration.
This means that they learn to estimate good decisions by looking at bad decisions as well. Therefore we
implemented the epsilon greedy algorithm.

Figure 4 shows how epsilon decay was defined for both models over the 800 episodes run. For the first
200 episodes, the agent is set to fully explore the environment. After that, the exploration and exploitation
decision process for Q-learning and DDQN differs in the sense that Q-learning’s epsilon is set to decay
after that until reaching zero and on the other hand, DDQN would not reach zero and around episode 450
it stays at a value of approximately 0.1.

£ QL
A\ DDQN

0 100 200 300 400 500 600 700 800
Episode

Figure 4: Epsilon decay for base model with 4 actions.

The results are shown in Figure 5 where algorithms are performing similarly and converging on a final
value of around 18 hours for cycle time. A slight difference between the models is due to the fact that
Q-learning took the average over the whole list of cycle times, but DDQN used the average cycle time
from the first 200 episodes only.

4.2 Problem complexity

In this section, the action space of the problem is modified for two new experiments where the number of
discrete actions are increased. The objective is to demonstrate how the problem can be scale to a wider
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Figure 5: Training results of base model with 4 actions.

range of actions to be taken. For this, two new experiments are introduced: Q-learning with 4 and 6 actions
and DDQN with 4, 6, and 10 actions. Q-learning was not explored for the largest set of actions as it
becomes too computationally expensive.

Figure 6 shows Q-learning 4 and 6 actions are performing similar. In the case of DDQN, when
increasing to 10 actions, the model becomes less stable and is not converging over the 800 episodes.
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Figure 6: Cycle time for training data by number of actions.

4.3 Reward function modification

To provide more information to the agent, a modified version of the previous reward function was implemented
for both Q-learning and DDQN as well as tested with different number of actions. Initially, the reward was
set to O for each step when the job was assigned a priority value. The final reward was explained above

in equation 1. Instead we pressurise the agent to learn quickly by providing a feedback in every step. The
implementation is shown in equation (2).

Rine(i.J) = ~[(PTax/na) x pr(j) —PT()]2, Vi€l )

where R;; (i, j) represents the intermediate reward for step j on episode i, PT,,, indicates the estimated
maximum processing time for all jobs, n, is for number of possible actions, pr(j) represents the priority
of job j (step j), and PT(j) corresponds to the processing time of job j.

Having feedback between each step helps the agent learn quicker. It also gets a large amount of data
feeded into it which can be used to implement multi-objective optimisation too.
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The results of this change can be seen in Figure 7, where initial reward function (R1) and new reward
function (R2) are compared. In all experiments, the reward function with intermediate knowledge is always
far more superior than the initial reward. It also shows that for our largest set of actions, it can learn and
return the best results for cycle time with a final value of approximately 15 hours.
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Figure 7: Cycle time for training data with different reward functions.

4.4 Evaluation

In this section, the results obtained are compared to First-In-First-Out (FIFO) and Shortest Setup-and-
Processing-Time (SSPT) dispatching rules. SSPT was considered as it has shown to be a good performing
heuristic method for job-shop scheduling (Dehghanimohammadabadi 2016). The best performing RL agent
is a DDQN trained with 10 actions (10 possible priority values). This agent is tested on 3 different test
datasets and the results are shown in Figure 8.

The agent outperforms FIFO by a great margin. Its performance can be compared to SSPT in most
cases. If trained with more precisely tuned parameters and longer episodes, the agent can outperform SSPT
as well. Evidence for this is seen in the training dataset where it already slightly outperforms SSPT.
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Figure 8: Evaluation of Trained agent over test datasets

5 CONCLUSIONS

In certain scenarios, simulation models need to be empowered with external environments to support
advanced calculation, optimization, or evaluation (Dehghanimohammadabadi and Keyser 2017). This
highlights the importance of intelligent simulation modeling, where a DES platform is connected with a
powerful programming language such as R, Python, or MATLAB. Due to the ongoing growth of machine
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learning techniques and optimization algorithms, this combination becomes even more necessary than ever.
However, there is a lack of tutorials on how to efficiently combine simulation software with data science
programming languages such as Python.

Python is widely used to solve statistical and scientific problems. Combining simulation software
with Python will provide enormous advantages for experimentation, optimization, results analysis, and
professional data visualization. Additionally, it is an open-source language supplemented with multiple
libraries for scientific computing, machine learning, optimization, data science, and big data.

The objective of this paper was to showcase the possibilities of combining RL with DDES and using
it for self-healing Digital Twin models. In a series of experiments it is shown that a trained agent combats
most situations and also continues to learn. This means that the decisions made by the agent will change
over time as it evolves further. It also has the advantage of looking at scenarios objectively and so it can
identify ways to optimize the operation in ways unknown.

This work can be extended in many ways:

e Simulation Model complexity: include simulation model with complex operation with an RL
agent facilitate actions on the models. The area of applications could be in a supply chain where
the agent determines the replenishment policy of the network, a warehouse model where robots
are routed by RL, or a manufacturing setting where all servers are controlled by a centralized RL
agent.

e Advanced RL agents: This paper can be further advanced by considering multiple RL algorithms
especially those with capabilities to deal with continuous action space. The current work considers
a limited number of actions, 4, 6, and 10 whereas, in reality, the number of jobs and actions
is enormous. Therefore, combining simulation with advanced RL algorithms such as Soft-Actor
Critique (SAC) models allows the model to solve problems with continuous action-space.

o Data-driven model: A successful implementation of Digital Twin requires a data-driven simulation
model that is connected to a stream of data from data sources such as ERP systems. From a practical
point of view, combining such a data-driven simulation with RL algorithms can help the system to
get actionable insights in real-time.
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