Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

BANDIT-BASED MULTI-START STRATEGIES FOR GLOBAL CONTINUOUS OPTIMIZATION

Phillip Guo Michael C. Fu
University of Maryland Robert H. Smith Business School
7030 Preinkert Drive Institute for Systems Research
Prince Frederick Hall University of Maryland
College Park, MD 20742, USA College Park, MD 20742, USA

ABSTRACT

Global continuous optimization problems are often characterized by the existence of multiple local optima.
For minimization problems, to avoid settling in suboptimal local minima, optimization algorithms can start
multiple instances of gradient descent in different initial positions, known as a multi-start strategy. One key
aspect in a multi-start strategy is the allocation of gradient descent steps as resources to promising instances.
We propose new strategies for allocating computational resources, developed for parallel computing but
applicable in single-processor optimization. Specifically, we formulate multi-start as a Multi-Armed Bandit
(MAB) problem, viewing different instances to be searched as different arms to be pulled. We present
reward models that make multi-start compatible with existing MAB and Ranking and Selection (R&S)
procedures for allocating gradient descent steps. We conduct simulation experiments on synthetic functions
in multiple dimensions and find that our allocation strategies outperform other strategies in the literature
for deterministic and stochastic functions.

1 INTRODUCTION

Global optimization refers to the problem of finding the set of parameters that optimally achieves an objective,
often maximizing or minimizing a numerical objective function (Horst et al. 2000). Optimization problems
are present everywhere in engineering, logistics, finance, and many other fields. In many applications, the
objective function in question is continuous, has many local optima, and involves black box models. As a
consequence, black box optimization has an objective function where direct analytical gradient information
is unavailable, which makes several optimization strategies infeasible or much more expensive. Non-convex
optimization problems can have many local extrema but only one global optimum, and finding this global
optimum could be nearly impossible and require an unbounded number of function evaluations (Rinnooy Kan
and Timmer 1989).

When local search algorithms such as gradient descent are applied to non-convex optimization, they
can often get stuck in these local extrema with a low probability of escaping them, so upon reaching a local
minimum the algorithm may conclude that no direction will improve the minimum and will end (Gyorgy
and Kocsis 2011). To illustrate, Figure 1 is highly non-convex with one global minimum at x = .5 and
several local minima at other x values. If a gradient descent search algorithm was started at any position
except for near x = .5, it would descend to a suboptimal local minimum.

The problem of getting stuck in local optima is compounded for optimization scenarios with expensive
objective functions in a high-dimensional input parameter space. For example, Monte Carlo simulations
to test the effectiveness of a set of parameters can be computationally expensive, and in machine learning
large datasets are evaluated for each iteration with many parameters that have to be optimized. Even search
algorithms that are guaranteed to find the global optima given an infinite amount of time (e.g., random

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 3194



Guo and Fu

Figure 1: Example of a non-convex function, Griewank function in one dimension.

restart gradient descent) may converge arbitrarily slowly and therefore are computationally infeasible for
such expensive problems.

One approach to avoiding being trapped in local optima is starting multiple instances of local search at
different starting parameters, which is known as multi-start (Marti 2003). Since local search algorithms such
as gradient descent require many evaluations of the potentially expensive objective function, it can become
prohibitively expensive to evaluate every started instance of local search to its termination. Therefore, it
is useful to efficiently allocate computational resources to the instances, taking into account exploration of
instances that have not had a chance to explore too much and exploitation of instances that have a chance
of reaching a near-optimal local extremum.

This view of the problem leads us to propose a Multi-Armed Bandit (MAB) approach, with the arms
being instances that must be searched. Since our goal is to find the best optima possible, the process of
finding the arm/instance that will produce the best optima becomes a Ranking and Selection (R&S) problem
(Hong et al. 2021). We seek to iteratively choose instances to carry out steps of a local search algorithm
with R&S procedures that can rank instances.

Multi-start is not a traditional MAB problem: implementation necessitates determining a suitable reward
structure, which is not obvious. Furthermore, the state of each instance changes as instances descend and
near a local minimum: each gradient descent step will likely decrease the function value less than the
previous step. Therefore, almost any notion of reward would likely be neither independent nor identically
distributed. In this work, we develop “reward models” that take as input the points visited by each instance
and output a measurement of reward for MAB approaches to use, while accounting for inherent changes
in the instance state.

From the many procedures in the MAB/R&S literature that allocate resources to different arms, we
utilize the procedures of Upper Confidence Bound (UCB) (Auer et al. 2002) and Optimal Computing
Budget Allocation (OCBA) (Chen et al. 2000), two of the most successful approaches in the literature.
Previous research on multi-start has considered allocations that have similar exploration-exploitation goals
as MAB approaches (Gyorgy and Kocsis 2011), but to the best of our knowledge none have introduced
reward models that directly translate multi-start into a MAB problem.

The rest of the paper is structured as follows. Section 2 provides the problem setting of multi-start
optimization. Section 3 describes the local optimization algorithms and MAB/R&S procedures we use,
and our methods of transforming multi-start into a MAB or R&S problem in order to yield our multi-start
strategies. In Section 4, we conduct experiments to test the effectiveness of our multi-start strategies vs.
others on several synthetic optimization scenarios. Section 5 discusses the results, finding which strategies
performed best in each tested scenario. Finally, we conclude and discuss possible future research in Section
6.

3195



Guo and Fu

2 PROBLEM SETTING

We consider the goal of minimizing a black box objective function f that can be non-convex and has
multiple local minima. Formally, we consider f: [0,1]¢ — R. Then, we try to find

rnxinf(x).

Since the objective function is a black box, the gradient cannot be calculated analytically: we numerically
approximate the gradient with methods described in Section 3.1, which requires multiple evaluations of the
objective function. Since the objective function may be extremely expensive to evaluate, we consider the
total number of function evaluations used in gradient approximations as the budget. Therefore, our goal
is to find the best minimum within a set number of function evaluations.

We assume that optimization is carried out using local search multi-start gradient descent, in which
multiple instances of gradient descent are started in different locations. Each instance keeps track of all of
the points it has reached so far.

For multi-start, multiple search instances are initialized at different locations. An example is provided
in Figure 2, which presents three multi-start instances descending the function from different starting
points. The green, red, and cyan curves show the path that each instance takes, with the large colored
dots representing the starting points of each instance. As can be seen, one instance descends to the global
minimum while the other two descend to local minima: without multi-start, there would be a high chance
that the global minimum was never reached.

050 o5 000 025 030 075 100 125 150

Figure 2: Example of multi-start (three instances) gradient descent on the 1-D Griewank function.

Multi-start strategies consider rounds in which an allocation is computed and certain instances perform
a batch of gradient descent steps. In this research, whenever an instance is allocated one descent, the next
point for the instance is calculated by one step of gradient descent from the instance’s previous point (more
details in Section 3.1).

Many applications use parallel computing in their optimization, including the training of machine
learning models (Cybenko 2017). We consider the parallel computing scheme to be one in which the task
of synchronous computations can be split up between multiple processors. We aim for our strategies to be
compatible with a given number of parallel processors p fewer than the number of instances k we start,
where each processor performs a batch of gradient descents for one instance only. Therefore, in every
round, we select p out of k instances to carry out gradient descent steps. Assuming that every processor
is computationally equal, we perform the same number of descent steps on each processor/instance (the
batch size is constant).

We consider two versions of multi-start strategies: constant multi-start and expanding multi-start.
Expanding multi-start works the same way as constant multi-start but without a set number of instances.
Instead, the algorithm starts with one instance, and in every successive round of allocations a new instance
is spawned by generating a random position in [0,1]¢ and performing a small number of initial gradient

3196



Guo and Fu

descent steps. An allocation is then created for the set of instances including the newly created instance.
The number of instances grows until the computing budget is exhausted. The expanding version is described
in Gyorgy and Kocsis (2011) as a multi-start strategy with infinitely many search instances.

We propose several strategies which, given each instance’s behavior (the points they have previously
visited), return an allocation specifying which instances receive descents that round.

3 METHODS

In multi-start optimization, multiple instances of a local search algorithm are started at different positions
and are explored. Gradient descent is the local search algorithm considered in this work. Strategies are
used to allocate computational resources/gradient evaluations to the different instances depending on their
previous performance (the points the instance has visited during gradient descent).

3.1 Gradient Descent

We utilize the gradient descent method of Simultaneous Perturbation Stochastic Approximation (SPSA)
(Spall 1992), where the gradient Vf =<V f],V f», ..., V f; > is stochastically approximated with two function
evaluations. SPSA is used for its efficiency in higher dimensions, only requiring two function evaluations
independent of the number of dimensions. First, a d-dimension vector of mean-zero random variables
A=<A,Ay,...,A; > is generated: in this research, following rules in Spall (1998), A; are i.i.d. symmetric
Bernoulli, i.e., £1 with equal probability. The ith component of the estimator for V f at position X, is
given by
fXi+c-A)—f(X;—c-A)
2CtA,' ’
where c¢; is the finite difference perturbation. Since the numerator is the same for all i, only two function
evaluations are necessary (Spall 1992).
Once the gradient is calculated, the next position is given by

X=X +a-ViX,),

Vif(X,) = i=1,..d,

where q; is the step size. Following Spall (1998), we use the sequences {a;} and {c,}:
a=al/(A+t+1)% ¢ =c/t+1),

with the values of the parameters A, &, 7, a,c given in Section 4.2.

3.2 Multi-Start Allocation Strategies

We introduce new allocation strategies based on MAB and R&S procedures and compare them to several
multi-start allocation strategies from the literature: MetaMax(K), MetaMax(eo), Uniform, and Explore-
Exploit Uniform allocation strategies from Gyorgy and Kocsis (2011).

3.3 Multi-Armed Bandit and Ranking and Selection

The strategies we introduce in this paper are formulated around reducing the choice of instances to a MAB
or R&S problem and applying allocation from MAB/R&S algorithms. These allocation algorithms rank
arms relative to each other by some score function, which allows us to select the top arms to exploit in
parallel computing.

MAB problems model sequential decision making in which agents choose arms to pull that will yield
rewards, with the rewards having unknown distribution. The goal of MAB approaches is to determine the
best strategy of pulling arms to maximize overall reward. MAB strategies consist of exploring all arms
enough to discover potentially more rewards, while exploiting the arms that are likely to yield high rewards
(Auer et al. 2002).

3197



Guo and Fu

R&S seeks to find the best choice among a set of stochastic alternatives, where the mean performance of
each alternative (akin to MAB reward) is sampled from an unknown probability distribution. The primary
difference between R&S and MAB is that R&S focuses more on exploration, not needing to additionally
exploit multiple high-performing alternatives (Hong et al. 2021).

In order to balance exploration and exploitation, we apply two approaches: Upper Confidence Bound
(UCB) and Optimal Computing Budget Allocation (OCBA). UCB is an MAB procedure that seeks to
minimize the regret from choosing an arm at a stage (Auer et al. 2002), and OCBA is an R&S procedure
that seeks to maximize the probability that the selected arm at the end of the sampling is the correct/optimal
arm (Chen et al. 2000). As inputs, UCB and OCBA require an estimate of the expected rewards and
variances on the reward distributions of each instance, which can be calculated in different ways (see Section
3.4). For k arms corresponding to k instances, denote the k-dimensional vector of expected rewards for
each arm by R =< Ry, Ry, ..., R, >, a k-dimensional vector of the number of samples each arm has received
so far N =< Ny, N,,...,N; >, a k-dimensional vector of the standard errors in rewards 6 =< o7, ..., 0} >.

UCB works by assigning a value to each arm. Using a tunable exploration factor constant ¢, the UCB
value for arm i is given by Equation (1), and the arms with the highest UCB values are selected to be

pulled. -
ln(ijl Nj)

UCB; =R;+c-0;- N,

ey

We combine the OCBA allocation with a “most-starving” algorithm. OCBA calculates the optimal
number of samples for each arm {]\7,»}, following Equations (2) through (4). Then, each arm is ranked by
how “starving” it is, which is the difference between the new optimal allocation of samples and the number
of samples it has allocated thus far {N;} given in Equation (5). The arms that are the most starving, i.e.,
have the highest OCBA-SV; values, are selected to be pulled.

i:=argmax;R;, & =R, —R; Vi# i 2

3)

“4)

&)

3.4 Reward Models

MAB and R&S approaches can be used to model multi-start optimization by viewing the different local
search instances as arms to allocate gradient descent resources. However, these approaches require a
reward distribution, so we must formulate some quantity of reward that measures how well each instance
is performing.

We introduce two categories of reward models that allow UCB and OCBA to be used by outputting
expected reward and variance in the reward. They take in as input all of the points each instance has visited
so far. The pth point visited by instance i is denoted as I(i, p). Reward models calculate expected reward
R; and variance in reward 67, which can be used in the UCB and OCBA formulas in Section 3.3.

3.4.1 Restless Model

The first of our models uses Restless Bandit approaches (Whittle 1988), which generalize multi-armed
bandit problems to settings where the reward distributions of arms are not assumed to be independent and
identically distributed (i.i.d.).

3198



Guo and Fu

We consider the amount that the instance’s optima improve by in one iteration divided by the step size
in that iteration as its reward: i.e., after one iteration of finding the gradient and stepping the position,
the change in the function value divided by a; (SPSA step size, see Section 3.1) is the reward sampled.
It is interesting to note that this approach resembles Expected Improvement (EI) methods from Bayesian
Optimization.

The reward samples are not i.i.d., because as the local search progresses near an extremum, it is expected
that the function changes less with each iteration, so the expected reward is lower.

To account for the changing reward distributions, we turn to the Restless Bandit (RB) literature. In the
RB model, the reward distributions of each arm may change over time, so older reward samples are likely
to be less helpful than newer samples at predicting the current shape of the reward function. RB approaches
use some way to lessen the weight of older reward samples, including weighting the importance of previous
rewards with an exponentially decreasing discount factor (Raj and Kalyani 2017) or considering only the
past few rewards (Trovo et al. 2020). We denote this model as “Restless”.

We alter the expected reward and reward standard error formulas to discount older reward samples
with an exponentially decreasing discount factor A € (0, 1], as well as only consider a sliding window of
the last 7 values. Then, these new values are plugged in for UCB and OCBA.

Our formulas are based on Garivier and Moulines (2008). They take instance history I(i) for instance
i, the total number of points sampled by I(i) as p;, discount factor A, and sliding window 7. For the rth

point sampled, the reward sample is
@, 4+1) = f(1))

az

The expected reward is a weighted mean of the previous rewards, and the standard error is the square root
of a weighted variance of those differences.

M=y A

s=1

1 ils_f(I(ivpi_S+1))_f(I(ivpi_s))

Ri = —
M(l)s:l aPi—S
s L & (fUGpi—s+1) = fUGpi—s) )
o & ( RZ)

3.4.2 Traditional Model

In our second model, we consider the function value of every point reached by the instance as a reward
sample. The expected reward is the function value of last point reached by the instance, and the variance is
the sum of squares of deviations from the mean function value for all of the points reached by the instance.
We denote this model as “Traditional”, or shortened to “Trad” (the two names are interchangeably used
throughout this paper).

Ri =1 (l y pi)
2 1 Pi _ 1 Di

o; Y (fUGis)—fi)* fi==Y fU(,s))

2=
Pi g3 Pi =

3.4.3 Strategies

We test each combination of a reward model (Restless or Traditional), an allocation method (UCB or
OCBA), and the constant and expanding variations as an allocation strategy. In total, we present 8 new
strategies: Restless OCBA Constant, Restless OCBA Expanding, Restless UCB Constant, Restless UCB
Expanding, Traditional OCBA Constant, Traditional OCBA Expanding, Traditional UCB Constant, and
Traditional UCB Expanding.

3199



Guo and Fu

3.5 Other Allocation Strategies

For purposes of comparison, we implement other allocation strategies from the literature.

The Uniform allocation strategy is to allocate the same number of function evaluations to each instance,
regardless of performance. In every round, each instance is given one batch of descents. We test a constant
and expanding version of Uniform.

The Explore-Exploit Uniform allocation strategy performs a Uniform allocation for the first half of the
total allocation budget, and then exploits only the instances which have reached the lowest minima so far
for the second half of the allocation budget. We shorten the name to EEUniform. We only test a constant
version and not an expanding version for Explore-Exploit Uniform because for the expanding version, in
the latter half of allocation, new instances would not be explored at all.

The MetaMax allocation strategy was introduced in Gyorgy and Kocsis (2011). It calculates all of the
instances that could possibly be optimal within a confidence level using a convex hull algorithm. It has
a constant version, MetaMax(K), and an expanding version, MetaMax(ee). In the paper, the researchers
demonstrate that MetaMax has superior performance to a variety of other allocation strategies, so if our
strategies can outperform MetaMax, they would likely outperform other strategies in the literature.

The MetaMax strategies cannot allocate to a set number of instances; they select a variable number of
instances in every round (often only 2), so there might be more or fewer selected instances than the fixed
number of processors in any given round. Therefore, the MetaMax strategies are not easily generalized to the
parallel computing case. However, we still compare to MetaMax because many optimization applications
cannot make use of parallel computing, and we want to determine if our strategies will perform comparatively
well in these typical applications.

4 NUMERICAL EXPERIMENTS AND RESULTS
4.1 Objective Functions

We want to compare the effectiveness of our strategies vs. others in the literature. In order to conduct
experiments with many iterations, we test our strategies by attempting to minimize synthetic functions, for
both deterministic and stochastic objective functions.

We use rescaled versions of the Ackley, Griewank, and Rastrigin synthetic functions (Zhu and Kwong
2010), which all have many local minima: traditional gradient descent would very likely get stuck in
a suboptimal local minimum. Each function accepts input with an arbitrary number of dimensions as a
vector X =< x1,Xx2,...,X4 >. We rescale each function to be active in the domain of [0, l]d for all i (since
we initialize all of our instances independently and uniformly randomly in the domain of [0,1]%). The
functions are shown in Figure 3.

We also test noisy versions of our functions to compare our strategies with stochastic objective functions.
We add Gaussian noise to the output of our functions, with standard deviation depending on the range of
the function on the domain of [0,1]¢. We use a standard deviation of .25 for Ackley, .05 for Griewank,
and 1.0 for Rastrigin.

4.2 Simultaneous Perturbation Stochastic Approximation

We set the values of SPSA according to Spall (1998) and Gyorgy and Kocsis (2011): A =60, =.602,y =
.101, and a, ¢ depending on the specific case. In our experiments, we test both stochastic and deterministic
functions with x; € [0, 1] for each parameter x; in X: in deterministic functions we use ¢ = .00001, since we
want to simulate more direct gradient descent that can get stuck in local minima easily, and in stochastic
functions we use ¢ = .2 from Spall (1998). We use different a for different numbers of dimensions.

3200



Guo and Fu

Ackley Function Griewank Function Rastrigin Function

Figure 3: Rescaled versions of the Ackley, Griewank, and Rastrigin functions, respectively, shown on a
domain of [0, 1]¢.

4.3 Illustrative Allocation Examples

We implement the algorithms described in Section 3. We present two examples for visualization purposes:
one of our strategies, the Restless OCBA Constant strategy in Figure 4, and an expanding strategy,
MetaMax(e0) in Figure 5. On the left of each figure is a visualization of multiple instances descending the
2D Griewank function, on the upper right is a graph of the function evaluations allocated to each instance,
and on the bottom right is a graph of the current discovered minimum as function evaluations are allocated.

Sampling History

Instance Performance

—— instance0 3000 1

= instancel

= instance2

instance3

= instanced
15

2000

1000 /

0 2000 4000 6000 8000 10000
0.0 Total Samples

o

Z Label Instance samples

Minimum History

0.4

0.4
Xlapy = o8

0 2000 4000 6000 8000 10000
Total Samples

Figure 4: 5 instances descending the 2D Griewank function according to Restless OCBA Constant allocation.

4.4 Error Curves

We ran a series of tests with shared parameters to determine the relative performance of all of the strategies.
We created an average error curve, with error being the difference between the minimum reached so far and
the actual global minimum of the function. The error was plotted against the number of function samples
allocated so far. Error curves for each allocation strategy were averaged over 2500 trials of multi-start
descent, with each trial having different starting positions for each instance.

4.4.1 Parameters

We test the strategies in 2, 5, 10, and 20 dimensions. Each number of dimensions has different parameters.
The number of instances selected in each round, p, is 2 for 2 dimensions, 3 for 5 dimensions, and 5 for

3201



10 and 20 dimensions. The number of instances started for constant strategies, k, is 5 for 2 dimensions,

Guo and Fu

Instance Performance

Sampling History

instance0
instancel
= instance2
instance3
instance4
instance5
instance6
= instance?

instances
— instanced
—— instancel0
— instancell
—— instancel2 |y

4000 6000
Total Samples

Minimum History

8000

10000

= instancel3
= instanceld
= instancel5
= instancel6

Minimum

= instancel?

instancels
= instancel9

be 08 00

instance20
— instance21 —1.0 4

instance22 ]
= instance23
= instance24

2000

4000 6000
Total Samples

8000

10000

Figure 5: The MetaMax(e) Strategy descending the 2D Griewank function.

10 for 5 dimensions, and 100 for 10 and 20 dimensions.

Every test shares certain parameters. In every trial, our maximum computing budget of functions is
10000: the given function is evaluated 10000 times in the trial. In every round, each selected instance is
given 10 gradient descent steps. Every instance receives 10 gradient descent steps at the start to ensure a
minimum level of exploration. We set the discount factor A from Section 3.4 to .9 and the sliding window

T to 15.

We test both the deterministic and the stochastic versions of our optimization functions described in
Section 4.1. We set the perturbation size for SPSA to be ¢ = 1% 107 in the deterministic case since we
want to simulate descending more direct gradient descent, and ¢ = .2 in the stochastic case according to
guidelines in Spall (1998). The SPSA perturbation size constant, a, is 0.01 for 2 and 5 dimensions, and
0.1 for 10 and 20 dimensions. We present an example of an error curve, for the deterministic (not noisy)

Ackley function in 5 dimensions, in Figure 6.

Error

Error Curve for Ackley Function in 5 Dimensions

20 A

18

16

14 4

12 A

10 4

EEUniform

MetaMax(K)

MetaMax (=)

Restless OCBA Constant
Restless OCBA Expanding
Restless UCB Constant
Restless UCB Expanding
Trad OCBA Constant
Trad OCBA Expanding
Trad UCB Constant

Trad UCB Expanding
Uniform Constant
Uniform Expanding

T T
2000 4000
Total Samples

T
6000

T
8000

T
10000

Figure 6: Error curve for the deterministic Ackley function in 5 dimensions.

3202




Guo and Fu

4.5 Table Comparisons

In this section, we quantify the performance of each tested strategy by aggregating their performances
across the different synthetic functions. We stratify the results by the different numbers of dimensions (2,
5, 10, 20) and deterministic/stochastic functions.

To aggregate the relative performance of each tested strategy, we consider the average final minimum
reached by each strategy after the 10000 evaluation computation budget is reached, averaged over 2500
trials. We normalize the minima across the different strategies on a range of 0 — 1. Then, we sum the
normalized minima over the three optimization functions for a combined error term between O and 3.

For ranking our strategies, since we want smaller minima to be ranked higher, we subtract the error
term from 3 to get a final score term such that higher scores correspond to better performance and scores
are on a range of 0 — 3. The scores are given in Figures 7 and 8.

3.0 4 EEE 2 Dimensions
== 5 Dimensions
s 10 Dimensions
=

20 Dimensions

2.5 1

2.0 1

1.5

1.0+

0.5

0.0 -

Tra
7y
Cg Exp angy
ling

-~ °’ -
3 < s
-~ o -~
1 o 9
s 3 3
%] u,’? G
I~y < 8
o} Q 3
] (&) >
g s £
& S
IS

Figure 7: Bar graph showing each strategy’s score per dimension, for the deterministic functions.

4.6 Deterministic Objective Functions

We use Figure 7 to compare each strategy in the deterministic function case. The best performing strategies,
which have the highest scores, for lower dimensions (2 and 5) are MetaMax(e), Restless UCB Expanding,
and Traditional UCB Expanding. For higher dimensions (10 and 20), we find that Traditional UCB Constant
is the best performing strategy, while MetaMax(K) and Explore-Exploit Uniform (both constant) perform
almost as well. Interestingly, we find that for every strategy with a constant and an expanding version,
the expanding version outperforms the constant version in 2 and 5 dimensions, and constant outperforms
expanding for 10 and 20 dimensions. We explore possible reasons in Section 5.1.

4.7 Stochastic Objective Functions

We use Figure 8 in the stochastic function case. For low dimensions, Traditional UCB Expanding is
the best performing strategy, while for high dimensions Traditional UCB Constant, MetaMax(K), and
Explore-Exploit Uniform perform well. We note a similar distinction between constant vs. expanding
strategies performing well in high vs. low dimensions.

3203



Guo and Fu

2 Dimensions
5 Dimensions
10 Dimensions
20 Dimensions

3.0 1

2.5 A

2.0 A

1.5

1.0 4

0.5 4

0.0 -

Figure 8: Bar graph showing each strategy’s score per dimension, for the noisy/stochastic functions.

S DISCUSSION

In this section, we discuss the implications of our results.

5.1 Constant vs. Expanding Strategies

Our results suggest that expanding strategies perform better than constant strategies in lower dimensions,
and constant strategies outperform expanding in higher dimensions.

This makes sense because in low dimensions, there are fewer local minima, so the new instances that
are spawned by expanding variations are more likely to start in a region where the global maximum will
be reached. However, in high dimensions, there are many more local minima and new instances are less
likely to spawn in advantageous positions that would eventually descend to a global minimum. Thus, more
instances being created does not necessarily help - it would be better to exploit only a few instances.

Therefore, for low dimensions we recommend the expanding strategies, while for high dimensions we
recommend a constant strategy.

5.2 Recommendations

In our experiments, MetaMax (o) outperforms Traditional UCB Expanding in 5 dimensions deterministic,
and MetaMax(K) outperforms Traditional UCB Constant in 10 dimensions stochastic. In every other
case, the Traditional UCB Constant and Expanding strategies outperform every other strategy in both the
deterministic and stochastic functions. Therefore, we recommend the Traditional UCB Constant strategy
for high dimensions and Traditional UCB Expanding for low dimensions, and especially so for parallel
computing applications since the MetaMax strategies which are the second-best are not easily adaptable.

6 CONCLUSIONS AND FUTURE RESEARCH

We developed, implemented, and tested several multi-start allocation strategies to determine which are
optimal in different scenarios. The strategies we introduced in this paper are designed for parallel computing
where multiple processors can perform gradient descents in parallel, but they are also applicable in typical
single processor optimization.

3204



Guo and Fu

We find that our strategies of Traditional UCB Constant and Traditional UCB Expanding perform the
best among all of the parallel computing-compatible multi-start allocation strategies we tested in every
test case. When additionally considering MetaMax strategies not designed for parallel computing, our
strategies are the best in all but two cases, and the second-best behind MetaMax(K) or MetaMax(e0) in the
two exceptions.

Potential future research includes establishing theoretical results for the performance of our strategies;
testing our successful strategies in real-world optimization scenarios; developing a combination of constant
and expanding strategies, possibly a hybrid method of expanding up until some maximum bound of
instances; testing alternative finite difference schemes to SPSA; and investigating connections with Bayesian
EI approaches.

ACKNOWLEDGMENTS
This work was supported in part by the Air Force Office of Scientific Research under Grant FA95502010211.

REFERENCES

Auer, P, N. Cesa-Bianchi, and P. Fischer. 2002. “Finite-time Analysis of the Multiarmed Bandit Problem”. Machine Learn-
ing 47(2):235-256.

Chen, C.-H., J. Lin, E. Yiicesan, and S. E. Chick. 2000, July. “Simulation Budget Allocation for Further Enhancing the
Efficiency of Ordinal Optimization”. Discrete Event Dynamic Systems 10(3):251-270.

Cybenko, G. 2017, May. “Parallel Computing for Machine Learning in Social Network Analysis”. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 1464-1471.

Garivier, A., and E. Moulines. 2008, May. “On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems”.
arXiv:0805.3415 [math, stat]. arXiv: 0805.3415.

Gyorgy, A., and L. Kocsis. 2011, July. “Efficient Multi-Start Strategies for Local Search Algorithms”. Journal of Artificial
Intelligence Research 41:407-444. arXiv: 1401.3894.

Hong, L. J., W. Fan, and J. Luo. 2021, September. “Review on Ranking and Selection: A New Perspective”. Frontiers of
Engineering Management 8(3):321-343. arXiv: 2008.00249.

Horst, R., P. M. Pardalos, and N. V. Thoai. 2000, December. Introduction to Global Optimization. Springer.

Marti, R. 2003. “Multi-Start Methods”. In Handbook of Metaheuristics, edited by F. Glover and G. A. Kochenberger, International
Series in Operations Research & Management Science, 355-368. Boston, MA: Springer US.

Raj, V., and S. Kalyani. 2017, July. “Taming Non-stationary Bandits: A Bayesian Approach”. arXiv:1707.09727 [cs, stat].
arXiv: 1707.09727.

Rinnooy Kan, A. H. G, and G. T. Timmer. 1989, January. “Chapter IX Global Optimization”. In Handbooks in Operations
Research and Management Science, Volume 1 of Optimization, 631-662. Elsevier.

Spall, J. 1992, March. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation”.
IEEE Transactions on Automatic Control 37(3):332-341.

Spall, J. 1998, July. “Implementation of the Simultaneous Perturbation Algorithm for Stochastic Optimization”. IEEE Transactions
on Aerospace and Electronic Systems 34(3):817-823.

Trovo, F,, S. Paladino, M. Restelli, and N. Gatti. 2020, May. “Sliding-Window Thompson Sampling for Non-Stationary Settings”.
Journal of Artificial Intelligence Research 68:311-364.

Whittle, P. 1988. “Restless Bandits: Activity Allocation in a Changing World”. Journal of Applied Probability 25:287-298.

Zhu, G., and S. Kwong. 2010, December. “Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization”.
Applied Mathematics and Computation 217(7):3166-3173.

AUTHOR BIOGRAPHIES

PHILLIP GUO is an undergraduate at the University of Maryland, majoring in computer science. He conducted this research
as part of his high school Senior Research Project at the Math, Science, and Computer Science Magnet Program in Mont-
gomery Blair HS. His research interests include optimization and machine learning. His e-mail address is philliphguo @ gmail.com.

MICHAEL C. FU holds the Smith Chair of Management Science in the Decision, Operations, and Information Technologies
department of the Robert H. Smith School of Business, University of Maryland. He served as Program Chair for the 2011 Winter
Simulation Conference. His e-mail address is mfu@umd.edu, and his Web page is https://www.rhsmith.umd.edu/directory/
michael-fu.

3205


mailto://philliphguo@gmail.com
mailto://mfu@umd.edu
https://www.rhsmith.umd.edu/directory/michael-fu
https://www.rhsmith.umd.edu/directory/michael-fu

	INTRODUCTION
	PROBLEM SETTING
	METHODS
	Gradient Descent
	Multi-Start Allocation Strategies
	Multi-Armed Bandit and Ranking and Selection
	Reward Models
	  Restless Model
	  Traditional Model
	  Strategies

	Other Allocation Strategies

	NUMERICAL EXPERIMENTS AND RESULTS
	Objective Functions
	Simultaneous Perturbation Stochastic Approximation
	Illustrative Allocation Examples
	Error Curves
	  Parameters

	Table Comparisons
	Deterministic Objective Functions
	Stochastic Objective Functions

	DISCUSSION
	Constant vs. Expanding Strategies
	Recommendations

	CONCLUSIONS AND FUTURE RESEARCH

