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ABSTRACT

This paper is focused on a stochastic quasi-variational inequality (SQVI) problem with a continuous and
strongly-monotone mapping over a closed and convex set where the projection onto the constraint set
may not be easy to compute. We present an inexact variance reduced stochastic scheme to solve SQVI
problems and analyzed its convergence rate and oracle complexity. A linear rate of convergence is obtained
by progressively increasing sample-size and approximating the projection operator. Moreover, we show
how a competition among blood donation organizations can be modeled as an SQVI and we provide some
preliminary simulation results to validate our findings.

1 INTRODUCTION

Variational inequality (VI) problems have a broad range of applications in convex Nash games, traffic equi-
librium problems, economic equilibrium problems, amongst others (Facchinei and Pang 2007). Stochastic
VI (SVI) has been proposed in order to describe decision making problems which involve uncertainty. Such
an uncertainty commonly arises in simulation optimization and stochastic economic equilibrium involving
expectations (Gurkan et al. 1996). In this paper, we study a stochastic quasi-VI (SQVI) problem which
is an extension of SVI when the convex sets where the solutions are to be found depend on the solutions
themselves. Let X be a finite-dimensional real vector space. Consider the following SQVI problem: find
x ∈ K(x) such that

⟨F(x),y− x⟩ ≥ 0, ∀y ∈ K(x), (1)

where K : X → 2X is a set-valued mapping with non-empty bounded closed convex values K(x)⊆ X for all
x ∈ X , F(x)≜ E[G(x,ξ )], ξ : Ω → Rd , G : X ×Rd → Rn, and the associated probability space is denoted
by (Ω,F ,P). If K(x) = K, then problem (1) turns into a conventional SVI problem.

While deterministic VIs (Malitsky 2015) and SVIs (Jalilzadeh and Shanbhag 2019) have received
significant study over the last several decades, less is known regarding SQVIs. In the deterministic regime,
there have been several studies about numerical methods to solve QVIs (Pang and Fukushima 2005; Antipin
et al. 2013; Facchinei et al. 2014; Mijajlović and Jacimović 2015; Noor 2000; Noor 2007; Ryazantseva
2007; Salahuddin 2004). Recently, a linear convergence rate for strongly monotone QVI problem has
been obtained by Mijajlović et al. (2019) (see also Nesterov and Scrimali (2011)). However, there are
no available rate results for SQVI problems to the best of our knowledge. Moreover, in many scenarios,
computing the projection onto the constraint set may be expensive or may not have an analytic solution.
In this work, we propose a variance-reduced stochastic scheme to solve problem (1) with convergence
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guarantee by computing the projection inexactly at each iteration. Next, to show the need to model problems
as SQVI, instead of VI, we illustrate a real-world problem arising in healthcare in which projecting onto
the constraint might also be challenging and we discuss the existing gaps and the main contributions of
this paper.

1.1 Applications and Existing Gaps

Recently QVI problems have emerged in many application domains including communication networks,
wireless sensor networks, power control (Stupia et al. 2015; Tang et al. 2018) and healthcare (Nagurney
et al. 2017; Nagurney and Dutta 2019). To further motivate our research goals, we discuss one problem
that arises in healthcare in details which can be formulated as an SQVI problem.

Blood Donation Problem. Inspired by Nagurney and Dutta (2019), we consider the competition for
blood donations among blood service organizations, where each organization intends to maximize their
transaction utilities and compete on the quality of service that they provide in different regions. Suppose
we have n organizations providing service in m different locations. Each organization has the quality of
service as its strategic variable. We denote the level of service quality of organization i in location j by
Qi j and we group the level of service quality for all blood service organizations into matrix Q ∈Rn×m. We
assume there is an upper bound and lower bound for the quality level that each organization can provide,
and Ki denotes the feasible set of organization i, hence we denote the feasible set of all players in the game
by K = ∏

n
i=1 Ki. Each organization seeks to maximize its transaction utilities, Ui, and Nash equilibrium is

established if no blood service organization can improve upon its transaction utility by altering its quality
service levels, given that the other organizations have decided on their quality service levels. The associated
VI formulation for this Nash Equilibrium problem can be characterized by finding a quality service level
pattern Q∗ ∈ K such that the following holds:

−
n

∑
i=1

m

∑
j=1

∂Ui(Q∗)
∂Qi j

× (Qi j −Q∗
i j)≥ 0, ∀Q ∈ K. (2)

Gaps. There are two main gaps in the above formula presented by Nagurney and Dutta (2019).

(i) The total volume of blood donations in one location should be bounded from below to make sure we
meet the demand on that location, i.e., ∑i Pi j(Q)≥ Pj. Therefore, the feasible set of organization i
will depend on the strategy of other players and problem (2) will change to a QVI problem. Moreover,
depending on Pi j(·), the projection onto such a constraint set may not be easy to compute.

(ii) The stochasticity of the parameters is ignored. For instance, the cost of collecting blood is an
uncertain parameter, hence, the transaction utility Ui is stochastic.

As continually emphasized in the literature (Nagurney and Dutta 2019; Nagurney et al. 2017), the
main reason why these types of competitions are always formulated simply as VI and the dependency of
player i’s strategy on other players’ strategies is ignored, is that solving a QVI/SQVI problem is more
complicated and challenging than solving the VI/SVI counterpart. There is no efficient method for solving
such problems.

1.2 Contributions

To fill the aforementioned gaps, in this paper, we consider strongly monotone SQVI problems. We develop
and analyze an inexact variance-reduced stochastic scheme (Inexact-VR-SQVI). In particular, we investigate
the convergence rate of the proposed method under the conditions where the projection onto the constraint
may or may not be easy to compute. In the latter scenario, at each iteration of the proposed method,
the projection step is solved inexactly and the effect of the underlying error on the convergence rate is
characterized. More importantly, by improving the accuracy of such approximation at an appropriate rate
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combined with a variance reduction technique, we demonstrate a linear convergence rate that matches
the best-known rate result in the deterministic counterpart. We also show that achieving an ε-solution,
i.e., E[∥xk − x∗∥] ≤ ε , requires O(1/ε2) sample operators. To the best of our knowledge, this is the first
convergence rate result for SQVI problems.

Next, we state the main assumptions that are needed for the convergence analysis. In Section 2, we
introduce the Inexact-VR-SQVI algorithm and in Section 3, we show the performance of the proposed
scheme by implementing it on the blood donation problem that is modeled as SQVI. Finally, Section 4
presents our main conclusions and future work.

1.3 Assumptions

In this section, first we define important notations and then the main assumptions that we need for the
convergence analysis are stated.

Notations. Throughout the paper, ∥x∥ denotes the Euclidean vector norm, i.e., ∥x∥=
√

xT x. PX [u] is
the projection of u onto the set X , i.e. PX [u] = argminz∈X∥z−u∥. E[x] is used to denote the expectation
of a random variable x.
Assumption 1 Assume that operator F : X → Rn is µ-strongly monotone

⟨F(x)−F(y),x− y⟩ ≥ µ∥x− y∥2, ∀x,y ∈ X ,

and L-Lipschitz continuous on X

∥F(x)−F(y)∥ ≤ L∥x− y∥, ∀x,y ∈ X .

If Fk denotes the information history at epoch k, then we have the following requirements on the
associated filtrations where w̄k,Nk ≜

1
Nk

∑
Nk
j=1 (G(xk,ξ j,k)−F(xk)).

Assumption 2 There exists ν > 0 such that E[w̄k,Nk | Fk] = 0 and E[∥w̄k,Nk∥2 | Fk] ≤ ν2

Nk
holds almost

surely for all k, where Fk ≜ σ{x0,x1, . . . ,xk−1}.
In our analysis, it is assumed that an inexact solution of the projection operator exists through an inner

algorithm A satisfying the following assumption. Later, in section 2.1, instances of algorithms satisfying
this assumption are discussed.
Assumption 3 There is an iterative method A that satisfies the following property: For any x ∈ Rn,
any closed and convex set K ⊆ Rn, and an initial point u0, A can generate an output u ∈ Rn such that
∥u− ũ∥2 ≤C/t2 for some C > 0 satisfying ũ = argminy∈K{1

2∥y− x∥2}.

2 CONVERGENCE ANALYSIS

In our analysis, the following technical lemma for projection mappings is used.
Lemma 1 (Bertsekas et al. 2003) Let X ⊆ Rn be a nonempty closed and convex set. Then the following
hold: (a) ∥PX [u]−PX [v]∥ ≤ ∥u− v∥ for all u,v ∈ Rn; (b) (PX [u]−u)T (x−PX [u]) ≥ 0 for all u ∈ Rn and
x ∈ X .

The main difference between VIs and QVIs is in the existence of the solution. It is well-known that if
operator F is strongly monotone and Lipschitz continuous on a closed and convex set, then corresponding
VI (and SVI) has a unique solution (Nesterov and Scrimali 2011; Jalilzadeh and Shanbhag 2019). However,
these conditions are not sufficient for the existence of the QVI solutions. In the following proposition, we
state the requirements needed in our analysis in order to prove the existence of a solution for QVIs (and
similarly for SQVIs).
Proposition 1 (Noor and Oettli 1994) Suppose Assumption 1 holds and there exists γ > 0 such that
∥PK(x)[u]−PK(y)[u]∥ ≤ γ∥x−y∥ for all x,y,u ∈ X and γ +

√
1−µ2/L2 < 1. Then, problem (1) has a unique

solution.

3101



Alizadeh, Otero, and Jalilzadeh

More discussion on the existence of a solution to an SQVI problem can be found in Ravat and Shanbhag
(2017). In Algorithm 1, a variance-reduced stochastic scheme for solving SQVI problem (1) is presented.
In particular, at each iteration, a step along the negative direction of the sample-average operator G(·,ξ ),
with step size η is taken following by computing an inexact solution, yk, of the projection onto the set K(xk)
using Algorithm A . The next iterate point is calculated based on a carefully selected convex combination of
the previous iterates, xk, and yk. In our analysis, ek denotes the error of computing the projection operator,

i.e., for any k ≥ 0 ek ≜ uk −PK(xk)

[
xk −η

∑
Nk
j=1 G(xk,ξ j,k)

Nk

]
. In Theorem 1, we derive the expected solution

error bound in terms of ek. Then, in Corollary 2, we obtain the rate and complexity statements for the
Algorithm 1.

Algorithm 1 Inexact-VR-SQVI
Input: x0 ∈ X , η > 0, {Nk}k, {tk}k, {αk}k and Algorithm A satisfying Assumption 3;
for k = 0, . . .T −1 do
(1) Find an approximate solution of the following projection using Algorithm A in tk iterations

yk ≈ PK(xk)

[
xk −η

∑
Nk
j=1 G(xk,ξ j,k)

Nk

]
;

(2) xk+1 = (1−αk)xk +αkyk;
end for
Output: xk+1;

Theorem 1 Consider the iterates generated by Algorithm 1 and suppose Assumptions 1 and 2 hold. Choose
αk = ᾱ ∈ (0,1) and define β ≜ γ +

√
1+L2η2 −2ηµ , q ≜ (1−β )ᾱ . Choose stepsize η such that the

following holds:

|η − µ

L2 |<
√

µ2−L2(2γ−γ2)

L2 .

Let Nk = ⌈ρ−2k⌉ for all k > 0 where ρ > 1−q. Then the following holds:

E [∥xT − x∗∥]≤ ρ
T∥x0 − x∗∥+ ᾱηνρ

T−1 +
ᾱηνρT

ρ +q−1
+ ᾱ

T−1

∑
k=0

(
∥ek∥ρ

T−1−k
)
. (3)

Proof. Recall that w̄k,Nk =
1

Nk
∑

Nk
j=1(G(xk,ξ j,k)−F(xk)). Using the update rule of xk+1 in Algorithm 1

and the fact that ek denotes the error of computing the projection operator, we obtain the following.

∥xk+1 − x∗∥
=
∥∥(1−αk)xk +αkPK(xk) [xk −η(F(xk)+ w̄k,Nk)]+αkek − (1−αk)x∗−αkPK(x∗) [x

∗−ηF(x∗)]
∥∥

≤ ∥(1−αk)(xk − x∗)∥+αk∥PK(xk) [xk −η(F(xk)+ w̄k,Nk)]−PK(x∗) [xk −η(F(xk)+ w̄k,Nk)]∥
+αk∥PK(x∗) [xk −η(F(xk)+ w̄k,Nk)]−PK(x∗) [x

∗−ηF(x∗)]∥+αk∥ek∥
≤ ∥(1−αk)(xk − x∗)∥+αkγ∥xk − x∗∥+αk ∥xk − x∗−η(F(xk)−F(x∗))∥︸ ︷︷ ︸

term (a)

+αkη∥w̄k,Nk∥+αk∥ek∥, (4)

where in the last inequality we used Lemma 1 and Proposition 1. Now using strong monotonicity and
Lipschitz continuity, we can bound term (a) in inequality (4).

∥xk − x∗−η(F(xk)−F(x∗))∥2 = ∥xk − x∗∥2 +η
2∥F(xk)−F(x∗)∥2 −2η⟨xk − x∗,F(xk)−F(x∗)⟩

≤ (1+L2
η

2 −2ηµ)∥xk − x∗∥2

=⇒ term(a) ≤
√

1+L2η2 −2ηµ∥xk − x∗∥. (5)

3102



Alizadeh, Otero, and Jalilzadeh

Using (5) in (4), defining β ≜ γ +
√

1+L2η2 −2ηµ and qi ≜ (1−β )αi we get the following:

∥xk+1 − x∗∥ ≤ (1−αk)∥xk − x∗∥+αk

(
γ +
√

1+L2η2 −2ηµ

)
∥xk − x∗∥+αkη∥w̄k,Nk∥+αk∥ek∥

= (1− (1−β )αk)∥xk − x∗∥+αkη∥w̄k,Nk∥+αk∥ek∥

≤
k

∏
i=0

(1−qi)∥x0 − x∗∥+
k−1

∑
i=0

((
k−1

∏
j=i

(1−q j+1)

)
αi (η∥w̄i,Ni∥+∥ei∥)

)
+αk (η∥w̄k,Nk∥+∥ek∥).

(6)

For any k, we choose αk = ᾱ , where 0 < ᾱ < 1. Based on the conditions of the theorem, one can easily
verify that β < 1 and qk = q < 1 for all k ≥ 0. Now, by choosing Nk = ⌈ρ−2k⌉, where ρ ≥ 1−q, it follows
from inequality (6) and Assumption 2 by taking expectation from both sides that for any T ≥ 1,

E [∥xT − x∗∥]≤ (1−q)T∥x0 − x∗∥+ ᾱη

T−2

∑
k=0

(
(1−q)T−1−k ν

ρ−k

)
+ ᾱ

T−1

∑
k=0

(
∥ek∥(1−q)T−1−k

)
+ ᾱη(ν/ρ

−T+1).

Using the fact that ρ ≥ 1−q, the following holds.

E [∥xT − x∗∥]≤ ρ
T∥x0 − x∗∥+ ᾱηνρ

T−1 + ᾱηνρ
T−1

T−2

∑
k=0

((1−q)/ρ)T−1−k + ᾱ

T−1

∑
k=0

(
∥ek∥ρ

T−1−k
)

≤ ρ
T∥x0 − x∗∥+ ᾱηνρ

T−1 +
ᾱηνρT

ρ +q−1
+ ᾱ

T−1

∑
k=0

(
∥ek∥ρ

T−1−k
)
,

where in the last inequality we used the fact that ∑
T−2
k=0 ((1−q)/ρ)T−1−k ≤ ∑

T−1
j=1 (

1−q
ρ
) j ≤ ρ

ρ+q−1 .

Corollary 2 Under the premises of Theorem 1 and selecting tk =
(k+1) log2(k+2)

ρk , where tk is the number of
steps for algorithm A at each iteration k, then,

(i) the following holds:

E[∥xT − x∗∥]≤ ρ
T∥x0 − x∗∥+ ᾱηνρ

T−1 +
ᾱηνρT

ρ +q−1
+ ᾱCDρ

T−1 = O(ρT ),

where D ≜ ∑
∞
k=0

1
(k+1) log2(k+2)

≤ 3.39.
(ii) to compute a solution xT such that E[∥xT − x∗∥] ≤ ε , the total number of sample operators is

∑
T−1
k=0 Nk ≥ O(1/ε2).

Proof. (i) Recall that ek represents the error of computing the projection at iteration k. According
to the assumption 3, Algorithm A has a convergence rate of C/t2

k within tk inner steps. By selecting

tk =
(k+1) log2(k+2)

ρk we conclude that ∥ek∥ ≤ C
tk
= Cρk

(k+1) log2(k+2)
. Therefore, the following holds:

ᾱ

T−1

∑
k=0

(
∥ek∥ρ

T−1−k
)
≤ ᾱCρ

T−1
T−1

∑
k=0

1
(k+1) log2(k+2)

≤ ᾱCDρ
T−1,

where we let D = ∑
∞
k=0

1
(k+1) log2(k+2)

≤ 3.39. Therefore, we obtain

E[∥xT − x∗∥]≤ ρ
T∥x0 − x∗∥+ ᾱηνρ

T−1 +
ᾱηνρT

ρ +q−1
+ ᾱCDρ

T−1 = O(ρT ). (7)
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(ii) To compute an ε-solution, i.e., E[∥xT − x∗∥]≤ ε , it follows from (7) that T ≥ log1/ρ(D̄/ε) iterations
is required, where D̄ = ∥x0 − x∗∥+ ᾱηνρ−1 + ᾱην

ρ+q−1 + ᾱCDρ−1. Hence, we obtain

T−1

∑
k=0

Nk ≥
ρ2

1−ρ2

(
D̄2

ε2 −1
)
.

Remark 1 (Total number of inner iterations) In Algorithm 1, each iteration requires taking tk =
(k+1) log2(k+2)

ρk inner steps of Algorithm A . Therefore, the total number of inner iterations is

T−1

∑
k=0

tk =
T−1

∑
k=0

(k+1) log2(k+2)
ρk ≤ T log2(T +1) (1/ρ)T

1/ρ−1 .

To achieve an ε-solution, we have T = log1/ρ D̄/ε , hence one can obtain ∑
T−1
k=0 tk ≤ O( 1

ε
log(1/ε)).

Remark 2 (Exact-VR-SQVI) The solution error bound obtained in (3) represents a general convergence
rate in terms of the error of the projection operator. The decay of this error governs the convergence rate
of the algorithm. In particular, in Corollary 2 we characterized the rate of decay of this error to guarantee
a linear convergence rate. In other extreme, when the projection onto the constraint set is easy to compute,
i.e., ∥ek∥= 0 for all k ≥ 0. Then under the premises of Theorem 1, a linear convergence rate for Algorithm
1 can be obtained. In particular, the following bound for the expected solution error holds:

E [∥xT − x∗∥]≤ ρ
T∥x0 − x∗∥+ ᾱηνρ

T−1 +
ᾱηνρT

ρ +q−1
.

2.1 Instances of the Inner Algorithm A

As discussed in section 2, when the projection onto the constraint set K(x) is not easy to compute, one needs
to use an approximation of such operator. Indeed, such an approximation can be obtained via implementing
Algorithm A with a progressive accuracy at each iteration.

Here we consider a general class of convex constraint set comprises of convex functional constraints.
In particular, we assume that K(x) = {y ∈ X | gi(x,y)≤ 0, i ∈ {1, . . . ,m}}, where gi(x, ·) : X →R is convex
for any x ∈ X and i ∈ {1, . . . ,m}. Therefore, at each iteration of Algorithm 1 one needs to compute the
projection operator inexactly which is of the following form:

min
u∈K(x)

1
2
∥u− x∥2 , (8)

for some given x∈Rn. Problem (8) has a strongly convex objective function with nonlinear convex constraints,
and there has been a variety of methods developed in the optimization literature to solve such a problem.
One of the efficient class of methods for solving large-scale convex constrained optimization problem with
strongly convex objective that satisfies Assumption 3 is the first-order primal-dual scheme guaranteeing
a convergence rate of O(1/t2), where t denotes the number of iterations, in terms of suboptimality and
infeasibility, e.g., He et al. (2015), Malitsky (2018) and Hamedani and Aybat (2021).

For instance, Accelerated Primal-Dual with Backtracking (APDB) method introduced by Hamedani
and Aybat (2021) with an initial point u0 and output u has a convergence rate of O(1/t2) within t steps,
where ∥u− ũ∥2 ≤ (a1∥u0− ũ∥2+a2)/t2 for some a1,a2 > 0, hence, satisfying the condition of Assumption
3. In the next section, we use APDB as an instance of Algorithm A for solving the projection operator
inexactly for various numerical experiments.
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3 NUMERICAL EXPERIMENTS

In this section, we consider two blood donation examples inspired, in part, by the American Red Cross (cf.
(American Red Cross 2016)). We concentrate on Tucson, Arizona, where the American Red Cross and
United Blood Services compete with each other. The experiments are performed on Matlab (2021) on a
64-bit Windows 11 with Intel i5-1135G7 @2.4GHz with 8GB RAM. Inspired by the problems considered
in (Nagurney and Dutta 2019), we consider two settings for the blood donation problem. In each example,
we implemented two variants of the VR-SQVI algorithm; exact-VR-SQVI and inexact-VR-SQVI. For
inexact-VR-SQVI, we used APDB (Hamedani and Aybat 2021) as an instance of Algorithm A . In exact-
VR-SQVI, to solve projection subproblem, we use commercial optimization solver MOSEK through CVX
(Grant, M. and Boyd, S. 2014). We then demonstrate the advantage of inexact approach in terms of the
running time of the algorithm when constraint set is not easy to project.

Figure 1: The network
structure.

Example 1. In this example, we consider two blood service orga-
nizations: the American Red Cross and United Blood Services. These
organizations correspond to organizations 1 and 2 in Figure 3. Formed in
1943, United Blood Services is a nonprofit company based in Arizona that
offers blood and services to over 500 hospitals in 18 states. In this example,
both United Blood Services and the American Red Cross have stationary
areas to donate blood in Tucson. These are represented by the two area
nodes in Figure 3.

Consider the blood donation problem defined in Section 1.1 where
the utility associated with the blood service organization i is denoted by
ωi ∑

m
j=1 γi jQi j, where ωi and γi j are positive numbers. The cost associated

with collecting blood in location j by organization i is denoted by ci j(Q).
Moreover, Pi j(Q) represents a volume of blood donations in location j by
organization i and we associate an average price πi for blood service organization i. Therefore, the transaction
utility Ui can be defined as

Ui ≜ πi

m

∑
j=1

Pi j(Q)+ωi

m

∑
j=1

γi jQi j −
m

∑
j=1

ci j(Q).

The American Red Cross has a baseline of 130 and 135 repeat donors. United Blood Services has
lower baseline populations of 123 and 135. These monthly values are represented in the following four
transaction utility functions. The volume of blood donations in both locations for the American Red Cross
are:

P11(Q) = 10Q11 −Q21 −Q22 +130

P12(Q) = 12Q12 −Q21 −2Q22 +135.

The volume of blood donations in both locations for the United Blood Services are:

P21(Q) = 11Q21 −Q11 −Q12 +123

P22(Q) = 12Q22 −Q11 −Q12 +135.

The utility function components of the transaction utilities of these blood service organizations are:

ω1 = 9, γ11 = 8, γ12 = 9.

ω2 = 10, γ21 = 9, γ22 = 10.

In this example, blood collection sites must pay for employees, supplies, energy, and providing the
level of quality service. The uncertainty of the total mentioned operating costs over time are represented
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in the following functions:

c11(Q,ξ ) = (5+ξ )Q2
11 +10000, c12(Q,ξ ) = (18+ξ )Q2

12 +12000,

c21(Q,ξ ) = (4.5+ξ )Q2
21 +12000, c22(Q,ξ ) = (5+ξ )Q2

22 +14000,

where ξ has an i.i.d. standard normal distribution. The lower and upper bounds on the quality levels are
considered as follows:

Q11 = 50,Q11 = 80, Q12 = 40,Q12 = 70,

Q21 = 60,Q21 = 90, Q22 = 70,Q22 = 90.

The prices, which correspond to the collection component of the blood supply chain, are π1 = 70, π2 = 60.
We consider the minimum volume of blood required in location 1 and 2 are P1 = 1200 and P2 = 1100,
respectively. Hence, the blood volume requirement is depicted by the following constraints:

9Q11 +10Q21 −Q22 −Q12 +253 ≥ 1200,

11Q12 −Q21 +10Q22 −Q11 +270 ≥ 1100.

By implementing Inexact-VR-SQVI algorithm, we obtain the following solutions

Q∗
11 = 72.81, Q∗

12 = 40.00, Q∗
21 = 78.09, Q∗

22 = 77.59,

and optimal value for each organization with the following values: U1(Q∗) = 7065 and U2(Q∗) = 40589.
Figure 2 illustrates the progress of Inexact-VR-SQVI in terms of the relative suboptimality for the utility

function of each organization versus the running time. From Table 1, one can observe that Exact-VR-SQVI
algorithm takes 97 seconds for a simple 2-dimensional example while the Inexact-VR-SQVI algorithm can
obtain an approximated solution in 0.5 seconds with a relative accuracy of less than 10−6.

Figure 2: Relative sub-optimality error of Inexact-VR-SQVI versus time for Example 1.

Table 1: The utility and CPU-time for exact and inexact-VR-SQVI for Example 1.

Methods Utility CPU-Time(s)
Exact-VR-SQVI U1 = 0.7065e+4, U2 = 4.0589e+4 97.64

Inexact-VR-SQVI U1 = 0.7065e+4, U2 = 4.0589e+4 0.50

Example 2. This example includes the same network topology as in Example 1, that is, the one depicted
in Figure 3. The problem’s parameters are selected as those in Example 1 except Pi j(·)’s functions. In
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particular, in this example we consider

P11(Q) = 50
√

10Q11 −Q21 −Q22 +130, P12(Q) = 30
√

12Q12 −Q21 −2Q22 +135,

P21(Q) = 40
√

11Q21 −Q11 −Q12 +123, P22(Q) = 20
√

12Q22 −Q11 −Q12 +135.

Therefore, the constraints related to the minimum requirement for blood collection in this example are:

50
√

10Q11 −Q21 −Q22 +130+40
√

11Q21 −Q11 −Q12 +123 ≥ 1200,

30
√

12Q12 −Q21 −2Q22 +135+20
√

12Q22 −Q11 −Q12 +135 ≥ 1100.
(9)

Implementing Inexact-VR-SQVI on this example leads to the following solutions:

Q∗
11 = 69.72, Q∗

12 = 40.00, Q∗
21 = 61.89, Q∗

22 = 70.00,

and U1(Q∗) = 3234401 and U2(Q∗) = 264865.
It is worth noting that since the constraints set in this example is described by nonlinear functional

constraints in (9), the projection operator requires a more computational time as it is reflected in the running
time of Exact-VR-SQVI–see Table 2. However, the Inexact-VR-SQVI has a lower per iteration complexity
leading to a far less computational time to achieve an accuracy of less than 10−6 as shown in Figure 3.

Table 2: The utility and CPU-time for exact and inexact-VR-SQVI for Example 2.

Methods Utility CPU-Time(s)
Exact-VR-SQVI U1 = 3.234402e+6, U2 = 2.648863e+6 213

Inexact-VR-SQVI U1 = 3.234401e+6, U2 = 2.648865e+6 0.72

Figure 3: Relative sub-optimality error of Inexact-VR-SQVI versus time for Example 2.

4 CONCLUDING REMARKS
In this paper, we concentrate our efforts on the strongly-monotone stochastic quasi-variational inequality
problems. An inexact variance reduced scheme was developed; moreover, the convergence rate and the
oracle complexity of the proposed method are characterized. We believe that the proposed method represents
the first inexact scheme with a convergence guarantee to solve SQVI problems when the constraints are not
easy to project. Additionally, we demonstrated the effectiveness and robustness of the proposed inexact
method for solving blood donation problems in the numerical experiments. The results obtained in this paper
are a crucial first step in examining more general cases. Future directions include investigating monotone
and weakly-monotone SQVI problems with applications in various domains such as power systems and
information security.
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