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ABSTRACT

This paper reviews the state-of-the-art model-based adaptive sampling approaches for single-objective
black-box optimization (BBO). While BBO literature includes various promising sampling techniques,
there is still a lack of comprehensive investigations of the existing research across the vast scope of BBO
problems. We first classify BBO problems into two categories of engineering design and algorithm design
optimization and discuss their challenges. We then critically discuss and analyze the adaptive model-
based sampling techniques focusing on key acquisition functions. We elaborate on the shortcomings of
the variance-based sampling techniques for engineering design problems. Moreover, we provide in-depth
insights into the impact of the discretization schemes on the performance of acquisition functions. We
emphasize the importance of dynamic discretization for distance-based exploration and introduce EEPA+,
an improved variant of a previously proposed Pareto-based sampling technique. Our empirical analyses
reveal the effectiveness of variance-based techniques for algorithm design and distance-based methods for
engineering design optimization problems.

1 INTRODUCTION

The task of optimizing a set of design parameters of a black-box system is of great importance whether the
parameters are for a real engineering process (Chen et al. 2019), a computer simulation (April et al. 2003), a
real scientific experiment (Angermueller et al. 2020), or a complex algorithm (Feurer and Hutter 2019). The
term black-box is referred to the underlying structure (derivatives or their approximations) of the objective
function that cannot be explicitly defined as it is unknown, complex, or does not exist. In most cases, the
black-box function is expensive to compute, as the evaluation time and process to obtain the responses
of sample points are prohibitive. The unconstrained black-box optimization (BBO) problem is defined as
minimizing or maximizing a black-box function f (x) over a box-constrained input space xL ≤ x ≤ xU ,
where x is a d-dimensional input vector of variables, xL and xU are the lower bound and upper-bound of
the range of the variables, and f (x) denotes the unknown expensive objective function. Although we use
minimization for mathematical derivations, we consider − f (x) for maximization problems.

Derivative-free optimization (Rios and Sahinidis 2013) is the most widely used group of techniques in
BBO literature. Due to the characteristics of the black-box functions, classical gradient-based optimization
methods are not applicable in the BBO context. Direct-search methods (Alarie et al. 2021) and Model-based
methods (Jiang et al. 2020) are two well-known classes of techniques in derivative-free optimization. The
former evaluates function values in a subset of sample points and selects points based on direct comparison
of function values without any derivative approximation. The latter, however, considers a surrogate model
to estimate the unknown black-box function. The fitted surrogate is either directly optimized (Jones 2001)
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or utilized to guide a sampling core through an adaptive approach to select informative points in the design
space towards the global optimum.

The model-based adaptive sampling strategy is one of the most effective approaches in BBO literature.
Adaptive sampling selects sample points from regions of interest where the interest is measured by two
critical elements of exploration and exploitation. Exploitation attempts to sample points in regions that
may contain global optimum, which can be detected utilizing the properties of the fitted surrogate model in
explored regions. The exploration, on the other hand, attempts to find undiscovered regions. Designing a
sampling core depends on defining acquisition functions to incorporate exploration and exploitation criteria.
In this paper, we categorize acquisition functions into two main groups of functions that have a single explicit
mathematical formula including Expected Improvement (EI) (Jones et al. 1998), Probability Improvement
(PI) (Kushner 1964), Entropy Search (ES) (Hennig and Schuler 2012), Knowledge Gradient (KG) (Frazier
et al. 2008), and Upper Confidence Bound (UCB) (Srinivas et al. 2009), Dynamic Coordinate Search using
Response Surfaces (DYCORS) (Regis and Shoemaker 2013), and the multi-criteria Pareto-based including
Surrogate Optimization with Pareto Selection (SOP) (Krityakierne et al. 2016) and Exploration Exploitation
Pareto Approach (EEPA) (Dickson 2014). In the former, a control hyperparameter linearly aggregates the
exploration and exploitation metrics. In the latter, however, a non-dominated set is obtained from a Pareto
front construction on the surrogate estimates as the exploitation dimension and a distance metric (comparing
evaluated samples and new candidates) as the exploration metric. The Pareto construction provides a more
flexible trade-off for exploration and exploitation compared to the restricted linear aggregation and does
not require tuning a control parameter.

Furthermore, acquisition functions either use variance-based exploration (EI, PI, ES, KG, and UCB),
or distance-based exploration metrics (SOP, DYCORS, and EEPA). Although evaluating points with high
uncertainty using variance-based acquisition functions is valuable for identifying undiscovered regions, it
requires accurate estimates of the error distribution. Thus, it lacks a global exploration metric. Variance-
based methods often converge to local optima because of their limitation in exploring the entire search
space, effectively using finite samples. As a result, model-independent exploration metrics seem to be more
competent for global exploration, either by defining a weighted score acquisition function (e.g., Regis and
Shoemaker (2013)) or by constructing a Pareto front (e.g, Dickson (2014)).

In this paper, we aim to investigate the performance of the most commonly used acquisition functions
in model-based adaptive sampling approaches for black-box functions on a wide range of applications and
conduct a comprehensive comparison to provide valuable guidelines for BBO researchers and practitioners.
We specifically separate the applications by the nature of the problems as engineering design optimization
and algorithmic design optimization. The first group’s ultimate goal is to find a globally optimal design
by optimizing the performance objective of an unknown complex system, whereas the second group’s goal
is to optimize the performance of a complex learning function. Examples of engineering design problems
exist in airfoil design (Chen et al. 2019), circuit design (Lockwood 2022), groundwater resources (Müller
et al. 2021), fluid mechanics (Forrester et al. 2006), chemical processes (Griffiths and Hernández-Lobato
2020), and other science problems such as biological design settings (Angermueller et al. 2020). Another
class of BBO problems deals with optimizing algorithmic parameters. These algorithms can be machine
learning models or optimization solvers. Optimization solvers (e.g., CPLEX and GUROBI) consist of a
large number of combinations of possible solver options that largely affect the performance of the solver (Liu
et al. 2019). Machine learning models have hyperparameters that must be optimized (aka Hyperparameter
Tuning) where training time is computationally expensive and the solution space of hyperparameters is
often intractable. Instances of BBO for hyperparameter tuning are widespread (Wistuba et al. 2016; Feurer
and Hutter 2019). Our results support the hypothesis that balancing the exploration-exploitation trade-off is
more critical for engineering design and global optimization test problems with highly complex and several
local optima compared to algorithmic design problems (e.g., hyperparameter tuning) with less oscillated
mappings. The results confirm that the Pareto-based sampling approaches or acquisition functions with
explicit emphasis on exploration and exploitation (e.g., UCB) are more suitable for such complex settings.
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Other variance-based acquisition functions with an uncontrolled emphasis on exploration and exploitation
are more successful for less complex settings such as hyperparameter tuning.

Furthermore, the above-mentioned common acquisition functions are used to sample from a discretized
set of generated sample points. Many applications are naturally defined over discrete solution space (e.g.,
the number of hidden units in Neural networks (Luong et al. 2019)). For problems with continuous variables
(x ∈ Rn), the assumption of natural discretized solution space existence is violated. There are common
approaches in the literature to discretize the representation of the continuous solution space. Design of
Experiment space-filling methods (Pronzato and Müller 2012) can be employed in a one-shot manner to
predesign the solution space, or in a sequential manner to generate discretized candidate points in each
iteration. Smarter discretization strategies such as the Dynamic Dimensioned Search (DDS) approach
has been proposed by Tolson and Shoemaker (2007) and adopted in DYCORS by Regis and Shoemaker
(2013) to generate high fidelity candidate points that are not necessarily space-filling but rather generated
around interesting regions. DDS approach has been shown to be effective in practice compared to one-shot
or sequential space-filling approaches. EEPA (Dickson 2014) constructs the Pareto front on a randomly
generated discretized set of candidates identifying the non-dominated points. Since the performance of
EEPA on a fixed predesigned random set is neither practical nor promising, inspired by DYCORS, we design
a dynamic discretization scheme for EEPA in this paper, which significantly improves its performance on
a variety of problems. We refer to the advanced EEPA as EEPA+. As explained in Section 1, DYCORS
is a score-based sampling with a single explicit formula, whereas EEPA is a multi-criteria Pareto-based
sampling. We simply use the dynamic discretization approach that DYCORS employs.

The results provide deep insights into the choice of acquisition function for the problem of interest for
practitioners and shed light on the challenges of each group of techniques for BBO researchers to address
them appropriately. Our empirically justified observations are as follows:

• Variance-based are mostly outperformed by distance-based acquisition functions for global opti-
mization test problems. For high-dimensional cases, the outperformance is even more noticeable.

• Distance-based acquisition functions are effective in real-world engineering design problems.
• Variance-based acquisition functions are more suitable for hyperparameter tuning problems, although

most acquisition functions have close performances.
• Overall, we observed competitive performance for our proposed EEPA+ across all test problems.

In Section 2, we review the generic model-based BBO and the well-known acquisition functions. In
Section 3, we provide background on the complexities associated with different BBO problems. Section 4
mainly discusses the critical role of the discretization scheme for sampling. In Section 5, we perform
an extensive experimental evaluation for three main categories of problems utilizing different acquisition
functions. Section 6 and Section 7 provide discussion on our findings and general guidelines on the
performance of each group of techniques for different types of problems.

2 ACQUISITION FUNCTIONS FOR MODEL-BASED ADAPTIVE SAMPLING

A generic model-based adaptive sampling approach follows an iterative sequential sampling. Let D =
{x1, . . . ,xn} be the initial set of evaluated points, commonly obtained from a DOE method and F =
{ f (xi)|xi ∈ D} be the set of function values corresponding to the evaluated points. The adaptive sampling
starts with fitting a cheap to evaluate surrogate model, f̂ , on the evaluated data points. Next, a sample
generation scheme (e.g., random) is utilized to discretize the solution space, X . Finally, an acquisition
function determines the promising set of candidate points S with the maximum acquisition value to be
evaluated next. Note that D is updated by appending the newly evaluated points in each iteration. The
algorithm iterates until the termination criterion is satisfied, which is commonly an evaluation budget.

Gaussian processes (GP) (aka Kriging) (Rasmussen 2004) is one of the most popular surrogate models
in Black-Box Optimization that considers the objective function f (.) as the realization of a Gaussian Process.
A Gaussian process (GP), f̂ , models the predicted mean µ̂t(x) and the degree of uncertainty σ̂t(x) at any
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point x in the input space, given a set of observations D , where xt is the input vector, and f (xt) is the
corresponding output collected at iteration t. Let X represent the matrix of already evaluated points D , and
f be the vector containing elements of F , the estimated mean µ̂(x) = K(X ,x)Σ−1f and variance σ̂(x) =
K(x,x)−K(X ,x)Σ−1K(x,X) are updated according to their equations where Σ represents the covariance
matrix and K is a positive semidefinite (PSD) similarity kernel. In this paper, we consider investigating the
most commonly used acquisition functions for model-based adaptive sampling of black-box optimization.
Let f o

n = max{ f (xi)|xi ∈ Dn} be the maximum observed value after n evaluations. Note that based on
GP, at any given point, x, the function is sampled from a normal distribution, f (x) ∼ N (µ̂(x), σ̂2(x)).
Proposed by Kushner (1964), Probability of Improvement (PI) directly measures the probability of
inducing improvement P(I(x)) =P( f (x)> f o

n ) =Φ( µ̂(x)− f o
n

σ̂(x) ), where Φ(x) is the standard normal cumulative
distribution function. The Expected Improvement (EI) criterion gained considerable attention after Jones
et al. (1998) with the closed-form expression of E(I(x)) = (µ̂(x)− f o

n )Φ( µ̂(x)− f o
n

σ̂(x) )+ σ̂(x)φ( µ̂(x)− f o
n

σ̂(x) ), where
I(x) = max( f (x)− f o

n ,0) denotes improvement over the current best-known solution at a given point x and
φ(x) is the standard normal density function. Upper Confidence Bound (UCB) is among the most successful
acquisition functions, which was developed by Srinivas et al. (2009). The UCB equation combines explicit
objectives for exploration σ̂(x) and exploitation µ̂(x) in the format αUCB(x,βt) = µ̂(x)+β 0.5

t σ̂(x) through
the trade-off hyperparameter βt , where t denotes the number of function evaluations.

Following the development of information-based acquisition functions such as Entropy Search (ES) in
Hennig and Schuler (2012) and Predictive Entropy Search (PES) in Hernández-Lobato et al. (2014), a Max-
value Entropy Search (MES) approach has been proposed in Wang and Jegelka (2017) which is a relatively
cheaper and more robust acquisition objective than its previous counterparts. MES computes the information
gain about the maximum value y∗ = f (x∗) instead of the optimal location x∗ through the expression
MES(x) = H(P(y|x,Dn,Fn))−E[H(P(y|y∗,Dn,x)))]. Proposed by Frazier et al. (2008), Knowledge
Gradients (KG) quantifies the knowledge gained from each candidate point as the conditional expectation
of the resulting increase in the posterior mean. Let µ̂o

n = max∀x∈X µ̂n(x) be the maximum of posterior
mean after n evaluations and µ̂∗

n+1 = max∀x∈X µ̂n+1(x) be the updated posterior mean after evaluation of
n+1 point. The knowledge gained from this sampling could be interpreted as the resulting increase in the
prediction mean for the maximization problem (µ̂∗

n+1 − µ̂o
n ). As a result, the KG acquisition expression for

sampling each point x for the n+1 evaluation could be calculated as the KGn(x) = En[µ̂
∗
n+1− µ̂o

n |xn+1 = x].
Most analytical acquisition functions above require evaluating an expectation term over a discrete finite

set of candidate points to return the best candidate based on the acquisition values. As a result, they are not
directly applicable in a batch setting where joint consideration of sample points is of interest. Monte Carlo
(MC) Batch Sampling can serve as an appropriate alternative to approximate the batch sampling process.
In this paper, we adopt an efficient MC approach (Balandat et al. 2020), which uses a reparameterized
representation to derive approximations for the analytical acquisition functions to sample a batch of sample
points. We refer to the associated batched strategies as “q-acquisition name” (e.g., qEI) and denote the
sequential version where q = 1 as the “s-acquisition name” (e.g., sEI).

Originally introduced by Regis and Shoemaker (2007), the Weighted Score Acquisition function
assigns scores to each candidate point based on a linearly aggregated function over a distance metric
∆(x)x∈X = minx∈X ∥x− x∥ and the estimated surrogate value f̂ (x) as explicit exploration and exploitation
criteria. Let wt

r and wt
d be the predefined weight pattern for f̂ (x) and ∆(x)x∈X at iteration t (wt

d = 1−wt
r).

Let V t
d(x) =

∆(x)max−∆(x)
∆(x)max−∆(x)min

and V t
r (x) =

f̂ (x)− f̂ (x)min

f̂ (x)max− f̂ (x)min
be the functions to return a normalized score for the

surrogate value and the distance criterion. The weighted score acquisition for the minimization problem
can be written as, W t(x) = wt

d ×V t
d(x)+wt

r ×V t
r (x).

Proposed by Dickson (2014), Exploration Exploitation Pareto Approach (EEPA) is an algorithm
that constructs a Pareto frontier over the unevaluated candidate points using two explicit criteria of their
Maximin distance from the already evaluated points for exploration (x ∈ X ) and the estimated function
values for exploitation (min

x∈X
f̂ (x)). EEPA utilizes a fixed random set of unevaluated points to represent
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the solution space. Lastly, proposed by Krityakierne et al. (2016), Surrogate Optimization with Pareto
Selection (SOP) constructs a Pareto front based on exploration and exploitation metrics on the already
evaluated points, D , instead of unevaluated candidate points (in EEPA) to select a few reference points (i.e.,
centers). The algorithm generates a dynamic discretization of unevaluated sample points through random
perturbation of the selected centers. Next, a surrogate-assisted candidate search is performed to select the
candidate point with the minimum estimated function value. A multi-layer heuristic approach is proposed
to overcome the shortcomings of single Pareto front construction to generate quality sample points. SOP
creates a Tabu list to assist with not selecting points that did not significantly improve the hypervolume of
the exploration-exploitation trade-off in previous iterations.

3 BlACK-BOX OPTIMIZATION PROBLEMS

Model-based adaptive sampling strategies for Black-box Optimization (BBO) is a well-motivated approach
for optimizing expensive to evaluate functions without making specific assumptions about the function
behavior. Single objective expensive BBO literature consists of two primary classes of problems; Engineering
Design and Algorithm Design optimization. Although the aforementioned problems are black-box with
expensive evaluations, the topology of the unknown underlying response surface may vary around the
optimal region. To elaborate on this fact, we provide an example by creating the response surface of the
mapping between hyperparameters of the Deep Neural Network (DNN) for the MNIST image classification
task through an exhaustive search over a dense grid of two main hyperparameters (number of dense units,
learning rate) in Figure 1(a). Now, comparing the surface of the DNN tuning with a global optimization
test problem (Rastrigin) in Figure 1(b), on the surface of DNN tuning, we can observe that there are
several regions with objective levels comparable to the global optimizer (noted by the red star). This,
however, is not the case for the Rastrigin function, which has numerous identifiable local optima and a
single unique minimizer. As a result, regret (i.e., | f (x∗)− f (x)|) is reduced for hyperparameter tuning
due to the modest objective differences between local and global optima, resulting in faster convergence.
However, the complex multimodal nature of Rastrigin yields a distinct convergence pattern in which regret
minimization can not be easily achieved in areas near global optima. As a result, converging to a global
optimum is slower for complex global optimization test problems with identifiable local optima.

4 DISCRETIZATION

The generalized assumption of continuous input space in BBO is violated in many cases (Luong et al.
2019). Moreover, most of the acquisition functions are only tractable over a finite discretized solution space
representation. Hence, an effective space representation yields a robust search for complex high-dimensional
black-box settings. In contrast, a weak representation leads to poor acquisition performance, especially
when the black-box is complex and/or higher-dimensional.

Despite the primary role in the model-based adaptive approach, solution space discretization (aka
candidate generation) for BBO has only been investigated in a few research articles. Using random
distributions (Regis and Shoemaker 2007; Dickson 2014), a DOE method (Golzari et al. 2015), dividing
the search space (Alarie et al. 2021), and adaptive grid construction (Bardenet and Kégl 2010) to generate
a large set of unevaluated points are common practice yet ineffective in most BBO applications. As a
result, more practical discretization schemes such as Monte Carlo (Snoek et al. 2012) and dynamic (Regis
and Shoemaker 2013; Müller and Day 2019) discretization have been proposed in the literature. Dynamic
discretization methods smartly generate sample points in promising regions and thus, are more effective for
high-dimensional complex problems. For example, in Regis and Shoemaker (2013), a dynamic coordinate
search strategy, DYCORS, has been proposed, which uses a decreased number of the input coordinates
to perturb the current best-known solution and generate promising candidate points. Similarly, Müller and
Day (2019) utilized a perturbation of the current best-known solution where the perturbation range is drawn
from a random normal distribution. Anahideh et al. (2022) introduced a new discretization strategy in
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which a set of promising candidates, centroids obtained from Decision Tree partitioning, are dynamically
added to a randomly generated set of unevaluated points to improve the representation of the solution space
with high-quality sample points.
EEPA+: An Improved Exploration-Exploitation Pareto Approach. Since the original EEPA algorithm
(Dickson 2014) utilizes a fixed predesigned discretization of unevaluated sample points, in this paper, we
first propose an improved version of EEPA utilizing a dynamic coordinate discretization scheme similar to
DYCORS (Regis and Shoemaker 2013), which we refer to it as EEPA+. We then empirically investigate the
impact of the solution space discretization scheme on the quality of the best-known solution obtained from
different acquisition functions. Algorithm 1 represents the main steps of our proposed EEPA+. Similar to
most BBO strategies, EEPA+ starts with fitting a surrogate model (e.g., GP) on the already evaluated data
points D followed by a candidate generation (discretization) step to create an effective representation of
the solution space. In this step, we dynamically select a subset of coordinates of the best-known solution
and perturb to generate new candidate points similar to DYCORS. Next, we construct a Pareto frontier
on the candidate points based on a distance ∆(x)x∈X = minx∈X ∥x− x∥ and estimated function value f̂
criterion and obtain a non-dominated set of points. To select a batch of points from the non-dominated
set, EEPA+ includes the point with minimum f̂ (x) and eliminates the close points by applying a maximin
measure to identify the most diverse candidates. In general, EEPA+ can adapt itself to both large and small
batch sizes. When the non-dominated set is smaller than the batch size |C | ≤ q, it selects all available
non-dominated points as the selected subset S and saves the remaining evaluation budget B−|S| for future
iterations.

Algorithm 1 EEPA+ Adaptive Sampling
B :Total Budget, q :Batch Size, R :Remained Budget, S : Selected Subset

2: D = {x1, . . . ,xn}, F = { f (xi)|xi ∈ D}, R = B, S =∅
while R > 0 do

4: Modeling: Fit a surrogate model f̂ (e.g., GP) on (D ,F )
Coordinate selection: Randomly select a decreasing subset of dimensions

6: Candidate generation: Perturb the selected coordinates of xo = argminx∈D f (x) to obtain X
Pareto frontier: Construct the non-dominated set C over the X , using f̂ and ∆(x)x∈X

8: Sampling: Select a subset of q candidate points S from C
Evaluation: FS = { f (xi)|xi ∈ S}; D = D ∪S ; F = F ∪FS

10: end while
Return xo ∈ argminx∈D f (x)

Figure 1(c) shows the performance of EI, EEPA, and Wscore with different discretization approaches
(uniform random (Uni, Sobol (So) (Owen 1998), and Dynamic coordinate search (Dy)) for the 6-dimensional
Rastrigin test problem. It is observable that the space discretization schemes have a significant impact on
both the convergence pattern and the quality of the final solution obtained by distance-based acquisition
functions (EEPA and Wscore). We refer to Wscore acquisition with Dy discretization as DYCORS in
Figure 1 and throughout Section 5 and Section 6. On the other hand, the most widely-used variance-based
acquisition function EI is less sensitive to the choice of candidate generation strategy. Note that the dynamic
discretization approaches may not be necessarily as helpful for variance-based approaches (e.g., EI). One
justification for this observation is the random perturbation of coordinates of the current best-known solution
denoted by Dy (proposed in Regis and Shoemaker (2013)), which leads to convergence to local optima
with EI acquisition function (green line). As discussed earlier, the variance-based acquisition functions
without explicit trade-offs between exploration and exploitation have weaker exploration strength, and the
reduced subspace search of Dy restricts the exploration even further. In this paper, we consider the best
observed combination of acquisition functions and discretization.
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Figure 1: Examples of response surfaces and discretization schemes’ evaluation

5 EXPERIMENTAL EVALUATION

In this section, we present a comprehensive comparison of the model-based adaptive sampling strategies
for Black-Box Optimization. As discussed in Section 2, our baselines include sequential as well as the
batch version of popular acquisitions for global optimization test problems. Hence, we consider sEI and
qEI, sPI and qPI, sUCB and qUCB, sMES and qMES, qKG denoting the sequential and batch versions
of the discussed acquisition functions, respectively. We mainly focus on the batch version for real-world
applications and hyperparameter tuning test problems due to their practicality. Other considered baselines,
SOP, EEPA+ and DYCORS are batch sampling techniques. In particular, for DYCORS we utilize the
synchronous batch sampling proposed in Eriksson et al. (2019). For the surrogate model, we use GP with
a constant mean and a Matérn Kernel.

5.1 Experiment Setup

We first consider three commonly used synthetic optimization test problems Rosenbrock, Rastrigin, and
Levy (Surjanovic, S. and Bingham, D. 2013) for two low-dimensional (d = 6) and high-dimensional (d = 30)
cases. Our purpose is to cover different topological characteristics such as shape and the number of local
optimums. Rosenbrock function is a unimodal valley-shaped function, Rastrigin is a multimodal and
complex function encompassing extremely distinct local minima, and the Levy function is challenging due
to having several local minima despite its fast convergence to the near-optimal area. For each synthetic
test problem, we use Latin Hypercube Design (LHD) (Joseph and Hung 2008) with maximin criterion to
generate 30 different initial sets of labeled points with the size 2∗ (d +1) and replicate our evaluation 30
times. We consider a batch size of |S|= 4 across all experiments for this group of test problems. When
d = 6, the budget and discretized solution space size are 400 and 1000, respectively. When d = 30, we
use a budget of 500, and discretized space size is 5000.

We investigate two well-known benchmark problems in science and engineering domains, DNA binding
and Airfoil design optimization, as BBO baselines for real-world applications. For DNA binding, Barrera
et al. (2016) utilizes protein-binding microarrays to assess the DNA binding activity of all feasible length-8
DNA sequences on 201 protein (human transcription factors) targets. We consider CRX and VSX1 protein
binding problems similar to Hashimoto et al. (2018). The evaluation budget and size of the initial set are
1000 and 18, respectively. We consider a batch size of 100, similar to Hashimoto et al. (2018), and replicate
the results 10 times for each different initialization obtained from the LHD technique. For Airfoil design, we
use the UIUC database (Selig 1996), which provides the geometries of approximately 1600 airfoil designs.
The designs are then evaluated by the XFOIL 2-D aerodynamics simulator (Drela 1989). The objective is
to maximize the lift divided by the drag fraction. We consider a 10-dimensional representation of airfoil
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for perturbation and candidate generation based on NURBS parameterization proposed in Viswanath et al.
(2011). The evaluation budget and size of the initial set are 300 and 1, respectively. In each iteration, we
evaluate 30 airfoils (|S|= 30), and replicate the results 10 times under the same initial point.

Finally, we consider the MNIST image classification with Logistic Regression (MNIST-Logit), Deep
Neural Network (MNIST-DNN), and Convolutional Neural Network (MNIST-CNN) for hyperparameter
optimization. The evaluation budget and batch size equal 100 and 4, respectively, and we replicate 10
times for 10 different initial sets of size d + 1 points where d is the number of hyperparameters. For
MNIST-Logit, we consider batch size, learning rate, L2 regularization, and number of epochs to be
optimized. For MNIST-DNN, we additionally consider number of Dense units in the 1st layer and the 2nd
layer, and dropout rate. Furthermore, for MNIST-CNN, we consider number of units in the convolution
layer, and kernel size besides the above-mentioned hyperparameters. The batch size range of (32,512),
learning rate (0,0.1), L2 regularization (0,1), number of dense/convolution units (32,512), kernel size of
(2,9), dropout rate (0,0.9), and number of epochs (0,10) have been considered in all problems.

6 RESULTS

Figure 2 demonstrates the performance of our considered baselines for the global optimization test problems
plotted every 8 iterations. It is worth noting that the performance of acquisition functions diminishes as the
dimension and complexity of problems increase. In general, distance-based acquisition functions (EEPA+,
SOP, DYCORS) outperform variance-based acquisition functions for these problems, as a stronger global
exploration is necessary for such complex functions. Note that for higher-dimensional problems, there are
observable performance gaps between distance-based and variance-based baselines, making the choice of
distance-based approaches even more practical. In Figure 2(e), qUCB has a competitive performance with
EEPA+, SOP, DYCORS. Although qUCB is a variance-based acquisition function, it considers an explicit
trade-off between exploration and exploitation criteria through the control parameter βt . Furthermore, qKG
is inapplicable for high-dimensional test cases due to the expensive computation.

In Figure 3, we illustrate the performance of the considered acquisition functions for real-world
optimization test problems DNA binding and Airfoil design. Overall, we can observe a similar pattern as
in global optimization test problems comparing distance-based versus variance-based acquisitions except
for the SOP. Although SOP has a promising performance for synthetic test problems, it lacks adequate
flexibility to maintain its exploration power when batch size is large (e.g., 100). If the batch size is
greater than the number of centers of SOP, it requires manipulation to adjust the size of the selected
samples from each cluster, which adversely affects the performance of the algorithm. Moreover, SOP
considers multiple heuristic steps to filter out non-promising centers that need adjustments to be suitable
for real-world applications. We can observe that distance-based approaches such as EEPA+ and DYCORS
are still effective in this case. Note that qUCB, has relatively promising convergence performance due to
its adaptive consideration of the exploration-exploitation trade-off parameter (βt).

Figure 4 presents our empirical study on MNIST image classification task (per 8 iterations). The
results indicate that the variance-based acquisition functions are more competitive for hyperparameter
optimization. In particular, our proposed EEPA+ has competitive performance in all three hyperparameter
tuning problems. qKG also outperforms many other strategies for both MNIST-DNN and MNIST-CNN.
Unlike synthetic test cases, SOP and DYCORS are not as competitive for hyperparameter tuning. Although
DYCORS is in a reasonable range of performance (specifically in MNIST-CNN), its wide confidence
intervals indicate high variability. The results indicate that our considered baselines are equally good for
hyperparameter tuning problems since the response surface is easier to optimize as discussed in Section 3.

Finally, we assign a rank to each considered acquisition function in Figure 5 based on the mean and
variance of the final best-known solution obtained across all replications to summarize the results. We
can confirm that the variance-based acquisition functions are outperformed by the distance-based ones for
complex optimization settings (both real applications and synthetic test problems), which makes distance-
based approaches, specifically EEPA+, a more viable choice. For hyperparameter tuning problems, we
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can observe a more competitive performance of variance-based acquisition functions. In particular, qKG
is competitive to EEPA+. However, our proposed EEPA+ outperforms most of the acquisition functions
across all test problems. EEPA+ provides greater flexibility for the exploration-exploitation trade-off
through the non-dominated set construction and the dynamic discretization scheme.

The average running time of EEPA+ for DNA binding problems are 1200 and 2400 sec, which is
faster than the variance-based strategies with 2800− 6000 sec. The performance of EEPA+ for Airfoil
design is close to the performance of variance-based methods with an average time of 830 sec.
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Figure 2: Performance of different sampling techniques for global optimization test problems.
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Figure 3: Performance of different sampling techniques for real-world optimization problems.
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7 FINAL REMARKS

In this paper, we introduced new perspectives on evaluating the exploration component of acquisition
functions and the discretization scheme in various settings. Our empirical and analytical analysis revealed
that variance-based acquisitions (e.g., qKG) are more suitable for hyperparameter tuning settings while
multi-criteria Pareto-based (e.g., EEPA+), and weighted-score acquisition with dynamic discretization
scheme (e.g., DYCORS), are more promising in finding the optimal regions of in high-dimensional
complex optimization problems. Moreover, considering distance-based exploration metrics in acquisition
functions yields promising results for engineering design problems. We noticed that some existing adaptive
acquisition functions lack the adequate flexibility of being conveniently adopted for different problems.
SOP with a large batch size (which is necessary for certain problems) is not applicable and requires
further adjustments. The well-known qKG is computationally inefficient with a large finite discretization
scheme. Furthermore, an explicit exploration-exploitation trade-off, similar to qUCB, can significantly
improve the performance of variance-based approaches. However, tuning the critical control parameter
for weighted score acquisition functions including qUCB is a challenging task and requires extensive
investigation. In this paper, we also investigated the impact of the discretization scheme on the performance
of different acquisition functions. We discovered that discretization has a greater influence on distance-
based acquisition functions than variance-based acquisition functions. Moreover, we noted that a dynamic
discretization scheme is an effective approach for improving the performance of distance-based acquisition
functions. In light of this, we proposed an enhanced modification of an existing Pareto-based acquisition
algorithm supported by empirical effectiveness in different settings.
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Figure 4: Performance of different sampling techniques for hyperparameter optimization problems.
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Figure 5: Ranking of BBO strategies across different problems.
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