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ABSTRACT

Probabilistic branch and bound (PBnB) is a partition-based algorithm developed for level set approximation,
where investigating all subregions simultaneously is a computational costly sampling scheme. In this study,
we hypothesize that focusing branching and sampling on promising subregions will improve the efficiency of
the PBnB algorithm. Two variations to Original PBnB are proposed: Multilevel PBnB and Multilevel PBnB
with Importance Sampling. Multilevel PBnB focuses its branching on promising subregions that are likely
to be maintained or pruned, as opposed to Original PBnB that branches more subregions. Multilevel PBnB
with Importance Sampling attempts to further improve this efficiently by combining focused branching
with a posterior distribution that updates iteratively. We present numerical experiments using benchmark
functions to compare the performance of each PBnB variation.

1 INTRODUCTION

Level set identification is an active field of research. The problem of estimating level sets of black-box
objective functions arises in a wide range of applications, including monitoring environmental parameters
(Rahimi et al. 2004) and aircraft configuration (Priem et al. 2020). Sequential learning is one method
to solve this problem. Most sequential learning algorithms use a stochastic process model such as a
Gaussian process (GP) as a surrogate model, as in Shekhar and Javidi (2019). Other methods include
the use of Bayesian neural networks (Ha et al. 2020), linear bandits (Mason et al. 2021), and problem
reduction (Bachoc et al. 2021). Level set approximation via Probabilistic Branch and Bound has been useful
in designing a simulated water distribution network for a large city (Tsai et al. 2018), and in optimizing
screening and treatment decisions for hepatitis C over a 40 year projected time horizon (Huang et al. 2016).

Probabilistic Branch and Bound (PBnB) is a partition-based method for level set approximation that
uses sampling, branching and classification of subregions to provide a collection of subregions that form
the level set approximation. The PBnB algorithm, found in Huang and Zabinsky (2013) and Zabinsky

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 3251



Huang, Maneekul, Morey, Pedrielli, and Zabinsky

and Huang (2020), seeks a target level set associated with a target quantile, and iteratively updates its
confidence interval on the value of the target quantile. PBnB classifies subregions as maintained (contained
in the target level set) and pruned (no intersection with the target level set) with statistical confidence,
and updates its collection of current undecided subregions that do not have statistical confidence to be
maintained or pruned. A finite-time analysis of PBnB provides probability bounds on incorrectly pruning
and maintaining subregions on each iteration. This result quantifies the quality of the solution and helps
inform a decision maker when to stop the algorithm with an acceptable quality of the solution.

As illustrated in Figure 1, the original PBnB (Algorithm A) has two primary components. The first
component is to sample uniformly over the current subregions (Step 1A), and to provide an interval estimate
of the objective function value for the target quantile, denoted y(δ ) where δ is the user-input for the target
quantile (Step 2A). The second component (Steps 3A, 4A, and 5A) focuses on classifying subregions into
maintained or pruned, and branching undecided subregions for more sampling to glean more information.

The main computational challenge of Original PBnB stems from making too many function evaluations
and branching too many subregions. The branching scheme in Original PBnB branches all of the current
subregions. This scheme leads to a proliferation of smaller subregions that requires a large number of
samples to confirm maintaining and pruning. This motivates the concept of Multilevel PBnB to branch
only the promising best and worst subregions. The idea is that identifying the best subregions increases
the chance of maintaining, and identifying the worst subregions increases the chance of pruning, with
fewer subregions and fewer function evaluations. In this study, we hypothesize that focusing more on the
promising subregions will improve the efficiency of the PBnB algorithm.

We also note that Original PBnB samples uniformly on the current subregions, which is a conservative
sampling distribution that is useful in estimating y(δ ) with confidence intervals. We consider a form of
importance sampling where more samples are taken in promising subregions. The interval estimation of
y(δ ) must be adapted to account for non-uniform sampling. We hypothesize that sampling on a posterior
distribution based on the lowest observed function values in subregions (in contrast to uniform sampling)
will improve efficiency.

We define two variations to Original PBnB, namely Multilevel PBnB that modifies the branching
strategy, and Multilevel PBnB with Importance Sampling that additionally uses a posterior distribution to
focus on promising subregions. Figure 1 highlights the differences between Original PBnB and the two
variations.

We present computational results to answer three research questions. First, we determine if branching
on only promising subregions will improve efficiency. Second, we examine the sensitivity of the algorithms
to two parameter values that impact branching. Third, we determine if sampling on a posterior distribution
based on the lowest observed function values will improve efficiency. To answer the questions above, we
conduct a computational experiment on Original PBnB (Algorithm A), Multilevel PBnB (Algorithm B)
and Multilevel PBnB with Importance Sampling (Algorithm C) while varying algorithm parameters over
test functions in varying dimensions.

2 Algorithm Details of PBnB Variations for Level Set Approximation

We follow the notation of Zabinsky and Huang (2020). PBnB aims to approximate a level set with respect
to a performance function f (x) of a black-box simulation model. The optimization problem is

min
x∈S

f (x),

where f (x) : S→ R, and S⊂ Rdim. The decision variable x is a vector in dim dimensions, and the values
may be integer or real-valued. We are interested in the δ quantile associated with f (x), denoted y(δ ),

y(δ ) = argmin
y
{P( f (X)≤ y)≥ δ}, for 0 < δ < 1,
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where X is a random variable uniformly distributed on the domain S. We let L(δ ) be our desired set of
best δ -quantile solutions, where

L(δ ) = {x ∈ S : f (x)≤ y(δ )}, for 0 < δ < 1.

Initialization

1.	Sample	points	in	current	subregions
1A.,	1B.	Sample	points	uniformly	in	current	subregions
1C.	Sample	points	according	to	a	posterior	distribution	on	current	subregions

2.	Build	confidence	interval	for	𝒚(𝜹)
2A.,	2B.	Order	sampled	points	and	build	confidence	interval	for	𝑦(δ)	using	uniform	samplings
2C.	Order	sampled	points	and	build	confidence	interval	for	𝑦(δ)	using	importance	samplings

3.	Find	promising	best	and	worst	subregions
3A,	3B,	3C.	Find	promising	best	and	worst	subregions	using	𝑦(δ)	confidence	intervals

4.	Classify	subregions	(maintain	and	prune)
4A.,	4B. For	all	promising	subregions,	sample	additional	points	and	classify	subregions	as	
maintained,	pruned	or	undecided
4C.	For	all	promising	subregions,	use	current	points	to	classify	subregions	as	maintained,	
pruned	or	undecided

5.	Branch	and	update	the	current	subregions	
5A.	Branch	all	the	current	subregions
5B.	Branch	all	promising	subregions,	and	if	none,	branch	all	current	subregions
5C.	Branch	all	promising	subregions,	and	if	none,	rank	subregions	by	their	incumbent	function	
value	and	branch	the	best	10%	and	the	worst	10%

7.	Terminate	and	report	the		𝒚(𝜹) confidence	interval	and	approximation	of	the	target	level	set

(2) (3)

(1)

(1)	if	there	is	no	branchable subregion	
(2)	if	no	subregions	have	been	maintained	or	
pruned	for	several	consecutive	iterations
(3)	otherwise

6.		Follow:

Figure 1: Procedure of PBnB variations for level set approximation: A is Original PBnB, B is Multilevel
PBnB, and C is Multilevel PBnB with Importance Sampling. The target quantile δ is a user-input, and the
estimated objective function value is denoted y(δ ).

The input parameters to PBnB defined by the user include: δ ,α,ε,B,kb, and c. The parameter δ ,
0 < δ < 1, is used to define a δ -quantile for the target level set. For example, the user may be interested
in the set of solutions in the best 10%, in which case δ = 0.1.

The following two parameters, α and ε , are used to determine the quality of the level set approximation.
The approximation can be wrong in two ways: it could prune a portion of the level set or it could maintain
some area that is not in the level set. The parameter α, 0 < α < 1, is used in the confidence level of the
estimation of y(δ ) and in the probabilities of incorrectly pruning or maintaining. The choice of α will
influence the sample size. As the confidence level (1−α) increases, a larger sample size is needed. The
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parameter ε > 0 is the volume of solutions that can be tolerated to be categorized incorrectly. We also
expect that a high confidence level (low α) will have fewer mistakes, since the probability of the incorrect
volume exceeding ε decreases.

The analytical results of the algorithm (Huang and Zabinsky 2013; Zabinsky and Huang 2020) provide
confidence intervals on the quantile estimation y(δ ), and probability bounds on incorrectly pruning a
volume of size ε , and on incorrectly maintaining a volume of size ε , respectively. To paraphrase, on each
iteration, the probability that the volume of the incorrectly pruned region is no greater than ε is bounded
by (1−α)4. Similarly, the probability that the volume of the incorrectly maintained region is no greater
than ε is bounded by (1−α)4.

The branching scheme is defined by parameter B, B≥ 2, which is the number of evenly sized subregions
to create by subdividing the longest dimension of the subregion. The parameter kb is the maximum number
of consecutive inner-loop iterations without maintaining or pruning before returning to Step 1, and c is the
incremental sample size for sampling on the current subregions in Step 1.

Let ΣM
iter,Σ

P
iter and ΣC

iter be collections of subregions that are maintained, pruned, and currently undecided
(the set of subregions that are not pruned or maintained), respectively, on iteration iter.

In Step 1, Algorithms A and B sample points according to a uniform distribution on current subregions,
whereas Algorithm C uses a posterior distribution based on the lowest function value observed in a subregion.
In Step 2, the expressions to estimate the target quantile y(δ ) with confidence intervals differ when points
are sampled uniformly or using a posterior distribution. Step 3 is the same for all variations, and uses the
confidence intervals from Step 2.

In Step 4, Algorithms A and B implement additional sampling in the best and worst subregions to
statistically confirm classification of subregions as maintained or pruned. Algorithm C does not add more
sample points in Step 4, but waits until enough points are accumulated through the posterior distribution
to classify subregions with the same level of confidence.

In Step 5, Algorithm A branches all current subregions resulting in subregions that are always the
same size, whereas Algorithms B and C with multi-level branching branch only the promising subregions
that results in subregions with different sizes. In Step 6, Algorithms A and B may return to Step 3, based
on their value of kb, but Algorithm C never returns to Step 3 in an inner loop. Algorithm C relies on the
importance sampling instead of an inner loop. In the numerical experiments, kb = 1 for Algorithm C.

PBnB for level set approximation proceeds until all subregions are either maintained, pruned, or
reach a user-defined minimum size that we term unbranchable. In this paper, we determine a subregion is
“unbranchable” when its volume is less than a fraction of the volume of the feasible set S. If the stopping
criteria has not been met, the algorithm checks whether it has been successful in maintaining and/or pruning.
If no subregions have been maintained or pruned in kb consecutive inner-loop iterations, it returns to Step 1.
Otherwise, it goes to Step 3.

Upon termination, PBnB outputs a confidence interval on the target quantile y(δ ) and the subregions
that have been maintained as an approximation of the target level set.

Probabilistic Branch and Bound (PBnB) for Level Set Approximation

Step 0. Initialization: Input user-defined parameters, δ ,α,ε,B,kb,and c. Also, initialize the maintain,
prune, and current subregion collections as ΣM

1 = /0, ΣP
1 = /0, ΣC

1 = {S}. Set δ1 = δ , c1 = c, and the
iterative counter iter = 1.

Step 1. Sample points in current subregions: For the current subregions in ΣC
iter, sample c additional

points over all current subregions in ΣC
iter such that the total number of points in ΣC

iter is citer.
1A and 1B: To obtain an additional sample point that is uniformly distributed, randomly choose
subregion σi from the subregions in ΣC

iter with probability pi = v(σi)/v(ΣC
iter), where v(·) denotes the

dim-dimensional volume of a set. Then, uniformly generate a sample point within the chosen subregion

σi. Update the number of points that have been sampled in σi as Ni. Note that Σ
||ΣC

iter||
i=1 Ni = citer.
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1C: To obtain an additional sample point using importance sampling, randomly choose subregion σi from
the subregions in ΣC

iter with probability p̃i, where

p̃i =


ν(σi)/ν(ΣC

iter) if iter = 1((
f̃ ∗i − f̂ ∗+1

)
∑ j=1,...,||ΣC

iter||

(
1

f̃ ∗j − f̂ ∗+1

))−1

if iter > 1,

where f̃ ∗i is the lowest sampled value in subregion σi and f̂ ∗ = mini=1,...,||ΣC
iter||
{ f̃ ∗i }. Then, uniformly

generate a sample point within the chosen subregion σi. Update the number of points that have been

sampled in σi as Ni. Note that Σ
||ΣC

iter||
i=1 Ni = citer.

Step 2. Build confidence interval for y(δ ): Order all sampled points, z(1), . . . ,z(citer), in all current
subregions in ΣC

iter by their function values, so that

f (z(1))≤ . . .≤ f (z(citer)).

2A and 2B: Calculate the lower and upper bounds of δiter as

δiter,l = δiter−
v(ΣP

iter)ε

v(S)v(ΣC
iter)

and δiter,u = δiter +
v(ΣM

iter)ε

v(S)v(ΣC
iter)

.

Then calculate the confidence interval with lower and upper bounds as

CIl = f (z(r)) and CIu = f (z(s)),

where r and s are selected by

maxr :
r−1

∑
i=0

(
citer

i

)
(δiter,l)

i(1−δiter,l)
citer−i ≤ αiter

2
, and

maxs :
s−1

∑
i=0

(
citer

i

)
(δiter,u)

i(1−δiter,u)
citer−i ≥ 1− αiter

2
,

where αiter = α/Biter. The estimate of y(δ ) is

ŷ(δ ) = (CIl +CIu)/2.

2C: Following Chu and Nakayama (2012) , the δiter quantile estimator is

ŷ(δ ) = F̃−1
citer

(δiter) = f (z(iδiter )
),

where F̃−1
citer

(δiter) is determined empirically from f (z(iδiter )
), and iδiter is the smallest integer for which

∑
iδiter
i=1 L(z(i))≥ δiterciter, and L(z(i)) depends on the subregion σ j containing z(i), that is

L(z(i)) =
p̃ j

p j
,

and p̃ j and p j are given in Step 2. The 100(1−α)% confidence interval for ŷ(δ ) is [CIl,CIu] where the
lower and upper bounds are

CIl = ŷiter(δ )− z1−α/2κ̃δiter,citer/
√

citer,

CIu = ŷiter(δ )+ z1−α/2κ̃δiter,citer/
√

citer,
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and z1−α/2 is from a standard normal distribution. We compute κ̃δiter,citer by taking the product of
φ̄δiter,citer(a) and ψ̃δiter,citer ,

κ̃δiter,citer = φ̄δiter,citer(a) · ψ̃δiter,citer

for some constant a > 0 (a = 0.1 in the experiments). The estimate of variance constant ψ̃δiter,citer is

ψ̃δiter,citer =

(
1

citer

citer

∑
i=1

I( f (z(i))≤ ŷiter(δ ,S)) L(z(i))
2

)
−δ

2
iter,

and
φ̄δiter,citer(a) = φ̃δiter,citer,1(a)+ φ̃δiter,citer,2(a)

where

φ̃δiter,citer,1(a) =
F̃−1

citer
(δiter +a/

√
citer)− F̃−1

citer
(δiter)

2a/
√

citer

φ̃δiter,citer,2(a) =
F̃−1

citer
(δiter +a/

√
citer)− F̃−1

citer
(δiter−a/

√
citer)

2a/
√

citer
.

Step 3 Find promising best and worst subregions:
3A, 3B and 3C: In each subregion σi in ΣC

iter, order all sampled points, xi,(1), . . . ,xi,(Ni), by their function
values, so that f (xi,(1))≤ . . .≤ f (xi,(Ni)). Construct the collections of promising best and worst
subregions Pb and Pw using the quantile confidence interval as

Pb = {σi| f (xi,(Ni))<CIl, for σi ∈ Σ
C
iter, i ∈ 1, . . . , ||ΣC

iter||}

Pw = {σi| f (xi,(1))>CIu, for σi ∈ Σ
C
iter, i ∈ 1, . . . , ||ΣC

iter||}.

Step 4. Classify subregions (maintain and prune):
4A, 4B: For all promising subregions in Pb and Pw, uniformly sample additional points such that the
total number of points is Ni

k where k is the level of subregion σi,

Ni
k =

 ln
(

α

Bk

)
ln
(

1− ε

v(S)

)
 .

To provide a cap on Ni
k, let Ni

k←min{Ni
k,100dimv(σi)/v(S)}. In each subregion, reorder all of its Ni

k
sampled points, xi,(1), . . . ,xi,(Ni

k)
, by their function values so that f (xi,(1))≤ . . .≤ f (xi,(Ni

k)
). Then update

the maintaining indicator functions Mi, for σi ∈Pb, and the pruning indicator functions Pi, for σi ∈Pw, as

Mi =

{
1, if f (xi,(Ni

k)
)<CIl

0, otherwise

}
and Pi =

{
1, if f (xi,(1))>CIu

0, otherwise

}
Update the maintained set ΣM

iter+1← ΣM
k
⋃

i=Pb:Mi=1 σi, the pruned set ΣP
iter+1← ΣP

k
⋃

i=Pw:Pi=1 σi, and the
current set ΣC

iter+1 to no longer include maintained and pruned subregions.
4C: For all promising subregions in Pb and Pw, calculate α̃i using the current number of observed
points in subregion σi, Ni,

α̃i = BkeNi
(

1− ε

v(S)

)
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and k is the level of subregion σi. Maintain the subregions in Pb and prune the subregions in Pw if
α̃i < α . Update the maintained set ΣM

iter+1, pruned set ΣP
iter+1, and current set ΣC

iter+1, accordingly.

Step 5. Branch and update current subregions:
5A: Branch all remaining subregions in ΣC

iter.
5B: Branch all promising subregions in Pb and Pw. If Pb and Pw are empty, then branch all
remaining subregions in ΣC

iter.
5C: Branch all promising subregions in Pb and Pw. If Pb and Pw are empty, rank the subregions in
ΣC

iter by their incumbent function value and branch the best 10% and worst 10%.

Step 6. Decision:
6A, 6B, 6C: If all subregions σi ∈ ΣC

iter are not branchable, go to Step 7 and terminate the algorithm. If
there are still branchable subregions in ΣC

iter, and subregions have been maintained or pruned in less than
kb inner-loop iterations, go to Step 3 to continue classifying. Otherwise, if no subregions have been
maintained or pruned in kb consecutive inner-loop iterations, then set

δiter+1 =
δv(S)− v(ΣM

iter)

v(ΣC
iter)

and set citer+1 = citer + c,

and increment the counter iter← iter+1, and go to Step 1.

Step 7. Output results:
7A, 7B, 7C: Output ŷ(δ ,S), [CIl,CIu] and maintained subregions in ΣM

iter on the last iteration.

3 Computational Study

We ran computational experiments on three algorithms: Original PBnB (Algorithm A), Multilevel PBnB
(Algorithm B) and Multilevel PBnB with Importance Sampling (Algorithm C). All three algorithms were
run on three different test functions, the Rosenbrock problem, the centered sinusoidal problem, and the
shifted sinusoidal problem, for dimensions 2, 5, 7, and 10. The test problems are defined in the appendix.
For each test condition, 10 replications were performed with common random number seeds and the results
averaged. The average number of function evaluations until the first subregion is maintained is the main
metric of interest. We also examined other performance measures namely, number of subregions generated,
volume of the maintained, pruned and undecided subregions, and incumbent function value. However, due
to space limitations we present only the number of function iterations required to reach the first maintained
region as the easiest to interpret and perform statistical analysis. For all test conditions, we set the common
PBnB parameter values, δ = 0.2, α = 0.1, ε = 0.025(vol(S)), c = dim ∗ 100, and the unbranchable size
= 0.025(vol(S)). For Algorithms A and B, the branching parameter B was tested with B = {2,4} and
the parameter on successful consecutive classification kb was tested with kb = {1,2,3}. For Algorithm C,
B = 2 and kb = 1.

4 Results

We first compare Original PBnB (Algorithm A) with Multilevel PBnB (Algorithm B) in Section 4.1 to
study the impact of multi-level branching. We conduct a sensitivity analysis on parameters B and kb. In
Section 4.2, we compare Algorithms A, B, and C to study the impact of importance sampling and multi-level
branching.

4.1 Comparing Original and Multilevel PBnB

We first examine the key differences between Original and Multilevel PBnB by plotting the subregions for
a two-dimensional case and by plotting the lowest sampled point as the algorithm progresses. Figure 2
illustrates Algorithms A and B approximating a 20% level set after 10 iterations on three test functions
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(see Appendix) in two dimensions. Notice that the subregions of Algorithm A are of the same size on each
iteration, whereas the subregions in Algorithm B are of different sizes. In these cases, Multilevel PBnB
was able to maintain more subregions by the tenth iteration.

(a) Original PBnB (Algorithm A) on
Rosenbrock. (b) Original PBnB (Algorithm A) on

centered sinusoidal.
(c) Original PBnB (Algorithm A) on
shifted sinusoidal.

(d) Multilevel PBnB (Algorithm B)
on Rosenbrock. (e) Multilevel PBnB (Algorithm B)

on centered sinusoidal.
(f) Multilevel PBnB (Algorithm B)
on shifted sinusoidal.

Figure 2: Approximating the 0.2-quantile level set (contour shown in red) on the tenth iteration of Original
and Multilevel PBnB for three test functions in two dimensions.

The lowest function value that has been sampled (i.e., the incumbent solution) is plotted until the first
subregion is maintained in Figure 3 for the three test functions in five dimensions with B = 2 and kb = 2. As
can be seen in Figure 3a, on the Rosenbrock test function Original PBnB is able to find a lower incumbent
solution faster, but Multilevel PBnB is able to start pruning subregions sooner. However, on the centered
sinusoidal function in Figure 3b, the incumbent values are very close, while Multilevel PBnB is still able
to prune faster. On the shifted sinusoidal function, Multilevel PBnB is able to maintain a subregion even
before pruning. This suggests that Multilevel PBnB is able to prune and maintain faster by narrowing in
on promising subregions, whereas Original PBnB focuses on searching the entire space.

Table 1 provides the average over 10 replications of the number of function evaluations until first
maintaining a subregion. The lowest mean number of function evaluations is shown in bold. As can be
seen in the table, Multilevel PBnB outperforms Original PBnB on all of the 10 dimensional problems, and
all but 4 out of 36 instances when B = 2.

Figure 4a shows the main effects for a statistical analysis of five factors, including test function,
algorithm, dimension, parameter B, and parameter kb. While dimension has a strong effect, the main
effects plot shows that Multilevel PBnB performs slightly better than Original PBnB overall, and that
parameter B = 2 is better than B = 4. In Figure 4b, the interaction between B and dimension shows that
the sensitivity to B is magnified when dimension equals 10 (i.e., B = 4 performs worse than B = 2). The
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(a) Rosenbrock (b) Centered sinusoidal (c) Shifted Sinusoidal

Figure 3: Incumbent function value plots with B = 2, kb = 2, and dimension 5. Results are plotted until
Algorithm B maintains its first subregion. The number of function evaluations until the first pruned subregion
is denoted by the vertical dashed line for Algorithm A and vertical dot-dashed line for Algorithm B.

Table 1: Compare PBnB algorithms A and B on test function, dimension, B, and kb.

Rosenbrock Centered Sinusoidal Shifted Sinusoidal
Original Multilevel Original Multilevel Original Multilevel
(Alg. A) (Alg. B) (Alg. A) (Alg. B) (Alg. A) (Alg. B)

dim B kb Mean Mean Mean Mean Mean Mean

2

2
1 4,610 3,830 5,327 4,476 3,289 2,667
2 4,688 3,761 5,508 5,151 3,376 2,974
3 4,610 4,351 5,755 5,776 3,579 2,930

4
1 5,748 4,614 6,700 5,425 5,102 3,863
2 5,626 4,626 6,236 5,049 4,641 3,926
3 5,525 4,620 6,398 5,129 4,785 3,896

5

2
1 74,715 74,656 323,781 251,539 2,988 d2,187
2 76,852 68,039 291,674 229,151 3,106 1,788
3 76,708 48,131 249,553 279,794 4,807 2,263

4
1 145,473 179,222 559,576 1,834,108 172,785 112,301
2 126,895 190,236 525,015 2,487,640 147,492 163,636
3 118,935 188,129 539,768 1,566,468 141,887 100,622

7

2
1 1,134,184 835,671 1,836,140 1,492,808 3,696 3,782
2 1,086,704 706,705 1,771,899 1,261,945 3,823 3,839
3 1,134,184 712,355 1,760,036 787,492 5,151 4,443

4
1 517,694 2,135,826 1,865,113 28,839,991 1,650,064 1,621,246
2 490,097 2,040,385 1,874,063 30,983,735 1,778,808 1,798,716
3 456,404 2,471,402 1,831,739 34,239,413 1,728,589 1,519,452

10

2
1 17,856,257 11,039,015 134,267,137 118,484,057 96,176 71,516

2 2 16,068,785 9,756,255 131,429,897 108,491,654 121,254 99,491
3 16,106,384 7,820,062 133,526,508 110,648,929 133,590 120,259

4
1 42,914,162 28,671,025 414,277,547 410,393,757 57,813,728 52,524,442
2 42,810,004 24,514,233 418,521,575 412,343,257 58,319,132 57,820,349
3 49,700,106 27,012,891 409,989,531 406,472,047 61,957,231 43,001,913

performance is relatively insensitive to parameter kb. We also performed a statistical analysis separately
for both algorithms, and B = 2 performed significantly better than B = 4 for both algorithms. Again, kb is
relatively insensitive.

Figure 5 presents the statistical analysis fixing B = 2. This analysis found that Multilevel PBnB
outperforms Original PBnB with 95% confidence.
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Effects (Full).png

(a) Main effects plot.

(Full) Truncated.png

(b) Interaction plots.

Figure 4: Plots showing the effects of test function, algorithm, dimension, B, and kb

Effects B=2.png

Figure 5: Main effects plot for fixed B = 2.

4.2 Algorithm C: Multilevel PBnB with Importance Sampling

A third algorithm was developed to improve upon Multilevel PBnB by using importance sampling to
update a posterior distribution. Multilevel PBnB with Importance Sampling was performed on Rosenbrock,
Centered Sinusoidal, and Shifted Sinusoidal test problems for dimensions 2, 5, 7, and 10 with B = 2 (and
kb = 1) for 10 replications. These results are summarized alongside Original and Multilevel PBnB in
Table 2. Multilevel PBnB with Importance Sampling (Algorithm C) performs better than both Multilevel
PBnB and Original PBnB in terms of lower number of function evaluations to first maintain a subregion,
which is statistically significant with 95% confidence.

5 Conclusion

In this study, we proposed and compared three variations of PBnB for level set approximation, namely
Original PBnB, Multilevel PBnB, and Multilevel PBnB with Importance Sampling. Original PBnB involves
branching the problem space until subregions can be pruned or maintained with statistical confidence. The
proliferation of subregions and the extensive number of sample points required to classify subregions
as maintained or pruned can be problematic, especially at high dimensions. Multilevel PBnB improves
the algorithm by only branching on the most promising subregions, while adding importance sampling
improves the algorithm by focusing sampling density on the subregions with better observed function
values. Our numeric experiment demonstrates that Multilevel PBnB performs better than Original PBnB
with statistical confidence in terms of number of function evaluations required to first maintain a subregion,
and adding importance sampling performs even better. Additionally, our study indicates that the parameter
value of B, the number of subregions partitioned into with each branch, greatly affects the performance of
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Table 2: Comparing the mean number of function evaluations until the first maintaining a subregion for
the three versions of PBnB where B = 2 and kb=1 for Algorithm A (Original PBnB) and Algorithm B
(Multilevel PBnB), and B = 2 and kb=1 for Algorithm C (Multilevel PBnB with Importance Sampling)

Original Multilevel Importance Samp.
(Alg. A) (Alg. B) (Alg. C)

dim Mean Mean Mean
R

os
en

br
oc

k 2 4,610 3,830 1,527
5 74,715 74,656 31,782
7 1,134,184 835,671 215,721

10 17,856,257 11,039,015 10,765,121

C
en

te
re

d
Si

n. 2 5,327 4,476 2,498
5 323,781 251,539 187,795
7 1,836,140 1,492,808 1,129,481

10 134,267,137 118,484,057 56,145,091

Sh
ift

ed
Si

n. 2 3,289 2,667 1,270
5 2,988 2,187 1,490
7 3,696 3,782 1,629

10 96,176 71,156 29,965

the algorithms, where B = 2 results in significantly lower function evaluations required to first maintain a
subregion.

In future work, we hope to further improve on the PBnB algorithm to allow for more efficiency at
higher dimensions. We plan to extend our sensitivity analysis to examine how the number of sample points
per iteration, c, impacts algorithm efficiency. We also plan to utilize Gaussian processes to update the
posterior distribution and provide an even more efficient algorithm.

A Appendix: Test Function Definitions

Rosenbrock Problem: The global minimum is at (1, . . . ,1) and f (x∗) = 0.

min
x∈[−2,2]

f (x) where f (x) = 0.1
dim−1

∑
i=1

(
(1− xi)

2 +100
(
xi+1− x2

i
)2
)

and x ∈ Rdim

Centered Sinusoidal Problem: The global optimum is at x∗ = (90, . . . ,90) and f (x∗) = 0.

min
x∈[0,180]

f (x) where f (x) =−

[
2.5

dim

∏
i=1

sin
(

πxi

180

)
+

dim

∏
i=1

sin
(

πxi

180

)]
+3.5 and x ∈ Rdim

Shifted Sinusoidal Problem: The global optimum is at x∗ = (30, . . . ,30) and f (x∗) = 0.

min
x∈[0,180]

f (x) where f (x) =−

[
2.5

dim

∏
i=1

sin
(

π(x+60)
180

)
+

dim

∏
i=1

sin
(

π(x+60)
36

)]
+3.5 and x ∈ Rdim
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