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ABSTRACT

This paper proposes a dynamic credibility model for claim count that extends the benchmark Poisson
generalized linear models (GLM) by incorporating self-excitation and exponential decay features from
Hawkes processes. Under the proposed model, a recent claim has a bigger impact on the credibility
premium than an outdated claim. Empirical results show that the proposed model outperforms the Poisson
GLM in both in-sample goodness-of-fit and out-of-sample prediction.

1 INTRODUCTION

Credibility theory is widely used in insurance as a tool to adjust individual premium, based on the past
claim experience. Two commonly adopted rules in the ratemaking practice are:
Rule (1) past claims increase the credibility premium;
Rule (2) a recent claim has a bigger impact on the credibility premium than an outdated claim.
This paper proposes a dynamic credibility model for claim count that is consistent with the above two rules.
To that end, we extend the benchmark Poisson generalized linear models (GLM) by incorporating two
essential features of Hawkes processes, self-excitation and (exponential) decay, with the former implying
Rule (1) and the latter Rule (2).

Under credibility theory, the credibility premium consists of two components: manual rate or prior
premium that reflects observed heterogeneity among different tariff cells, and credibility factor that accounts
for unobservable heterogeneity as a function of past claims. To incorporate these fundamental ideas, Dionne
and Vanasse (1989) propose the following random effects models: (i) N1,N2, . . . ,NT are independent,
conditioning on a random parameter θ , where Nt denotes the claim count in the t-th period (e.g., year)
and T is the total number of periods in observation; (ii) the conditional expectation of Nt is given by
E[Nt |θ ] = g(ν∗

t ,θ), where ν∗
t is a function of observable covariates xt and g is the so-called link function;

(iii) θ is a time-invariant latent variable. (xt includes information that may have predictive power in future
claims, e.g., age, length of clean driving records, and vehicle type in auto insurance. As the relation between
xt and E[Nt |θ ] is most likely nonlinear, the function g serves such a purpose to link the linear term ηxt
with E[Nt |θ ]; a popular choice of g is exponential.) Under a similar framework as above, Frangos and
Vrontos (2001) obtain the credibility factors for both claim count and severity, by using Poisson-gamma
and exponential-inverse gamma random effects models, respectively. Recently, such random effects models
have been extended to incorporate dependence between claim frequency and severity, or among different
lines of business (see Jeong and Valdez (2020), Cheung et al. (2021), Denuit and Lu (2021), and Oh et al.
(2021) for recent contributions).

A major drawback of the above random effects models is that the impact of a past claim on the
credibility factor of claim count is irrelevant to its arrival time (see, e.g., Frangos and Vrontos (2001) or
(5) for the exact credibility formula). As shown in an example of Section 3.3, the random effects models
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yield the same credibility premium for a policy with one claim in Year 1 and another policy with one
claim in Year 5, both over the same past five years. As a consequence, the random effects models do not
comply with Rule (2) mentioned in the first paragraph. Moreover, the latent variable θ is time-invariant
in the random effects models, and hence may fail to account for the possible evolution of the unobserved
heterogeneity of a policyholder over time (e.g., improvement in driving skills).

To address the above drawbacks of the static random effects models, several alternative models are
proposed in the actuarial literature. In the first line of research, varying weights are assigned in the
determination of credibility factors, with the purpose to fit Rule (2). Sundt (1988) introduces geometric
weights so that the impact of past claims decays according to a geometric decreasing factor. The Harvey-
Fernandes type claim frequency models also follow the exactly same idea (see Bolancé et al. (2007)).
In the second line of research, a dynamic generalization of random effects is made to help capture the
possible evolution of unobserved heterogeneity over time (see Bolancé et al. (2003) for an excellent work
on this topic). The introduction of dynamic random effects can help interpret Rule (2), but often leads to a
case in which there does not exist a closed form expression for the posterior expectation of random effects
(see, e.g., Brouhns et al. (2003) and Li et al. (2020)), making such dynamic random effects models less
practical for ratemaking. In addition, Pinquet (2020) shows that the credibility coefficients obtained under
these dynamic random effects models may take negative values, i.e., a past claim may be even seen as a
‘bonus’. This would easily lead to moral hazard and cause much bigger problems than violating Rule (2)
(see Ahn et al. (2021) for detailed discussions).

In this article, we propose a dynamic credibility model that naturally implies both Rule (1) and Rule
(2), and is dramatically different from the existing models with varying weights or dynamic random effects.
To achieve this objective, we “borrow” two essential features from Hawkes processes (see Hawkes (1971)),
self-excitation and exponential decay, and incorporate them into the benchmark Poisson GLM. Under the
proposed model, the intensity excites by a level β > 0 upon the arrival of a new claim, which implies
Rule (1), and such an excitation effect decays exponentially at speed α over time, which leads to the
consistence with Rule (2). Further, we apply a different exponential factor to model the possible evolution
of the unobservable heterogeneity. Through an empirical analysis, we test the performance of our proposed
model, with the standard Poisson GLM (also termed the naı̈ve model) and the static credibility model
introduced in Frangos and Vrontos (2001) and Jeong (2020). Our numerical results show that the proposed
model performs the best in terms of in-sample goodness-of-fit, and also outperforms the both benchmark
Poisson GLM and the static credibility model in mean absolute error (MAE) and root-mean-square error
(RMSE) in the out-of-sample prediction. We also conduct a sensitivity analysis to investigate the impact of
self-excitation and exponential decay parameters (β and α) on the credibility premium, and find a positive
(increasing) relation for the former and a negative (decreasing) relation for the latter.

The rest of the paper is organized as follows. Section 2 proposes our dynamic credibility model.
Actuarial applications of the proposed model are provided in Section 3. Section 4 concludes the paper.
Appendices A and B collect additional empirical results.

2 THE MODEL

Let us consider a standard data structure for claim count in non-life insurance. We observe the claim
counts of an insurance business for I policyholders, indexed by i = 1,2, . . . , I, over a total of T time periods
(e.g., years). Throughout the paper, we assume, without loss of generality, that a unit period is one year.
Denote the data structure by D =

{(
N = (Nit); x = (xit)

)∣∣ i = 1, . . . , I and t = 1, . . . ,T
}

, where Nit denotes
the number of claims and xit captures the observable covariates of the i-th policyholder in the t-th year. In
what follows, we will drop the index i from Nit and xit for notation simplicity and use Nt and xt . Let Ft
denote the available information up to time t, generated by {N1, . . . ,Nt ;x1, . . . ,xt} for all t = 1,2, . . ..

Recall that, under the standard Poisson GLM, we have

Nt+1|Ft ∼ Poisson(ν∗
t+1), with ν

∗
t+1 = eη xt+1 , (1)
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where η is the regression coefficients associated with the observable policy characteristics xt+1. According
to (1), the claim count in the next period Nt+1, conditioning on the past claim history {N1, . . . ,Nt} and
observable characteristics {x1, . . . ,xt}, follows a Poisson distribution, in which the logarithm of its intensity
is a linear function of xt+1. While this standard model can reflect the impacts of observable heterogeneity
in xt+1, it does not consider unobservable heterogeneity in the ratemaking procedure.

As motivated in Section 1, we now propose the following dynamic credibility model:

Nt+1|Ft ∼ Poisson(λt+1), with λt+1 = e−γt
ν
∗
t+1 + ∑

τ j<t
β e−α(t−τ j) and ν

∗
t+1 = eη xt+1 , (2)

where τ j denotes the arrival time of the j-th claim during the observation period, α,β > 0, and γ ∈ R.
Several important remarks on the above proposed model (2) are due as follows:

• Upon the arrival of a claim at time τ j = s, the instantaneous intensity λs excites up by β > 0,
leading to an increased probability of reporting claims in the future. As time evolves, the impact
of this particular claim on future credibility decays exponentially at speed α > 0; as a result, we
model such an impact at time t > τ j by βe−α(t−τ j). The motivation of incorporating both features
comes from Hawkes processes and their applications in actuarial science (see Jang and Oh (2021)).

• The proposed model (2) takes into account the impact of the exogenous and observable covariates
x on ratemaking, as shown in ν∗

t+1 = eη xt+1 inherited from (1), which is a standard practice in
insurance ratemaking.

• To capture the possible evolution of the unobservable heterogeneity of a policy, we apply another
exponential term e−γt to ν∗

t+1, in which a positive (resp. negative) γ corresponds to improvement (resp.
deterioration) in the rating factor. An example of such dynamic heterogeneity is the improvement
in driving skills of policyholders over time in the study of auto insurance. Since such evolution is
unobservable, the proposed exponential factor may not be the best choice to model it. Finding the
“best” choice, on the other hand, is a challenging task and likely varies by types of insurance.

• In the limit case of α,β ↓ 0 and γ = 0, the proposed model (2) reduces to the Poisson GLM (1).

In time series theory and also in many applications, the stationary of a process (or a time series) is
often a highly preferred property. To ensure the stationary of a one-dimensional Hawkes process with
exponential kernel, we impose the following sufficient condition (see Bacry et al. (2015)):

α > β . (3)

3 EMPIRICAL ANALYSIS

In this section, we conduct an empirical analysis to investigate the performance of our dynamic credibility
model (2). In particular, we are interested in two tasks:

1. comparing the proposed model (2) with the Poisson GLM (1) and the static credibility model in
Frangos and Vrontos (2001);

2. studying the impact of α (exponential decay) and β (self-excitation) on ratemaking.

3.1 Data and Estimations

In the empirical analysis, we use the LGPIF (Wisconsin Local Government Property Insurance Fund)
dataset, which consists of policy and claim information of the local government units in Wisconsin (US)
and is publicly available. (Please refer to Frees et al. (2016) for a comprehensive introduction on the
LGPIF dataset.) While claim information on multiple lines of business is available, we focus on IM (inland
marine) claims and their associated policy characteristics from the selected dataset. We then extract 5,240
of such policies observed during the 2006–2010 period from the LGPIF dataset. The policy characteristics
used here are summarized in Table 1.
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Table 1: Observable policy characteristics (covariates). The two continuous variables (CoverageIM and
lnDeductIM) in the above table have the unit of million US dollars.

Categorical Description Proportions
TypeCity Indicator for city entity: Y=1 14.51 %
TypeCounty Indicator for county entity: Y=1 5.92 %
TypeMisc Indicator for miscellaneous entity: Y=1 10.78 %
TypeSchool Indicator for school entity: Y=1 29.10 %
TypeTown Indicator for town entity: Y=1 16.60 %
TypeVillage Indicator for village entity: Y=1 23.09 %

Continuous Minimum Mean Maximum
CoverageIM Log coverage amount of IM claim 0.00 0.87 46.75
lnDeductIM Log deductible amount of IM claim 0.00 5.34 9.21

Note that in order to fit the proposed model (2), we need to know the exact time when each claim arrives
(i.e., τ j in (2)). However, the claim arrival times are often not recorded in the publicly available property
and casualty insurance dataset, which is indeed the case for the LGPIF dataset used in our empirical study.
(Note that some proprietary insurance dataset may include the exact arrival times of claims, e.g., the Dutch
fire insurance data used in Albrecher et al. (2021) contains such information; however, we do not access to
any of those datasets.) To proceed, we impose the following assumption on the arrival times of claims: (In
Appendix A, we consider a different assumption where all claims arrive according to uniform distributions.)
Assumption 1 All claims occur in the middle of their corresponding policy year, i.e., we set τ = t −0.5
for all claims reported in the t-th year, where t = 1,2, . . ..

In the remaining of this subsection, we discuss how the parameters involved in our dynamic credibility
model (2) are estimated. Notice that there are four parameters η , α , β , and γ in our model, once Assumption
1 is in place. α and γ capture the exponential decay effects of a claim and a priori classification factor,
respectively, and β measures the self-excitation level upon the arrival of a claim, while η is a vector of
parameters and determines ν∗

t given covariates xt (recall ν∗
t = exp(ηxt)). To estimate these parameters,

we follow a two-step approach that is used in Pechon et al. (2019).
Step 1. We estimate the coefficients vector η , related with a priori classification factor ν∗

t = exp(η xt),
using the maximum likelihood estimation (MLE) method and setting the claim counts as in the standard
Poisson GLM (1). The estimated values of η are summarized in Table 2.

Table 2: Estimated values of η . Below, C.IM and D.IM stand for CoverageIM and InDeductIM, respectively,
which are continuous variables from Table 1, and S.E. denotes standard error of an estimate.

Variable Intercept City County Misc School Town C.IM D.IM

Estimate -4.08068 0.95112 1.79571 -2.72573 -0.91916 -0.39509 0.11426 0.07088
S.E. 0.32399 0.19067 0.19756 1.01477 0.27753 0.27715 0.04590 0.00720

Step 2. With η estimated, we apply the MLE to calibrate the remaining parameters α,β , and γ , where
the log likelihood is given by

ℓ(α,β ,γ) =
I

∑
i=1

Ti

∑
t=1

log f (nit |λi,t−1), subject to β < α.

In the above, I is the total number of observed policies in the training dataset, Ti is the number of years
with observations for the i-th policy, and f (·|λ ) denotes the Poisson probability function with mean λ .
The imposed constraint β < α comes from the stationarity condition (3). The estimated values of α,β ,
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and γ , denoted by α̂, β̂ , and γ̂ , are given by

α̂ = 0.3176, β̂ = 0.2132, and γ̂ = 0.1307.

3.2 Comparison of Different Credibility Models

In this subsection, we compare the following three credibility models:

1. the naı̈ve credibility model (Poisson GLM (1));
2. the static credibility model (see Frangos and Vrontos (2001));
3. the proposed dynamic credibility model (2).

As commented previously, the naı̈ve model is a special limit case of the proposed dynamic model (2)
with α,β ↓ 0, and γ = 0. With the naı̈ve credibility model in (1), we easily obtain

E[NT+1|FT ] = ν
∗
T+1 = exp(η xT+1). (4)

As a consequence, there is no consideration of unobservable heterogeneity or potential dependence among
observed claims under the naı̈ve model.

Under the static credibility model, Frangos and Vrontos (2001) show that

E[NT+1|FT ] =
r+∑

T
t=1 Nt

r+∑
T
t=1 ν∗

t
ν
∗
T+1, (5)

where r captures the responsiveness of credibility premium formula to past claims, with a bigger r
corresponding to less responsiveness. Note that r+∑

T
t=1 Nt

r+∑
T
t=1 ν∗

t
is the posterior expectation of the static random

effects, which does not evolve over time, given FT . As seen from (5), the predictive premium of NT+1
depends on the past claim records only through their summation ∑

T
t=1 Nt , which does not comply with the

common practice that recent claim experiences are given more weights (Rule (2)).
Last, the predictive premium under the proposed dynamic credibility model (2) is given by

E[NT+1|FT ] = e−γT
ν
∗
T+1 + ∑

τ j<T
β e−α(T−τ j). (6)

With all the parameters estimated in Section 3.1, we first assess in-sample goodness-of-fit of each
model. A model is preferred if it produces a larger value of loglikelihood or a smaller values of Akaike
information criterion (AIC) or Bayesian information criterion (BIC). From Table 3, we observe that the
proposed dynamic credibility model (2) is the most favored one among the three models considered, under
all three goodness-of-fit measures during the 2006-2010 in-sample period.

Table 3: In-sample goodness-of-fit of the three credibility models.

Naı̈ve Static Dynamic

Loglikelihood -923.54 -883.04 -866.23
AIC 1863.08 1784.07 1754.45
BIC 1915.60 1843.15 1826.65

Having verified the superior performance of in-sample fitting of the proposed dynamic credibility model,
we proceed to investigate its prediction performance on the out-of-sample validation set. (Recall that the
training dataset is from 2006 to 2010, while the out-of-sample validation set contains observed IM claims
and associated policy characteristics in 2011.) To compare model performance, we use root-mean-square
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error (RMSE) and mean absolute error (MAE) as metrics, which are defined as follows:

RMSE :

√
1
I

I

∑
i=1

(
Ni,Ti+1 − N̂i,Ti+1

)2 and MAE :
1
I

I

∑
i=1

∣∣∣Ni,Ti+1 − N̂i,Ti+1

∣∣∣,
where I is the number of policies in the out-of-sample validation set and Ni,Ti+1 (resp. N̂i,Ti+1) denotes the
observed (resp. predicted) claim frequency of the i-th policy in the (Ti + 1)-th year. A lower RMSE or
MAE is preferred.

We present the out-of-sample prediction performance of all three models in Table 4. As expected, the
naı̈ve model is the worst among the three models in terms of prediction performance. Therefore, to gauge
the relative improvement (in percentage) of a model over the naı̈ve model, we also report the results under
the columns of “Relative Improvement”, which are computed by

Relative ImprovementMethod =
Measured ValueNaı̈ve −Measured ValueMethod

Measured ValueNaı̈ve
.

From Table 4, we observe that the proposed dynamic credibility model outperforms the static credibility
model in terms of both RMSE and MAE. As such, we conclude that the dynamic credibility model (2) is
an appealing improvement to the static model in insurance ratemaking.

Table 4: Out-of-sample model performance in prediction. Note that the prediction formula is (4) for the
naı̈ve model (standard Poisson GLM), (5) for the static model, and (6) for the dynamic model.

Measured Values Relative Improvement

Naı̈ve Static Dynamic Naı̈ve Static Dynamic

RMSE 0.6620 0.5192 0.5149 0% 21.57% 22.22%
MAE 0.1224 0.1125 0.1050 0% 8.11% 14.25%

3.3 Impact of α and β on Ratemaking

The proposed dynamic credibility model (2) has two key parameters α and β , where α captures the
exponential decay effect and β measures the self-excitation effect of a claim. Both effects are novel to
the model (2), and are not captured (or captured in a different manner) in the static credibility model.
Therefore, we devote this subsection to the investigation of the impact of α and β on ratemaking. In the
analysis, we set γ = α − 0.15 and remark that the key results hold for a wide range of γ , including the
case of γ = 0.

We consider a hypothetical policyholder whose ν∗
t = ν for t = 1, . . . ,5 (recall there are a total of 5

years in the training dataset), and who reported one claim over the five years from 2006 to 2010. For this
policyholder, we then have ∑

5
t=1 Nt = 1, where Nt is the number of claims in the t-th year. In the subsequent

studies, we consider three scenarios of prior risk factors (low risk with ν = 0.05; medium risk with ν = 0.1;
high risk with ν = 0.2) and compute credibility premiums by varying the values of either α or β , which
are displayed in Figure 1. In all plots of Figure 1, the five blue curves depict the credibility premium as
a function of α (in the left panel) or β (in the right panel) obtained under the dynamic credibility model
(i.e., by (6)), with each one corresponding to a possible realization scenario of the claim history (i.e., there
is one claim in one of the five years and zero in the remaining four years). As a comparison, we also plot
the credibility premium predicted by the static credibility model (i.e., by (5)), which is always shown by
the red horizontal line (note that only the summation ∑

5
t=1 Nt , not the individual values Nt , is used in the

prediction formula (5)). We explain the key findings of Figure 1 as follows:
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• Recall that there is only one claim from the considered policy over the five-year training period
from 2006 to 2010, implying five possible cases Nt = 1, where t = 1,2,3,4,5. Here, if N1 = 1, then
there was one claim in the first year (i.e., 2006) and zero claim in the remaining four years (i.e.,
from 2007 to 2010) during the training period. (The other four cases can be understood in a similar
way.) As such, in the case of N1 = 1 (resp. N5 = 1), the reported claim is the furthest (resp. nearest)
to the prediction year 2011. With that in mind, we easily understand why in all the plots of Figure
1 the case of N1 = 1 (resp. N5 = 1) always yields the lowest (resp. highest) credibility premium,
among the five blue curves. In fact, there is a strict increasing relation between the credibility
premium and the year of the claim (a larger value of “year” here means the claim is more recent to
the current time). This result is consistent with the intuition (also the practice) that a recent claim
should have a bigger impact on the credibility premium than an outdated claim (see Rule (2) in
Section 1). However, this is violated under the static credibility model, since only the summation
∑

5
t=1 Nt enters the credibility premium formula (5) and all the five cases of Nt = 1 lead to exactly

the same prediction. Put differently, a claim in 2006 would have the same impact as a claim in
2010 under the static credibility model, when we predict the claim count in 2011. Therefore, we
conclude that the proposed dynamic credibility model (2) is more realistic than the static credibility
model, by taking into account the arrival time of a claim in the process of ratemaking.

• Both α (exponential decay parameter) and β (self-excitation parameter) have a major impact on the
credibility premium. As an example, in the upper left plot, when α increases from 0 to 0.35, the
credibility premium reduces by more than 50%. The credibility premium is a decreasing function of
α . This is because, as α increases, the decay effect becomes stronger and thus the contribution of a
past claim to the prediction of future claim count decreases. The credibility premium is an increasing
function of β . Recall that β is the instantaneous shock (increase) on the future intensity from a
claim. In consequence, when β increases, each past claim will result in a bigger instantaneous,
and thus long-term, impact on the prediction of future claim count.

4 CONCLUSIONS

We propose a dynamic credibility model on claim count, by incorporating two essential features–self-
excitation and exponential decay of Hawkes processes into the standard Poisson GLM. To fit for actuarial
applications, the claim intensity consists of a baseline level (from the Poisson GLM) and an accumulated
self-excitation level, both adjusted by a separate exponential term. The proposed model is consistent with
the two rules frequently used in the insurance practice (i.e., past claims increase premium and more recent
claims are assigned with bigger weights in premium). The empirical investigations (using the LGPIF
dataset) confirm that the proposed dynamic credibility model outperforms the standard Poisson GLM (also
called the naı̈ve model) and the static credibility model in all three metrics–loglikelihood, AIC, and BIC
(see Table 3) using the in-sample data. In the out-of-sample validation, the dynamic credibility model still
outperforms both the standard Poisson GLM and the static credibility model in both RMSE and MAE. We
also conduct a sensitivity analysis to investigate how exponential decay (captured by α) and self-excitation
(captured by β ) affect the credibility premium. The results show that both play a vital role in the credibility
premium, with α negatively and β positively correlated with the credibility premium. To summarize, the
proposed dynamic credibility model has better in-sample and out-of-sample performance, comparing to
the standard Poisson GLM and the static credibility model in insurance ratemaking.
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Figure 1: Credibility premiums with varying values of α and β . We set ν∗
t = ν , γ = α − 0.15, and

∑
5
t=1 Nt = 1 in all plots. The red horizontal line is obtained by (5) under the static credibility model,

while the five blue curves are computed by (6) under the proposed dynamic credibility model, with each
corresponding to one scenario of Nt = 1, where t = 1, . . . ,5.
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Bolancé, C., M. Denuit, M. Guillén, and P. Lambert. 2007. “Greatest Accuracy Credibility with Dynamic
Heterogeneity: The Harvey-Fernandes model”. Belgian Actuarial Bulletin 7(1):14–18.
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A UNIFORM DISTRIBUTION OF CLAIM ARRIVAL TIMES

In this section, we drop Assumption 1 but assume that the arrival time of a claim follows a uniform
distribution (see Assumption 2 below). The main message is that all the results under Assumption 2 are
close to those under Assumption 1 in Section 3.
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Assumption 2 The arrival times of all claims follow independent uniform distributions.

We simulate the arrival times for all claims, denoted by {τ
(m)
j }, where m = 1, . . . ,M (with M denoting

the total number of runs), during the training period and apply the same MLE method to estimate α

and β . Under Assumption 2, we obtain α̂ = mean(α) = 0.17333, s.d.(α) = 0.04933; β̂ = mean(β ) =
0.16683, s.d.(β ) = 0.04509; and γ̂ = mean(γ) = 0.14149, s.d.(γ) = 0.05561; and The three goodness-of-fit
metrics under Assumption 2 are computed as follows: Loglikelihood = -869.14 (2.74), AIC = 1760.28 (5.49),
and BIC = 1832.48 (5.49), where the numbers inside parentheses are the corresponding standard deviations.
We observe that the means of all three goodness-of-fit matrices are very close to their counterparts in Table
3.

We next compare the prediction performance on the out-of-sample validation set of the same three
models as in Section 3.2, where the proposed dynamic model is calibrated under Assumption 2. The results
reported in Table 5 show that the proposed dynamic credibility model outperforms the benchmark Poisson
GLM (the naı̈ve model) in both RMSE and MAE, and is superior to the static credibility model in terms
of MAE, but not in RMSE, which is similar to the conclusion drawn under Assumption 1 (see Table 4 for
details).

Table 5: Out-of-sample model performance in prediction under Assumption 2.

Measured Values Relative Improvement

Naı̈ve Static Dynamic Naı̈ve Static Dynamic

RMSE 0.6620 0.5192 0.5302 0% 21.57% 19.91%
MAE 0.1224 0.1125 0.1094 0% 8.11 % 10.63%

B A NUMERICAL EXPERIMENT

In this section, we carry out a numerical experiment based on a synthetic dataset to further illustrate the
usefulness of our proposed model (2). For this purpose, consider a dataset consisting of 1,000 policies
over six years, denoted by {Ni,t , xi|t = 1, . . . ,6, i = 1, . . . ,1000}, and suppose that Ni,t is given by

Ni,t ∼ Poisson((1−ρ)λi +ρNi,t−1), ρ = e−0.5, λi = e−1+2xi , xi ∼ N (0,0.32). (7)

We will use the data from the first five years (t = 1, . . . ,5) to calibrate four models: (i) the naı̈ve model,
(ii) the static model, (iii) the proposed dynamic model, and (iv) the true model as in Equation (7), and use
the sixth year (t = 6) to test their performance in prediction.

In the numerical experiment, we repeat the generation of dataset and model fitting for 100 times to
minimize the possible impact from variations due to random seeds. We then compute the average of the
RMSEs and MAEs for each model and report the results in Table 6. We observe that the proposed dynamic
model outperforms both the naı̈ve and static models significantly, and is even close to the true model. This
further justifies the usefulness of our proposed model.

Table 6: Out-of-sample model performance in prediction with the synthetic data generated from (7).

Measured Values Relative Improvement

Naı̈ve Static Dynamic True Naı̈ve Static Dynamic True

RMSE 0.8375 0.7881 0.7336 0.6655 0% 5.90% 12.41% 20.55%
MAE 0.5667 0.5341 0.4494 0.4162 0% 5.75% 20.70% 26.56%
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