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ABSTRACT

We consider a fixed budget ranking and selection problem with input uncertainty, where unknown input
distributions can be estimated using input data arriving in batches of varying sizes over time. Each time a
batch arrives, the input distribution is updated and additional simulations can be run with a given simulation
budget. Within each time stage, we apply the large deviations theory to compute the rate function of
the probability of false selection (PFS) with input distribution and formulate an optimization problem to
maximize the decay rate of PFS. With the derived optimality condition, we design a dynamic optimal
budget allocation procedure with sequentially updated input distributions under streaming input data. We
prove the consistency and asymptotic optimality of the procedure, and numerically show the high efficiency
of our procedure compared to the equal allocation rule and a simple extension of the Optimal Computing
Budget Allocation (OCBA) algorithm.

1 INTRODUCTION

Ranking and Selection (R&S) studies the problem of identifying the best among a finite number of designs,
whose performance are unknown and need to be estimated through statistical simulation. In this paper, we
restrict the performance measure to the mean performance. Two most common settings of R&S are fixed
budget and fixed confidence. In the fixed budget setting, the goal is to achieve a probability of correct
selection (PCS) as high as possible with a given simulation budget; whereas in the fixed confidence setting,
the goal is to achieve a pre-specified PCS using the least possible amount of simulation effort.

For the fixed budget setting, one of the well-known methods, called optimal computing budget allocation
(OCBA), was first developed in Chen et al. (2000) under the assumption of normal simulation uncertainty
(SU). Later Glynn and Juneja (2004) applied the large deviations technique to maximize the convergence
rate of the probability of false selection (PFS) for general distributions beyond normal. Moreover, various
extensions of OCBA have been studied in the past years. For example, Chen et al. (2008) and Gao and
Chen (2015) extended OCBA framework to optimal subset selection; Gao et al. (2019), Jin et al. (2019)
and Cakmak et al. (2022) extended the OCBA to study R&S with covariates. Other well-known fixed
budget R&S procedures include the expected value of information (EVI) approach proposed by Chick and
Inoue (2001) and the knowledge-gradient (KG) approach proposed by Frazier et al. (2009), where EVI
is derived by asympototically minimizing a bound of the expected loss and KG determines the optimal
sampling allocation policy by maximizing the acquisition function. For the fixed confidence setting, the
indifference-zone (IZ) framework aims to select a design within δ difference from the best design with a
pre-specified confidence level. The Rinott’s Procedure proposed by Rinott (1978), the NSGS procedure
proposed by Nelson et al. (2001), and the KN procedure proposed by Kim and Nelson (2001) fall into the
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IZ framework. More recently, Fan et al. (2016) proposed an IZ-free procedure for fixed confidence R&S.
For a more comprehensive overview of R&S works, we refer the interested reader to Hong et al. (2021).

In the aforementioned R&S works, design performance is estimated via simulation with a fixed known
input distribution. However, the input distribution is seldom known in practice and often estimated from
data. The uncertainty of the estimated input distribution is often referred to as the ”input uncertainty (IU)”.
There is a sophisticated literature on quantifying the impact of IU on simulation output, and we refer the
reader to Corlu et al. (2020) for a recent review. Despite the extensive study on IU quantification, R&S
with input uncertainty has only been studied in recent years. For example, Corlu and Biller (2013), Corlu
and Biller (2015) develop procedures which return a subset of superior designs with desired confidence,
where the size of the subset depends on the simulation budget as well as the impact of IU; Gao et al. (2017)
considers a robust approach to deal with IU, where the authors assume a finite number of parametrized
input distributions and select one design with the best worst-case performance; Kim et al. (2021) also
takes a robust approach but with a different robust optimality criteria called the most probable best, which
selects the design with the largest posterior probability of being the best given the real-world data; Song and
Nelson (2019) derives asymptotically valid concentration bounds to account for both IU and SU with the
assumption that simulation budget goes to infinity as the number of input data goes to infinity. Wu and Zhou
(2017) and Xu et al. (2020) take a different perspective and formulates the R&S with input uncertainty as
an budget allocation problem, which allocates the computing budget to balance input distribution estimation
and performance estimation.

In many real applications, input data come sequentially over time and hence are referred to as streaming
input data. They create a unique opportunity as well as challenges for simulation: the input distribution
estimate can be updated with the new coming input data over time to improve the estimation accuracy, but
the simulation outputs are generated under different input distributions and become correlated over time.
Regardless of the challenges, Zhou and Liu (2018) and Liu and Zhou (2019) studied IU quantification in
this setting of streaming input data, and Song and Shanbhag (2019), Liu et al. (2021), and Liu et al. (2022)
studied continuous simulation optimization with streaming input data. In the area of R&S, Wu and Zhou
(2019) and Wu et al. (2022) are the first to consider streaming input data in the fixed confidence setting
and design a data-driven approach that aggregates simulation outputs under past input distributions with a
moving average over time.

In this paper, we also consider streaming input data in R&S, but instead focus on the fixed budget
setting. Specifically, we extend the result in Glynn and Juneja (2004) to apply large deviations theory to
compute the rate function of a performance estimator with input distribution. There is a large body of work
extending this large deviations approach. For example, Chen and Ryzhov (2019) designed a fully sequential
R&S algorithm for general distributions using the optimality conditions as in Glynn and Juneja (2004);
Pasupathy et al. (2014) applied large deviations theory to constrained R&S; Gao et al. (2019) extended
the large deviations approach to contextual R&S. We formulate the optimization problem of allocating the
simulation budget to all design-input pairs to maximize the decay rate of PFS and derive the necessary and
sufficient optimality condition for this optimization problem. Based on the optimality condition, we design
a data-driven and fully sequential computing budget allocation procedure, named OCBA-SID, that aims
to satisfy the optimality condition asymptotically. We prove the consistency and asymptotic optimality of
OCBA-SID and carry out numerical experiments to show the efficiency of the procedure by comparing
with the equal allocation rule and a simple extension of OCBA for the streaming data setting.

2 PROBLEM STATEMENT

We consider the fixed budget R&S problem, where the input distribution is estimated through streaming
data that arrive sequentially over time. Suppose we have a set of finite number of designs I = {1,2, · · · ,K}.
Denote by ζ the input random variable, which is common for all designs. Let Xi(ζ ) denote the simulation
outcome of design i conditioned on ζ . We assume Xi has the following form:

Xi(ζ ) = µi(ζ )+ εi(ζ ),
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Figure 1: Illustration of budget allocation with streaming input data.

where µi is the expected performance of design i conditioned on ζ , and εi(ζ ) is the simulation error.
Denote by µ̄i = E [E [Xi(ζ )]] = E [µi(ζ )], the expected performance of design i. Our goal is to select the
design with largest expected performance. Specifically, we want to find design b (for best) such that

b = arg max
1≤i≤K

µ̄i.

The underlying input distribution is estimated via given data from the real world and such input data come
in a streaming fashion. Specifically, when beginning the simulation experiment, we may only have a rough
estimation of the input distribution. At time stage t, new input data of batch size m(t) can be obtained and
used to update the estimate of the input distribution. In particular, the input distribution can be estimated
by the empirical distribution consisting of the observed data. Then we allocate simulation budget n(t) to
design-input pairs to maximize the PCS with respect to the current estimated input distribution. We assume
both n(t) and m(t) are given. This process is illustrated in Figure 1. We make the following assumptions
on the input distribution and simulation output.
Assumption 1

1. The true (unknown) input distribution Fζ has a finite support {ζ1,ζ2, · · · ,ζB}, with probability mass
function (pmf) P(ζ = ζ j) = p j, j = 1, . . . ,B.

2. The simulation error εi, j = εi(ζ j) follows a normal distribution N(0,σ2
i, j) where the variance is

known.
3. The optimal expected performance µ̄b is unique.
4. Denote by Xi, j = Xi(ζ j) and X (l)

i, j the lth replication for Xi, j. The simulation output {X (l)
i, j } are

independent for all i, j and l.

Assumption 1.1 can be viewed as a discretized approximation of a general input distribution. The
latter three assumptions are common in R&S literature. Denote by µi, j = µi(ζ j). Furthermore, we make
the following assumption on the input data.
Assumption 2 {ξs}∞

s=1 are identically and independently distributed.
With Assumption 1.1 and 2, at each stage t the input distribution can be estimated by updating the

empirical pmf, denoted by {p(t)j }B
j=1, where p(t)j = ∑

M(t)
s=1 1{ξs=ζ j}

M(t) and M(t) = ∑
t
τ=1 m(τ). We then allocate

the simulation budget of the current stage, n(t), to design-input pairs. It is worth noting that one can
choose a specific input realization to run simulation in finding the best design, while for implementation
the input distribution is given to the decision maker. To find the budget allocation rule for each stage,
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we apply the large deviations theory to formulate an optimization problem under the current estimated
input distribution and characterize its optimality condition to derive the optimal budget allocation rule.
These will be presented in Section 3 and 4 below. Based on the stage-wise budget allocation rule, the
desired data-driven procedure under streaming input data will be presented in Section 5, and its convergence
properties will be analyzed in Section 6.

3 STAGE-WISE OPTIMAL BUDGET ALLOCATION PROBLEM

We first formulate and solve a static optimal budget allocation problem for each stage under the current
estimated input distribution. Let ni, j denote the simulation budget allocated to design i under input
realization ζ j. Denote by ˆ̄µi(ni) = ∑

B
j=1 p(t)j µ̂i, j(ni, j) the estimated performance, where ni = (ni,1, . . . ,ni,B)

⊺

and µ̂i, j(ni, j) =
1

ni, j
∑

ni, j
s=1 X (s)

i, j . Let ib = argmax1≤i≤K ˆ̄µi(ni) be the selected best design under policy {ni, j}.
Then we are interested in the following optimization problem.

max
ni, j,1≤i≤K,1≤ j≤B

PCS = P(ib = b)

s.t.
K

∑
i=1

B

∑
j=1

ni, j = n.

ni, j ≥ 0 ∀i, j.

(1)

When IU is not considered (i.e., ni, j is simplified as ni, and ib = argmaxi 1/ni ∑
ni
s=1 X (s)

i ), Glynn and
Juneja (2004) applied the large deviations theory to study the optimization problem (1) by replacing the
objective function with the large deviations rate (LDR) of PFS. We extend this approach to the IU setting
by computing the LDR of the aggregated sample mean ˆ̄µi(ni).

3.1 Large Deviations Rate Formulation

Recall that µ̄i is the true expected performance that we want to estimate. Without loss of generality, assume
that µ̄1 > µ̄2 ≥ ·· · ≥ µ̄K . Hence, the true best design b = 1. Consider an allocation policy that allocates
αi, j proportion of the total simulation budget n to the design i under input realization ζ j, where αi, j > 0,
1 ≤ i ≤ K,1 ≤ j ≤ B and ∑

K
i=1 ∑

B
j=1 αi, j = 1. For derivation of the procedure, here we ignore the minor

issue that αi, jn is not an integer. Let αi = (αi1,αi2, · · · ,αiB)
⊺. Denote by ˆ̄µi(αi,n) = ∑

B
j=1 p j µ̂i(αi, jn) the

estimate of µ̄i, where µ̂i(αi, jn) is the sample mean of Xi(ζ j) with sample size αi, jn. Notice here we use
the true input distribution p j rather than p(t)j for derivation purpose, and hence the randomness in ˆ̄µi(αi, jn)
only comes from simulation output.

According to (Glynn and Juneja 2004), define the rate function of event

Gi(α1,αi) =− lim
n→∞

1
n

logP
(

ˆ̄µ1(α1,n)≤ ˆ̄µi(αi,n)
)

for all i≥ 2. min2≤i≤K Gi(α1,αi) is the asymptotically exponential decay rate of PFS when given the allocation
rule α = (αi, j)1≤i≤K,1≤ j≤B. Replacing the objective of PCS with this rate function, the optimization problem
(1) becomes

max
αi, j,1≤i≤K,1≤ j≤B

z

s.t. Gi(α1,αi)− z≥ 0 2≤ i≤ K
K

∑
i=1

B

∑
j=1

αi, j = 1

αi, j ≥ 0 1≤ i≤ K,1≤ j ≤ B.

(2)
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To solve the optimization problem (2), we need to compute the rate function Gi(α1,αi). Without input
uncertainty, this is well studied in Glynn and Juneja (2004). Here, with input uncertainty we have a more
complicated structure that each Gi has 2∗B variables rather than 2 as in Glynn and Juneja (2004). Although
we cannot directly apply their result here, with the normal assumption of the simulation error, we can
compute the rate function in a similar way using the Gartner-Ellis Theorem (see Dembo et al. (1994)).

3.2 Calculation of the Rate Function

Let’s calculate Gi(α1,αi) explicitly. For a fixed i, denote by Λi, j(·) the log-moment generating function of
Xi, j and Λn(·, ·) the log-moment generating function of Zn = ( ˆ̄µ1(α1,n), ˆ̄µi(αi,n)). Then

1
n

Λn(nλ1,nλi) =
B

∑
j=1

α1, jΛ1, j

(
λ1 p j

α1, j

)
+

B

∑
j=1

αi, jΛi, j

(
λi p j

αi, j

)
.

Let I(x1,xi) be the Fenchel-Legendre transform of Λn. Then,

I(x1,xi) = sup
λ1,λi

{
λ1x1 +λixi−

B

∑
j=1

α1, jΛ1, j

(
λ1 p j

α1, j

)
−

B

∑
j=1

αi, jΛi, j

(
λi p j

αi, j

)}

= sup
λ1

{
λ1x1−

B

∑
j=1

α1, jΛ1, j

(
λ1 p j

α1, j

)}
+ sup

λi

{
λixi−

B

∑
j=1

αi, jΛi, j

(
λi p j

αi, j

)}

= sup
λ1

{
λ1x1−

B

∑
j=1

(
λ1 p jµ1, j +

1
2

σ2
1, jλ

2
1 p2

j

α1, j

)}
+ sup

λi

{
λixi−

B

∑
j=1

(
λi p jµi, j +

1
2

σ2
i, jλ

2
i p2

j

αi, j

)}

=
1
2
(x1− µ̄1)

2

∑
B
j=1

σ2
1, j p2

j
α1, j︸ ︷︷ ︸

I1

+
1
2
(xi− µ̄i)

2

∑
B
j=1

σ2
i, j p2

j
αi, j︸ ︷︷ ︸

I2

.

By the Gartner-Ellis Theorem, Gi(α1,αi) = infx1≤xi I(x1,xi). It is easily seen that I1 is decreasing for x1 ≤ µ̄1
and increasing for x1 ≥ µ̄1, while I2 is decreasing for xi ≤ µ̄i and increasing for xi ≥ µ̄i. Since µ̄1 > µ̄i, we
must have

Gi(α1,αi) = inf
µ̄i≤x≤µ̄1

I(x,x) =
(µ̄1− µ̄i)

2

2
(

∑
B
j=1

σ2
1, j p2

j
α1, j

+∑
B
j=1

σ2
i, j p2

j
αi, j

) . (3)

To ensure the optimization problem (2) is well-posed, we need the following lemma which summarizes
some important properties of Gi(α1,αi).
Lemma 1 Suppose Assumption 1 holds. Then,

1. Gi(α1,αi) is strictly increasing in α1, j and αi, j for (α1, j,αi, j)> 0 if p j > 0. Moreover, Gi(α1,αi) = 0
if there exists j0 with p j0 > 0 and min(α1, j0 ,αi, j0) = 0.

2. Gi(α1,αi) is concave in (α1,αi) for (α1,αi)> 0.

Proof. Lemma 1.1 is easily seen from (3). To prove Lemma 1.2, it suffices to show the concavity of the
function for x > 0 with form f (x) = 1/(∑n

i=1
ai
xi
), where ai > 0 for i = 1,2, . . . ,n. We prove the concavity

of the multivariate function by proving the concavity along all lines. For any y ∈ Rn, let g(t) = f (x+ ty)
where t ∈ R such that x+ ty > 0. We have

g′′(t) =
2

(∑n
i=1

ai
xi+tyi

)3


[

n

∑
i=1

aiyi

(xi + tyi)2

]2

−
n

∑
i=1

aiy2
i

(xi + tyi)3

n

∑
i=1

ai

xi + tyi

≤ 0,
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where the inequality uses the Cauchy inequality. Hence, f is concave in x > 0.

Lemma 1.1 implies that any “effective” design-input pair (i.e., (i, j) with p j > 0) must be allocated with
a positive ratio of the simulation budget; otherwise, the rate will be zero. Lemma 1.2 claims the concavity
of Gi, which guarantees the optimality condition for the optimization problem (2) in the following section.

4 OPTIMAL ALLOCATION POLICY

In this section we characterize the optimal allocation policy, which is the optimal solution to (2).
Theorem 1 Suppose Assumption 1 holds. Let α ≥ 0 be a feasible allocation policy. Then α is the optimal
solution to (2) if and only if p j = 0⇒ αi, j = 0 and the following three conditions hold:

1.
∂Gi(α1,αi)

∂αi, j
=

∂Gi(α1,αi)

∂αi, j′
2≤ i≤ K and 1≤ j < j′ ≤ B, if p j, p j′ > 0; (4)

2.
K

∑
i=2

∂Gi(α1,αi)/∂α1, j

∂Gi(α1,αi)/∂αi, j
= 1 1≤ j ≤ B, if p j > 0; (5)

3. Gi(α1,αi) = Gi′(α1,αi′) 2≤ i < i′ ≤ K. (6)

Or equivalently in the explicit form:

1.
αi, j

σi, j p j
=

αi, j′

σi, j′ p j′
2≤ i≤ K, 1≤ j ≤ B, (7)

2.
(

α1, j

σ1, j

)2

=
K

∑
i=2

(
αi, j

σi, j

)2

1≤ j ≤ B, (8)

3.
(µ̄1− µ̄i)

2

∑
B
j=1

σ2
1, j p2

j
α1, j

+∑
B
j=1

σ2
i, j p2

j
αi, j

=
(µ̄1− µ̄i′)

2

∑
B
j=1

σ2
1, j p2

j
α1, j

+∑
B
j=1

σ2
i′, j p2

j

αi′, j

2≤ i < i′ ≤ K. (9)

Furthermore, the optimal solution α∗ to (2) is unique.

Proof. We first show the existence of α and prove that αi, j = 0 if p j = 0. The existence follows from
the continuity of Gi with respect to α ∈ ∆KB−1, where ∆n denotes the n-dimensional simplex. By Lemma
1.1, Gi is strictly increasing in α1, j′ and αi, j′ for those j′ with p j′ > 0 and is independent of α1, j and αi, j if
p j = 0. Hence, we must have αi, j = 0 for i = 1,2, · · · ,K if p j = 0. Therefore, without loss of generality,
to prove the theorem, we can assume all p j > 0. Then by Lemma 1.1, the optimal solution α must satisfy
αi, j > 0 for all i, j.

Now we show the necessity of the three optimality conditions. By Lemma 1.2, the optimization problem
(2) is a concave maximization problem, and therefore the Karush–Kuhn–Tucker(KKT) conditions are both
sufficient and necessary for the optimality. With α strictly positive, the KKT conditions can be written as

1−
K

∑
i=1

λi = 0, (10)

λi
∂Gi

∂αi, j
(α1,αi) = γ 2≤ i≤ K, 1≤ j ≤ B, (11)

K

∑
i=2

λi
∂Gi

∂α1, j
(α1,αi) = γ 1≤ j ≤ B, (12)

λi(Gi(α1,αi)− z) = 0 2≤ i≤ K, (13)
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for some γ and λi ≥ 0, 2≤ i≤ K. By (10) there exists at least one i0 such that λi0 > 0. Then since Gi is

increasing in αi, j, we have
∂Gi0
∂αi0 , j

(α1,αi0) > 0. This implies γ > 0 by (11). Hence, we must have λi > 0

for all 2 ≤ i ≤ K. Then we have ∂Gi(α1,αi)
∂αi, j

= γ

λi
, 1 ≤ j ≤ B, 2 ≤ i ≤ K, which proves (4). Since λi > 0,

Gi(α1,αi) = z, 2≤ i≤ K by (13). Hence, (6) holds. To see why (5) holds, solving for λi =
γ

∂Gi
∂αi, j

(α1,αi)
in

(11) and substituting λi in (12), we get the desired result.

For sufficiency, first let λi =
1

∂Gi(α1,αi)/∂αi, j
/(

K
∑

k=2

1
∂Gk(α1,αk)/∂αk, j

) for i ≥ 2. Notice that λi > 0 and

does not depend on the choice of j by (4). Moreover, {λi}i≥2 satisfy condition (10). Further let γ =

(
K
∑

k=2

1
∂Gk(α1,αk)/∂αk j

)−1, which is also independent of j. We can easily verify that both (11) and (12) hold.

(10) also holds by setting z = Gi(α1,αi), which is independent of i by (6).
Now we are only left to show the uniqueness of α . First notice that from (7) and (8), we have

α1, j

σ1, j p j
=

√
B

∑
i=2

(
αi, j

σi, j p j
)2 =

√
B

∑
i=2

(
αi, j′

σi, j′ p j′
)2 =

α1, j′

σ1, j′ p j′
1≤ j < j′ ≤ B.

Letting βi =
αi, j

σi, j p j
, we can write αi, j = p jσi, jβi for all i = 1,2, · · · ,K. Since α and β = (β1, · · · ,βK) are

bijective, it is sufficient to show the uniqueness of β . Plugging αi, j into (9) and (8), we have

(µ̄1− µ̄i)
2

∑
B
j=1 σ1, j p j

β1
+

∑
B
j=1 σi, j p j

βi

=
(µ̄1− µ̄i′)

2

∑
B
j=1 σ1, j p j

β1
+

∑
B
j=1 σi′, j p j

βi′

2≤ i < i′ ≤ K

with β 2
1 = ∑

K
i=2 β 2

i . Let η = β

β1
. Then η satisfies

(µ̄1− µ̄i)
2

∑
B
j=1 σ1, j p j +

∑
B
j=1 σi, j p j

ηi

=
(µ̄1− µ̄i′)

2

∑
B
j=1 σ1, j p j +

∑
B
j=1 σi′, j p j

ηi′

2≤ i < i′ ≤ K (14)

with 1 = ∑
K
i=2 η2

i . If there exists η ′ ̸= η satisfying these two conditions, then there must be i ̸= k ̸= 1 such
that ηi < η ′i and ηk > η ′k. Then, we have

(µ̄1− µ̄i)
2

∑
B
j=1 σ1, j p j +

∑
B
j=1 σi, j p j

ηi

<
(µ̄1− µ̄i)

2

∑
B
j=1 σ1, j p j +

∑
B
j=1 σi, j p j

η ′i

=
(µ̄1− µ̄k)

2

∑
B
j=1 σ1, j p j +

∑
B
j=1 σk, j p j

η ′k

<
(µ̄1− µ̄k)

2

∑
B
j=1 σ1, j p j +

∑
B
j=1 σk, j p j

ηk

,

which contradicts (14). Hence, η is unique, which implies β =C ∗η for some constant C. Then if there
exists β ′ ̸= β and both are optimal, we have β > (<)β ′. This implies the corresponding α > (<)α ′, which
contradicts ∑i, j αi, j = ∑i, j α ′i, j = 1.

Compared with the optimality condition in Glynn and Juneja (2004), here we have the additional
optimality condition (4), the local balance condition for the derivative. It states that within the allocation
for a certain design i, the partial derivative of the rate function Gi taken with respect to αi, j is the same if
p j > 0. That is, simulation for each fixed input realization should provide same improvement to identify
that design 1 is better than i. Furthermore, with normally distributed simulation error, from (7) we see for a
fixed design i the optimal allocation ratio αi, j should be proportional to the input probability mass p j and its
variance σi, j, which quantitatively characterizes how input uncertainty affects the optimal allocation policy.
Also notice for fixed i, (7) only contains information from design i, which means the relative allocation
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ratios among different input realizations for a certain design do not depend on other designs. On the other
hand, however, from (9) it can be seen that the relative allocation ratios among designs under the same
input realization j are affected by all p j, which means directly applying OCBA to designs with a fixed j
may perform poorly since it does not take information from other design-input pairs into consideration. In
addition, if B = 1, which means there is no input uncertainty, the optimality condition coincides with that
in Glynn and Juneja (2004), showing our result is an extension to account for input uncertainty. Moreover,
notice that the three optimality conditions (4)-(6) not only hold for Gaussian simulation noise but also hold
as long as the rate function Gi has the properties shown in Lemma 1.

5 SEQUENTIAL PROCEDURE WITH STREAMING INPUT DATA

In this section, we give a fully sequential procedure, named as OCBA-SID, for simulation budget allocation
with streaming input data using the optimality conditions in Theorem 1. By optimality equation (7), we
can write αi, j = p jσi, jβi for some βi, 1≤ i≤ K. Plugging αi, j into (9), we have

(µ̄1− µ̄i)
2

∑
B
j=1 σ1, j p j

β1
+

∑
B
j=1 σi, j p j

βi

=
(µ̄1− µ̄i′)

2

∑
B
j=1 σ1, j p j

β1
+

∑
B
j=1 σi′, j p j

βi′

, 2≤ i < i′ ≤ K.

Assume β1≫ βi, ∀i ̸= 1. Then we have βi
βi′
≈ ∑

B
j=1 σi, j p j/(µ̄1−µ̄i)

2

∑
B
j=1 σi′, j p j/(µ̄1−µ̄i′ )

2 . Replacing p j with its estimate p(t)j and

plugging βi =
αi, j

p(t)j σi, j
into the equation above, we have

αi, j

αi′, j′
=

p(t)j σi, j ∑
B
k=1 σi,k p(t)k /(µ̄1− µ̄i)

2

p(t)j′ σi′, j′ ∑
B
k=1 σi′,k p(t)k /(µ̄1− µ̄i′)2

, i, i′ ̸= 1. (15)

Furthermore, with (8) and ∑
K
i=1 ∑

K
j=1 αi, j = 1, we can calculate αi, j explicitly. Specifically, the procedure

OCBA-SID is shown as follows:

OCBA-SID (Optimal Computing Budget Allocation with Streaming Input Data)

1. Input. Number of designs K, input distribution support { ζ1,ζ2, · · · ,ζB}, initial sample size n0, total
simulation budget n, input data batch size {m(t)}∞

t=1 and stage-wise simulation budget {n(t)}∞
t=1.

2. Initialization. Time stage counter t ← 0, replication counter l ← 0, total input data M(t)← 0.
Collect n0 initial samples for each design-input pair (i,ζ j). Set N(l)

i, j = n0. Compute the initial

sample mean µ̂
(l)
i, j and ˆ̄µ(l)

i .

3. WHILE ∑
K
i=1 ∑

B
j=1 N(l)

i, j < n DO

4. t← t +1, given input data of batch size m(t), let M(t) = ∑
t
τ=1 m(τ) and update p(t)j = ∑

M(t)
s=1 1{ξs=ζ j}

M(t)
for j = 1,2, · · · ,B.

5. FOR num = 1:n(t) DO
6. l← l +1. b̂(l)← argmaxi ˆ̄µ(l)

i .

7. Update α̂
(l)
i, j using (15) and (8). Calculate N̂(l)

i, j = α̂
(l)
i, j

(
1+

K
∑

i=1

B
∑
j=1

N(l)
i, j

)
, ∀1≤ i≤ K, 1≤ j ≤ B.

8. Find the design-input pair index (I,J) = argmaxi, j

(
N̂(l)

i, j −N(l)
i, j

)
. Simulate the pair (I,J) once.

Update µ̂
(l)
I,J and ˆ̄µ(l)

I using the new simulation output, and set µ̂
(l)
i j = µ̂

(l−1)
i j and ˆ̄µ(l)

i = ˆ̄µ(l−1)
i for

i ̸= I, j ̸= J. Let N(l)
I,J = N(l−1)

I,J +1 and N(l)
i, j = N(l−1)

i, j for all i ̸= I, j ̸= J.
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9. END FOR
10. END WHILE
11. Output: Output ib = argmaxi ˆ̄µ(l)

i as the best design.

We make the Assumption β1≫ βi in OCBA-SID for computational efficiency. A more general approach
by extending Chen and Ryzhov (2019) to this setting with input distribution is of interest as future work.

6 CONSISTENCY AND ASYMPTOTIC OPTIMALITY

In this section we show consistency and asymptotic optimality of OCBA-SID. In classical R&S consistency
is usually guaranteed by the Strong Law of Large Number (SLLN) as long as we simulate each design
infinitely many times. However, here we also need the convergence of input distribution estimate {p(t)}
to ensure we have the correct estimate of the true expected performance. For this purpose, we make the
following assumption about the input data batch size and simulation budget in each stage.
Assumption 3 At stage t, the input data batch size m(t) and simulation budget n(t) satisfy

lim
T→∞

T

∑
t=1

n(t) = ∞, lim
T→∞

T

∑
t=1

m(t) = ∞.

Assumption 3 ensures that both the input data batch size and total simulation replications go to infinity
as time stage t goes to infinity, which helps guarantee the consistency of both the input estimate and the
performance estimate. The following theorem shows the statistical validity of OCBA-SID.
Theorem 2 Suppose Assumption 1, 2 and 3 hold and the total simulation budget n = ∞. Then,

1. (Consistency) OCBA-SID selects the optimal design almost surely (a.s.) as t→ ∞.

2. (Asymptotic optimality) liml→∞

N(l)
i, j

N(l) = α∗i, j a.s., 1 ≤ i ≤ K,1 ≤ j ≤ B, where α∗i, j satisfies the
optimality condition (15) and (8).

Proof. Since ∑
t
s=1 n(s)→ ∞ as t→ ∞, we know the empirical distribution p(t)j → p j a.s. by Glivenko-

Cantelli Theorem. Hence, if we can show N(l)
i, j → ∞ a.s. for j with p j > 0, we then have ˆ̄µ(l)

i → µ̄i a.s. by

the SLLN and the fact that p(t)j → p j a.s.. Hence, to prove 1 and 2, it suffices to show N(l)
i, j → ∞ a.s. for

p j > 0. Denote by A = {(i, j)|N(l)
i, j → ∞} ̸= Ø and Ja = {1≤ j ≤ B|p j > 0} the valid input support set.

Proof of 1. Denote by ω any sequence of sample outputs. We fix a sample path ω in the following proof.
Prove by contradiction. Suppose there exists (i0, j0) ̸∈ A and j0 ∈ Ja. Since µ̂

(l)
i, j will always converge, no

matter whether N(l)
i, j will tend to infinity, ˆ̄µ(l)

i, j will also converge. Denote by N(l) = ∑i, j N(l)
i, j . Then there

exists an allocation policy {α̃i, j} satisfying liml→∞

N̂(l)
i, j

N(l) = α̃i, j. Since (i0, j0) can be sampled for at most

finitely many times, it must hold for l large enough, N̂(l)
i0, j0−N(l)

i0, j0 ≤ N̂(l)
i, j −N(l)

i, j for any (i, j) ∈ A. Then we
have

liminf
l→∞

N̂(l)
i0, j0−N(l)

i0, j0

N(l)
≤ liminf

l→∞

N̂(l)
i, j −N(l)

i, j

N(l)
. (16)

The left hand side (LHS) of (16) = liml→∞

N̂(l)
i0 , j0

N(l) = α̃i0, j0 > 0, where positiveness comes from the fact that
αi, j > 0 if p j > 0 by proof of Theorem 1, where we replace the true µ̄ with the limit of ˆ̄µ(l). On the other

hand, the right hand side (RHS) of (16) = liml→∞

N̂(l)
i, j

N(l) − limsupl→∞

N(l)
i, j

N(l) = α̃i, j− limsup
N(l)

i, j

N(l) . Hence, we
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(a) constant batch size. (b) random batch size.

Figure 2: Performance comparison with constant and random batch sizes.

have limsupl→∞

N(l)
i, j

N(l) ≤ α̃i, j− α̃i0, j0 < α̃i, j. Since this holds for all (i, j) ∈ A, we have

1 = ∑
i, j

N(l)
i, j

N(l)
= limsup

l→∞

∑
i, j

N(l)
i, j

N(l)
≤∑

i, j
limsup

l→∞

N(l)
i, j

N(l)
= ∑

(i, j)∈A
limsup

l→∞

N(l)
i, j

N(l)
< ∑

(i, j)∈A
α̃i, j ≤ 1− α̃i0, j0 < 1,

a contradiction.
Proof of 2. Due to the limited space, the proof of 2 is omitted.

7 NUMERICAL EXPERIMENT

We carry out numerical experiments to test the performance of OCBA-SID with (i) equal allocation of
simulation budget to all design-input pairs, denoted by Equal Allocation; and (ii) equal allocation to input
realizations while OCBA for allocating simulation budget among designs under the same input realization,
denoted by Equal-OCBA.

7.1 Test Problem

We use a quadratic problem to test the procedures. The problem is to minimize the expected value of
a quadratic function Xi = (i− ζ )2 + εi(ζ ), where ζ takes value in {0,1, · · · ,5} with probability p j, j =
0,1, . . . ,5, and εi(ζ )|ζ follows the normal distribution with mean 0 and stand deviation σi(ζ ). {p j} is
uniformly randomly chosen before running the procedures, and σi(ζ ) is also randomly chosen from a
uniform distribution on [1,2]. The candidate designs are I = {2+0.5 · i : i ∈ [−5,5]∩Z} . The true best
design is b = argmini∈I ∑

5
j=0(i− j)2 p j.

7.2 Experiment Results

To run the procedures, we set the initial simulation budget for each design-input pair n0 = 10. Let the
initial batch size of input data m0 = 10. We carry out experiments for two scenarios: (i) constant input
data batch size (m(t) = 30) and simulation budget (n(t) = 50) and (ii) varying input data batch size and
simulation budget. For the second scenario, we set m(t) and n(t) uniformly chosen from {d̄,2d̄, · · · ,5d̄}
and d̄ = 20. Figure 2a and 2b present the empirical PCS based on 100 replications of each procedure with
respect to the total simulation budget. The observations from Figure 2 can be summarized as follows:

1. In both scenarios, OCBA-SID achieves a higher PCS with same simulation budget than Equal
Allocation and Equal-OCBA, showing high efficiency for solving R&S with input uncertainty.
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2. Using OCBA blindly without considering the input uncertainty is no better or even worse than the
naive equal allocation procedure. The reason is that for different realizations of the input parameter,
the conditional performance of designs can be ranked quite differently from the true (unconditional)
expected performance. Equal-OCBA over allocates simulation budget to the design-input pair (i, j)
where i is optimal under realization ζ j but suboptimal overall. These simulations are useless for
Equal-OCBA to find the true optimal design, making the procedure worse than equal allocation
since it cannot allocate sufficient simulation budget to (b, j) under the same input realization ζ j.
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