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ABSTRACT

We consider the ranking and selection (R&S) problem with fixed simulation budget, in which the budget is
assumed to be allocated sequentially. Deriving the optimal sampling procedure for this problem amounts
to solving a stochastic dynamic program that is highly intractable. To overcome this difficulty, the existing
R&S procedures are often designed from a myopic viewpoint. However, these myopic procedures are only
single-step optimal and may have a poor performance for general sequential R&S problems. Therefore,
in this paper, we combine two popular lookahead strategies and design a non-myopic knowledge gradient
(KG) procedure. Meanwhile, to streamline the computation of procedure, we propose a modified Monte
Carlo tree search method specifically designed under the R&S context. We show that the new procedure
can exhibit a performance superior to the classic KG.

1 INTRODUCTION

Ranking and selection (R&S) is a classic problem of the simulation community, in which we aim to select
the best alternative from a finite set of alternatives regarding their mean performances. Such problems
have found a lot of applications in the risk measurement, healthcare management and so on. Typically,
the mean performance of each alternative is unknown and needs to be estimated via running stochastic
simulation. Due to the inherited randomness, the estimates become more accurate as more simulation
samples are collected on the alternatives. However, running simulation is often computationally expensive.
When the total simulation budget is limited, the main task of R&S is to determine a sampling decision
rule that allocates this budget in an efficient manner. Such decision rule is also known as a fixed-budget
R&S procedure in the literature.

Suppose that the simulation budget is allocated sequentially, according to a certain decision rule.
Particularly, at each step, the decision rule chooses one alternative and collects a random sample from it.
When the total budget is exhausted, the best alternative is selected based on all the samples collected. We
call a decision rule as optimal if it optimizes the quality of final selection. In fact, it is known that, solving
the optimal decision rule can be essentially formulated as a finite-horizon stochastic dynamic program (DP)
(see, e.g., Frazier et al. (2008) and Hong et al. (2021)). Traditionally, this DP could be solved exactly by
backward iterations through the Bellman equation. Unfortunately, this is subject to a computation burden
due to the “curse of dimensionality”, thereby making the exact solution of DP possibly intractable.

To overcome this difficulty, a series of R&S papers turn to explore a reasonable and simultaneously
tractable approximation for the underlying DP. Based on these approximations, a set of sub-optimal decision
rules are proposed as a compromise. For instance, Chen et al. (2000) approximate the original DP with a
static optimization problem and derive a static-allocation R&S procedure instead using the large-deviation
theory. This static procedure is known as the optimal computing budget allocation (OCBA) procedure and
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is later extended to the sequential setting. In contrast, another stream of papers take a myopic perspective
to approximate the Bellman equation in a tractable form, and accordingly design several myopic DP
procedures including the expected value of information (EVI) procedure (Chick and Inoue 2001) and the
knowledge gradient (KG) procedure (Frazier et al. 2008). These myopic procedures have now served as
the cornerstone of the fixed-budget R&S.

Beyond the R&S, it has been noticed that the myopic procedures often perform poorly for general DP
problems, e.g., Gonzalez et al. (2016), Lam et al. (2016), and Yue and Kontar (2020). The main reason is
that, the myopic procedures, a.k.a., the single-step lookahead procedures, make each-step decision without
regarding the long-term impact of future samples. Intuitively, if we could look more step ahead into the
future, we may obtain a new procedure that improves the myopic procedures to a large extent. Actually,
there has been a large volume of literature working on this topic in the DP area and proposing a variety of
powerful tools for the design of non-myopic procedures. In spite of the above, it is rarely discussed in the
R&S literature whether a non-myopic procedure can improve the existing myopic R&S procedure; and if
so, how to design such non-myopic procedures. Addressing this issue is the goal of this paper.

In general, a sequential R&S procedure mainly contains two iterative stages, namely, the approximation
of value function and optimization over the approximation. Therefore, to design an efficient non-myopic
R&S procedure, we need to first tackle these two issues. For the approximation issue, we combine two
popular lookahead strategies in the literature, i.e., multi-step lookahead and rollout strategies, to provide
a new approximation for the value function. When the classic myopic KG is chosen as the base policy
in the rollout, it is shown that the new approximation appears more accurate than the classic KG. For the
optimization issue, notice that it is clearly a multi-step lookahead optimization problem in the non-myopic
setting. To tackle this problem efficiently, we propose a modified Monte Carlo Tree Search (MCTS)
technique by taking advantage of the special structure of R&S. As a result, a non-myopic KG procedure
is obtained, and we can show that it has a superior performance over its myopic counterpart.

The rest of the paper is organized as follows. Section 2 introduces the problem formulation as well as
the classic myopic KG procedure. Section 3 explains two possible strategies that enable to improve the
myopic KG procedure and a combined new approach. Section 4 proposes the non-myopic KG policy and
shows its theoretical properties. Section 5 demonstrates the superiority of the non-myopic KG procedure
through numerical experiments and Section 6 concludes the paper.

2 PROBLEM FORMULATION

We consider a R&S problem with K alternatives, denoted by K = {1, . . . ,K}. For each alternative x∈K , let
µx denote its unknown mean performance, which needs to be evaluated via running stochastic simulations.
Without loss of generality, we assume that the best alternative has the largest mean performance, i.e.,
maxx∈K µx. When the total simulation budget N is fixed, our goal is to design a decision rule (or R&S
procedure) which tells how to allocate this budget efficiently.

We first introduce some notations. Assume that the samples from each alternative x∈K are independent
and normally distributed with mean µx and variance σ2

x . Following the Bayesian viewpoint, the unknown
parameter µx is typically viewed as a random variable, and we assume it follows a prior normal distribution
with mean µ0

x and variance (σ0
x )

2. We use β 0
x := (σ0

x )
−2 to denote the precision of the corresponding

normal distribution.

2.1 Fixed-Budget R&S versus Dynamic Program

Suppose that the simulation budget is allocated one by one. At each step 0 ≤ n < N, we choose one
alternative xn ∈K to sample from and then collect an observed sample, termed by yn+1. Define a filtration
{F n : 0≤ n≤ N}, with F n being the sigma-algebra generated by {x0,y1,x1, ...,xn−1,yn}. Generally, the
sampling decision xn is obligated to be F n-measurable so that the decision is only determined by the
sampling decisions made and the samples collected in the past.
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Along with the sequential sampling process, we also use the Bayes rule to iteratively calculate the
posterior distribution of µx. In particular, let µn

x and β n
x denote the posterior mean and precision of µx after

n steps. When the total simulation budget is exhausted, the alternative with the largest posterior mean (i.e.,
maxx µN

x ) is selected as the best. Apparently, the quality of final selection should hinge on the sampling
policy π =

(
x0, . . . ,xN−1

)
that is used. Let Π denote the set of all the possible sampling policies, namely

Π =
{

π =
(
x0, . . . ,xN−1) : xn ∈K is F n-measurable,∀0≤ n < N

}
,

and therefore our goal is to find the optimal sampling policy π which solves

sup
π∈Π

Eπ

[
max

x
µ

N
x

]
, (1)

where Eπ [·] denotes the expectation taken when the sampling policy π is used.
Clearly, Problem (1) above can be viewed as a DP. To facilitate the presentation, we write the posterior

means and precisions of µ ′xs in a matrix form, µn = (µn
1 ,µ

n
2 , . . . ,µ

n
K) and β n = (β n

1 ,β
n
2 , . . . ,β

n
K). Let

Sn = (µn,β n) denote the state at step n, and define the state space S = RK× (0,∞]K . Then, the terminal
value function is written as

V N(s) = max
x

µx, for every s ∈ S.

2.2 Myopic Knowledge-Gradient Policy

From above, the optimal sampling policy π∗ = (x0
∗,x

1
∗, . . . ,x

N−1
∗ ) can be derived through solving the DP

stated in (1). In particular, at each step 0≤ n < N, the optimal sampling decision xn
∗ is determined by the

associated Bellman equation

V n(s) = max
x∈K

E
[
V n+1(Sn+1)|Sn = s,xn = x

]
, (2)

xn
∗(s) = argmax

x∈K
E
[
V n+1(Sn+1)|Sn = s,xn = x

]
.

If the value function V n+1(·) has an explicit form or can be computed efficiently, then the optimal decision
xn
∗ may be readily obtained. Unfortunately, V n+1(·) is often computational intensive to compute due to “the

curse of dimensionality”. Therefore, to avoid solving this intractable problem directly, many approximation
methods have been utilized in the literature.

Among these approximation methods, the Knowledge Gradient (KG) policy takes a myopic viewpoint
which always regards the next stage as the terminal stage, and consequently approximates the intractable
V n+1(·) by the terminal value function V N(·). It follows that, an approximated sampling decision is given
by

xKG(s) = argmax
x∈K

E
[
V N(Sn+1)|Sn = s,xn = x

]
= argmax

x∈K

{
E
[
V N(Sn+1)−V N(Sn)|Sn = s,xn = x

]}
. (3)

The second equality holds because the added term V N(Sn) is a constant unrelated to the decision x. The
policy in (3) is named knowledge-gradient policy because it finds the sampling decision that maximizes
the expected improvement of value over the next sampling. The major advantage of the KG policy is its
computational complexity which grows linear with the number of alternatives, i.e., |K | (Frazier, Powell,
and Dayanik 2008). This appears much more efficient than directly solving the original DP problem, in
the computational sense.

However, the KG policy is clearly sub-optimal. It makes each-step sampling decision by only considering
the next-step sample, thereby ignoring the long-term impact of all the future samples. Intuitively, when the
remaining simulation budget N−n is relatively large, there might exist a large gap between the desired value
function V n+1 and its approximation V N . To some extent, this gap explains why the myopic procedures
could perform poorly in certain situations as stated in Section 1.
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3 IMPROVEMENT OF MYOPIC POLICY

As stated in Section 2, the limitation of myopic procedures arises mainly because they are built upon a
less accurate approximation for value function. In particular, the approximated value function they use
is single-step lookahead in the sense that it only takes the next-step sample into consideration. Thus, to
improve the performance of myopic procedures, the key task is to explore the long-term value of more
future samples and provide a better approximation for the value function.

3.1 From Single-step to Multi-step

Suppose that, at each step 0≤ n < N, we seek to compute the current-step value function V n by considering
more than one future sample, say t ≥ 1 samples. This essentially requires us to build a bridge connecting
V n with the future value function V n+t after t steps. Actually, their relationship can be given by the t-step
lookahead version of Bellman equation, that is

V n(s) = max
xn,...,xn+t−1

E
[
V n+t(Sn+t)|Sn = s

]
, for 0≤ n < N. (4)

Generally, V n+t is still computationally intractable because it has to be computed recursively by (4). Similar
to the myopic policy, we may simply pretend step n+ t as the terminal step and then replace V n+t by the
terminal value function V N . Then, an approximation for V n(s) is given by

max
xn,...,xn+t−1

E
[
V N(Sn+t)|Sn = s

]
=V N−t(s). (5)

We use EtV n to denote the approximation error arising here, namely,

EtV n(s) :=V n(s)−V N−t(s), ∀ s ∈ S and n≤ N− t. (6)

In the special case as t = 1, EtV n(s) refers to the approximation error in the single-step lookahead (i.e.,
myopic) scheme. Intuitively, one may conjecture that the t-step lookahead scheme could provide a better
approximation for (4) than the myopic one, or equivalently, EtV n(s)≤ E1V n(s) for any t ≥ 1. However, it
is not always true for general DP problems. Luckily, by exploring the special structure of R&S, we show
in Lemma 3.1 that this conjecture is true.
Lemma 3.1 For any state s ∈ S and any 1≤ t ≤ N−n, we have that

0≤ EtV n(s)≤ Et−1V n(s)≤ ·· · ≤ . . .E1V n(s).

Lemma 3.1 also implies that, whenever we look one more steps ahead into the future, the corresponding
approximation error can be further reduced. However, such reduction tends to be marginally diminishing
as shown in Lemma 3.2. Therefore, in practice, even a relatively small t may be enough to help improve
the value function approximation.
Lemma 3.2 For any 1 ≤ t ≤ N−n−2, we have that ‖Et+2V n−Et+1V n‖∞ ≤ ‖Et+1V n−EtV n‖∞, where
‖ · ‖∞ denotes the L∞ norm.

3.2 Rollout Strategy

When the long-term impact of future samples needs to be considered, we have to evaluate the value function
according to the Bellman equation (2) iteratively. Each iteration involves a stochastic optimization problem
to solve. Obviously, this is computationally infeasible. To overcome this barrier, one popular technique,
called rollout strategy, is proposed and has been shown to perform excellently in many practical situations
(Bertsekas 2012; Sutton and Barto 2018). More specifically, the rollout strategy frees itself from solving the
optimization problem at each iteration, but instead implements a heuristic policy (often called base policy)
over the future steps. As a result, a reasonable approximation of the desired value function is yielded.
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Suppose that a base policy B will be implemented after step n. The approximation for the intractable
V n+1 in (2) by rollout strategy is constructed as the reward-to-go at step n+1 under the base policy B, i.e.,
V n+1,B, which represents the policy value under base policy B. Denote xB,n(s) as the alternative chosen by
policy B at time n, the policy value is defined as

V n,B(s) := EB [V N (SN) | Sn = s
]
= E

[
V n+1,B (Sn+1|Sn = n,xn = xB,n(s)

)]
.

Thus, the approximation for V n(s) of rollout strategy under base policy B is given by

max
x∈K

E
[
V n+1,B(Sn+1)|Sn = s,xn = x

]
.

It follows that, the corresponding approximation error is given by

EBV n(s) :=V n(s)−max
x∈K

E
[
V n+1,B(Sn+1)|Sn = s,xn = x

]
, ∀ s ∈ S.

Generally, there is no clear rule on the choice of a proper base policy. In fact, it can be chosen according
to the users’ own interest. In this paper, we pick up the myopic KG in (3) for its convenience to implement.
As shown in Section 2, the myopic KG policy is clearly sub-optimal for the original DP. But, with the help
of rollout strategy, the KG does provide a possible way to take into account the long-term value of future
samples. In light of this, we show in Lemma 3.3 that the rollout strategy can bring a better value function
approximation for V n than the corresponding myopic KG policy. To understand this lemma, notice from
(6) that E1V n(s) refers to the approximation error of the myopic KG policy, and EKGV n(s) refers to the
approximation error of the rollout strategy under base policy KG.
Lemma 3.3 For any state s ∈ S, we have that EKGV n(s)≥ E1V n(s).

3.3 Combination of Multi-step and Rollout

So far, we have introduced two strategies to improve the value approximation function: multi-step and
rollout. The multi-step lookahead policy can be regarded as a relatively accurate “short-term” approximation,
as the lookahead steps cannot be set too large. Otherwise the associated multi-step optimization problem
as shown in (4) could become difficult to address. In contrast, the rollout policy enables to provide the
“long-term” approximation because it does not involve any optimization. However, such approximation
might not be so accurate, compared to multi-step lookahead policy. Therefore, it seems promising to
combine these two strategies to further improve the value function approximation.

Suppose that the combined approach is used to construct an approximation for V n(s) at each step
0≤ n < N and state s. It employs the multi-step lookahead policy at the first t steps and then implements
the rollout strategy until the terminal N. In doing so, an approximation for V n(s) of is obtained as follow,

max
xn,xn+1,...,xn+t−1

E
[
V n+t,B (Sn+t) | Sn = s

]
. (7)

The new approximation above differs from the previous multi-step lookahead approximation (5) mainly
in the way of dealing with the intractable V n+t(·) in the multi-step Bellman equation (4). More specifically,
the combined approach replaces V n+t(·) with V n+t,KG(·) by the rollout strategy, whereas (5) simply replaces
V n+t(·) by the terminal value V N(·). Denote the approximation error of combined strategy as

Et,KGV n(s) :=V n(s)− max
xn,xn+1,...,xn+t−1

E
[
V n+t,KG (Sn+t) | Sn = s

]
, ∀ s ∈ S.

Then we show in the following lemma that, the combined approach has a smaller approximation error of
V n than using either lookahead strategy separately.
Lemma 3.4 For any state s ∈ S, we have that Et,KGV n(s)≤ EtV n(s) and Et,KGV n(s)≤ EKGV n(s).
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4 NON-MYOPIC KG POLICY

Generally, deriving the optimal sampling decision under a DP formulation often involves two consecutive
tasks: value function approximation and computation of the optimal decision from the approximation.
Section 3 has introduced an effective approach to the value function approximation as in (7). From this
approximation, the core of this section is on how to efficiently compute the corresponding optimal decision
rule, namely, deciding the alternative to simulate from at each step in the R&S.

4.1 Computation of Non-myopic KG Policy

As the value function approximation in (7) is developed under a t-step lookahead scheme, solving it fairly
suggests the sampling decisions in the following t steps given current state. To be more specific, at each
step 0≤ n < N with state Sn = s, we solve (7) to obtain(

Rn
t ,R

n+1
t−1 , ...,R

n+t−1
1

)
(s) = argmax

xn,xn+1,...,xn+t−1
E
[
V n+t,KG (Sn+t) | Sn = s

]
, (8)

in which (Rn
t ,R

n+1
t−1 , ...,R

n+t−1
1 ) denote the suggested sampling decisions for the next t steps. As the desired

sampling process is sequential, it is reasonable to implement the decision Rn
t at current step n and then

move to the next step with an additional sample. We call this sampling rule Rn
t the non-myopic KG policy.

Unfortunately, computing of the non-myopic KG policy by (8) is not an easy issue. Firstly, the
objective function in (8) has no analytical form, and needs to be obtained via Monte Carlo simulation.
Particularly, the simulation samples here are collected according to the posterior sampling distribution of
each alternative. Such samples are often called “fantasy samples” in the literature as they mimic the true
samples that should be collected from alternatives. Secondly, exactly solving (8) requires visiting every
possible sample allocation path (xn,xn+1, . . . ,xn+t−1) ∈K t over the following t steps. Apparently, this
would take extremely lots of simulation samples as the number of all possible sampling paths reaches
|K |t . Notice that Problem (8) could be viewed as a scenario tree, as illustrated in Figure 1, where each
branch in the tree refers to a particular alternative and each path from the root node (the topmost node of
the tree, Sn) to the leaf node (nodes without children) refers to a certain sampling allocation path. In light
of this, we resort to Monte Carlo tree search (MCTS) method (Browne et al. 2012) which intelligently
selects these promising sampling paths rather than viewing all the paths equally important.

Figure 1: Tree Structure of Optimization Problem (8).

We follow the four steps of traditional MCTS structure (Browne et al. 2012), namely, Selection,
Expansion, Simulation and Backpropagation, but with some adaptations to the R&S problem. Particularly,
the implementation of MCTS in non-myopic KG context is shown in Figure 2. At the Selection step, the
main goal is to select the “best” child node according to some heuristic selection algorithm. One commonly
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used algorithm in MCTS for selection, called UCT (Upper Confidence Bound Applied to Trees, Kocsis
and Szepesvári (2006)), is designed based on the UCB formula (Auer et al. 2002). The value of node vn

which corresponds to an alternative v at time n given by the UCT algorithm is

UCT (vn) =
Q(vn)

N (vn)
+ c

√
2logN(vn

p)

N (vn)
, (9)

where Q(vn) is the accumulated reward (sum of reward) of node vn, N(vn) represents the visited times
of vn in tree simulations, vn

p is the parent node of vn in tree. The reward is backpropagated to vn via the
backpropagation step from the leaf node as shown in Figure 2.

Figure 2: Four steps of implementing MCTS in non-myopic KG policy .

However, the search tree is of exponential growth, and typically has a huge search space especially
when the number of alternatives is large. So it might be quite simulation-consuming to implement MCTS.
A series of papers have studied the method of narrowing the beam of the search tree to high-probability
moves to improve the efficiency, e.g. Coulom (2007), Rosin (2011) and Silver et al. (2016). In this paper,
we choose to add a prior information provided by OCBA procedure (Chen et al. 2000) to speed up the
MCTS process.

The motivation comes from the design of game algorithms, such as Alpha Go (Silver et al. 2016), which
adds a “prior” to the exploration term to reduce the search space and improve the efficiency. The core idea
is to increase the chance of simulations for nodes with high prior probability of “winning”, while for nodes
with poor predicted performance, we could just reduce the simulation cost and save computation. This
selection control strategy initially prefers alternatives with high prior probability and low visit count, but
asymptotically prefers actions with high value. When the prior offers an accurate estimation, the algorithm
will have a significant speedup compared to the original UCT, and converges much quicker. In the Go
games, the prior is the probability of “winning”, which represents the probability of making a move at
each place, while in the R&S problem, our prior should be the probability of “choosing”, which represents
the probability of taking a sample at each alternative. We find that a static-allocation procedure for R&S,
the OCBA procedure (Chen et al. 2000), provides an optimal sampling allocation proportion under the
assumption that the total sample budget tends to infinity. Despite the strong assumption, we can still use
the proportion of sample allocation for each alternative given by OCBA, as our prior of the probability of
“choosing” each alternative. Under the Bayesian framework, the sample allocation proportion of OCBA
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(Chen et al. 2000) is given by

POCBA
vn ∝

σ2
v(

µn
v −µn

q
)2 (v 6= q), POCBA

qn ∝

√
σ2

q

√
∑
x 6=q

σ2
x(

µn
x −µn

q
)4 , q = argmax

x
µ

n
x . (10)

Our prior POCBA
vn is then derived via the constraint ∑x POCBA

xn = 1 . With the defined prior probability in
(10), the selection value of node vn of non-myopic KG policy (following the notations in UCT algorithm)
is defined as:

ŨCT (vn) =
Q(vn)

N(vn)
+ c ·POCBA

vn ·

√
2logN(vn

p)

N (vn)
. (11)

4.2 The Procedure

Section 4.1 shows that the non-myopic KG policy can be computed efficiently via a modified MCTS method.
Given this, now we are ready to propose the sequential R&S procedure, which iteratively implements the
non-myopic policy at each step and takes samples. Notice that the non-myopic policy, as a multi-step
lookahead policy, is often constructed with a prescribed length of lookahead steps, t. To avoid unnecessary
lookahead steps, we slightly change the setting of lookahead steps for the last t steps. Particularly, for
each step N− t ≤ n < N, we choose the length of lookahead steps as the number of remaining steps,
i.e., N− n. As a consequence, our sequential R&S procedure keeps using the non-myopic KG policy
Rn

t with t-step lookahead at each step n < N− t, and then turns to use the non-myopic KG policy Rn
N−n

with (N−n)-step lookahead for each remaining step N− t ≤ n < N. Or equivalently, our sequential R&S
procedure essentially refers to a sequence of decisions, i.e.,

πt =
(
R0

t ,R
1
t , . . . ,R

N−t−1
t ,RN−t

t ,RN−t+1
t−1 , . . . ,RN−1

1

)
.

In what follows, we propose our new sequential R&S procedure that is design based on the non-myopic
KG policy, as shown in Algorithm 1. This procedure is initialized by an initial state s0 = (µ0,β0) at step
0, the total simulation budget N, the length of lookahead steps t and the simulation budget T used in
the MCTS. After the simulation budget N is exhausted, the alternative with the largest sample mean is
selected as the best. Moreover, to facilitate the understanding, we extract the tree search process specifically
as Algorithm 2. It follows the four steps in Figure 2 iteratively and returns the alternative selected by
non-myopic KG policy at each step.

Algorithm 1: Non-myopic KG Procedure
Require: state s0, Simulation budget N for R&S, length of lookahead steps t, simulation budget T in

MCTS
Ensure: argmaxx µN

x
Set n = 0, s = s0
while n < N do

xn = Tree Search(s,min(t,N−n),T ).
s = sn+1|s,xn

n = n+1
end while
xN = argmaxx µN

x

Intuitively, a better approximation for the value function is supposed to yield a superior sampling policy.
However, this is generally not guaranteed for general DP problems. Luckily, by the special structure of
R&S problems, we are able to show in the following theorem that, starting from any step n with any state
Sn = s, Algorithm 1 achieves a better performance at the terminal than the myopic KG policy.

3058



Qin, Fan, and Hong

Algorithm 2: Tree Search (sn, t, T )
Require: state sn, length of lookahead steps t, simulation budget T in MCTS
Ensure: argmaxvn∈{children of root}ŨCT (vn)

Set j = 0, create root node vn from state sn

while j ≤ TN do
while the depth of vn less than t do

if vn is not fully expanded then
vn = expand(vn)

else
vn = argmaxv̂n∈{children of vn}ŨCT (v̂n)

end if
end while
Rollout with KG as the base policy until N
∆ = maxx µN

x −maxx µn
x

Backup(vn,∆)
j = j+1

end while
return argmaxvn∈{children of root}ŨCT (vn)

Theorem 4.1 For every state s ∈ S, any t ≥ 1, and any step 0≤ n < N, we have that V n,πt (s)≥V n,KG(s).

5 EXPERIMENTS

We follow the experimental setting of Frazier et al. (2008) and test our non-myopic KG policy against other
competing policies on 100 randomly generated problems. The numerical results show that our non-myopic
KG policy has competitive performance. When measured by the average performance of all problems,
non-myopic KG policy significantly outperforms the other policies. In particular, it works exceptionally
well when the simulation budget is small with respect to the number of alternatives.

The random problem is initialized by the total simulation budget N, the number of alternatives K and
a common initial state S0 = (µ0,β0) across all alternatives. These parameters are chosen as follows: K is
an integer randomly chosen between 2 and 100; N is determined with N/K drawn uniformly from the set
{1,3,10}. Besides, each µx is uniform distributed at interval [−1,1], βx is set as 1 with probability 0.9
and 1000 with probability 0.1. We compare our non-myopic KG policy against three policies: myopic
KG policy (Frazier et al. 2008), multi-step policy (as defined in Section 3.1) and myopic KG policy with
rollout (as defined in Section 3.2) . On each of the 100 randomly generated problems, we simulate each
policy 100 times and record the true mean of selected alternative at terminal. For our non-myopic KG
policy, we set the simulation budget T in MCTS as 500 and set the depth t of MCTS as 2.

The average mean values of all problems for each policy are shown in Table 1. The table illustrates that
all the three lookahead policies significantly outperform the myopic KG policy in terms of the average mean
values of final selection. Among them, the non-myopic KG policy performs the best, almost achieving
250% of the average value of KG. The rollout policy and the multistep policy have close performances,
with rollout policy being slightly better. This might be due to that the rollout policy considers the impact of
all future samples while the multi-step policy is only two-step lookahead. In addition, we show the sample

Table 1: Average values for all problems.

Policy Non-myopic KG Multistep Myopic with rollout KG
Value 0.206 0.189 0.191 0.079
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estimates of the selected value difference V (π)−V (KG) aggregated across the 100 randomly generated
problems in Figure 3, where π are the three lookahead policies and the difference V (π)−V (KG) on any
particular problem is estimated as the difference in selected mean value. Bars to the right of 0 indicate
that π outperforms KG policy on those problems, and bars to the left of 0 indicate the converse. The

Figure 3: Histogram of the sampled difference in value for KG policy versus lookahead policies across the
100 randomly generated problems.

histograms show that non-myopic KG policy, multi-step policy and myopic policy with rollout all have
better performance than KG as the number of cases to the right of 0 for lookahead policies is significantly
larger than to the left. The better performance of non-myopic KG might benefit from the MCTS structure,
which introduces randomness to the process instead of calculating a closed form as KG does. In the
early stage, introducing greater randomness to the decision process is similar to preferring exploration to
exploitation, which is a rather good choice since we do not know much about the alternatives. Besides,

Figure 4: Histogram of the sampled difference in value for non-myopic KG policy versus other lookahead
policies across the 100 randomly generated problems.

we compare the performance of non-myopic KG policy against the multi-step policy and myopic policy
with rollout, as shown in Figure 4. It can be seen from the results that the amount by which non-myopic
KG policy outperforms the other two policies is larger than the amount by which it is outperformed. This
justifies the improvement by combining two lookahead stategies.

Moreover, we have tested the parameter settings for lookahead steps, rollout steps and MCTS simulation
times. First, for lookahead steps, the numerical results reveal that the increment of lookahead steps has a
diminishing marginal benefit, which suggests the largest gain is obtained from t = 1 to t = 2 (t is the depth
of MCTS). After two-step lookahead, the increment in depth will lead to exponential increase in search
space, but brings minimal performance improvement, as shown on the left of Figure 5, which plots the
histogram of sampled difference for t = 3 versus t = 2. Thus, in the above experiments, we only discuss the
case of t = 2. Second, for the rollout steps, we have tried full rollout (until N) and truncated rollout (until
logN ). The performance of non-myopic KG policy with full rollout is quite close to that with truncated
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rollout, as shown in on the right of Figure 5. This phenomenon implies that the increment of rollout
steps might also have a diminishing marginal benefit, so the truncated rollout could already reach a good
performance. Moreover, we find that the modifications of UCT algorithm could significantly accelerate
the MCTS process. The simulation times required to achieve convergence for a random problem in the
search tree would be reduced by 70% by using the modified UCT algorithm. The above discussion about
parameter settings suggests that, although it is quite time-consuming to develop a multi-step MCTS with
full rollout and UCT algorithm, we could just reduce the complexity by setting the lookahead steps as 2 with
modified UCT and implementing truncated rollout in practice, which also achieves a good performance.

Figure 5: Histogram of the sampled difference in value for non-myopic KG policy with different parameters.

6 CONCLUSION

In this paper, we address the fixed-budget R&S problem through a DP perspective and propose a non-myopic
KG procedure. We show that the non-myopic KG policy is superior than the classic myopic KG policy in
terms of both value function approximation and policy performance, especially when the total sampling
budget is small. Beyond the classic KG policy, our non-myopic structure is quite universal, and may be
extended to other myopic policies like Greedy, Expected Value of Information and so on.
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