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ABSTRACT 

Semiconductor wafers are manufactured by stacking hundreds of layers engraved with circuit patterns. 
Wafer fabrication process with the characteristic of re-entrant flow is a complex job-shop that consists of 
several work areas such as lithography, etch, and diffusion. Each work area has several workstations with 
one or more machines that execute the same operation. Capacity planning for a wafer fab is difficult; one 
must determine the required machine count to meet demands on time. This study proposes a methodology 
to find the optimal machine count for each workstation using an approach that combines optimization, 
simulation, and machine learning techniques. The experimental example demonstrates that this approach 
can systematically provide a good and practical solution. 

1 INTRODUCTION 

As the global semiconductor shortage continues, major semiconductor companies are rushing to build new 
wafer fabrication facilities (fab). Especially in this capital-intensive industry, it is very important to verify 
that target production can be achieved with planned resource investment. As a result, there is an increasing 
need for a next-generation capacity planning system that provides an optimal solution while enabling more 
accurate and faster calculations. 

Capacity planning optimizes resource allocation to fulfill demand. Semiconductor manufacturing has 
some special features that complicate the analysis of such systems: (1) a large number of processing steps, 
(2) re-entrant flows, (3) batch machines, and (4) random machine failures. The main consequence of the re-
entrant flow nature is that wafers at different layers in their manufacturing step must compete for the same 
machines.  

Due to the complexity and importance of the problem, much research has been conducted on capacity 
planning for semiconductor fabs. Survey papers have categorized the problem according to decision level, 
scope, objectives, and approaches and have provided an in-depth review of the research (Wu et al. 2005; 
Geng and Jiang 2009; Uzsoy et al. 2017). 

Traditionally, researchers have applied mathematical programming methods to optimize semiconductor 
fabs. Klemmt et al. (2012) applied a linear programming model; Barahona et al. (2005) tried a mixed-
integer stochastic model and linear programming relaxation to minimize the unsatisfied demand 
considering budget constraints; Karabuk and Wu (2003) formulated a stochastic model for uncertain 
demand. However, the results from these approaches are not particularly executable since they do not 
consider production constraints such as sequence-dependent setups and queue-time constraints. 
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Simulation-based approaches that consider operation rules and constraints have also been conducted 
(Wang et al. 2018; Chen and Chen 2010). These methods may provide a practical solution, but it is not 
guaranteed to be optimal. 

The present study proposes a methodology to find the practically optimal resource capacity using a 
combination of optimization, simulation, and machine learning techniques. The capacity planning problem 
is defined with three sub-problems, and the approach is described in Section 2. The proposed approach is 
illustrated and verified with an experimental example in Section 3. The conclusion and discussion follow 
in Section 4. 

2 PROBLEM AND APPROACH 

Long-term capacity planning requires one to assess whether resource capacity is sufficient for the demand 
projection of upcoming years (with a planning horizon of greater than 12 months). It also can be used for 
new fab construction planning, which focuses on validating the product mix and tool investment. Basically, 
it necessitates determining the optimal machine count for each workstation to deliver customer orders on 
time. However, capacity planning poses several challenges: 

• Inaccurate and incomplete master data: Capacity planning software receives data from different 
sources such as sales, forecasts, enterprise resource planning (ERP), and manufacturing execution 
system (MES). If this information is not fully connected, it becomes a major challenge in the 
planning process, and human validation of all data is required. 

• Difficult to create new input data: While making long-term plans, capacity planning should 
consider new products and/or new machines to be introduced in the near future. To ensure a fully 
integrated data set, new input data include not only new products and machines but also their 
associated data. Eqp-Arrange which defines the loadable relationship between job and equipment 
is an example, and its processing time is another. 

• Unbalanced Eqp-Arrange among machines: Some machines can process more products, while 
others can do very few. Usually, general-purpose machines that can process a greater variety of 
jobs have a greater workload than dedicated ones. It is important to keep the balance between 
machines to maximize throughput. For example, assigning limited jobs to the dedicated machine 
first and allocating others to general ones may produce better results. 

• Inaccurate decision based on static work in progress (WIP) inflow: An optimization approach 
usually assumes that the lot arrives at a predetermined time at the work area. This assumption 
simplifies the problem but is not always true and thus difficult to execute. In addition, integration 
of area-level decisions does not guarantee fab-level optimization. 

• Difficult to compare alternatives: It is also important to have an intuitive way to compare results. 
Tentative key performance indicators are demand fulfillment rate, cycle time for each product, and 
resource utilization. 

 
Capacity planning in this study is divided into the following three sub-problems: 
1. Optimize Eqp-Arrange: To improve the workload balance between machines, this optimization 

process determines how to best allocate jobs and machines. The optimization results are provided 
in the form of the Eqp-Arrange list to be inhibited. Simulations with original data and reduced data 
are conducted and compared to verify the impact of the Eqp-Arrange optimization. 

2. Calculate the initial required machine count: Another optimization model is formulated to 
calculate the optimal machine count to minimize the total tardiness of the demand. Since this 
optimization model does not consider operational rules and constraints, the result is used as an 
initial solution for the following machine-learning simulation. 

3. Optimize required machine count: A machine learning technique, policy gradient with parameter-
based exploration (PGPE), is applied to find the optimal solution with the initial solution obtained 
above.  
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More details are provided in the following sections. 

2.1 Optimization 1: Optimizing Eqp-Arrange 

When a machine processes 25 wafers with 10 seconds of tact time, its workload is 250 seconds. If a product 
has a demand of 1,000 wafers, each step of the product should process 1,000 wafers assuming step yield is 
100%. For a specific step, if only one machine is loadable and its tact time is 36 seconds, then 36,000 
seconds (i.e., 10 hours) of workload is assigned to the machine. If two machines are loadable for the same 
operation with the same tact, then each machine has a workload of 5 hours. In this manner, we can calculate 
static workload for each machine using demand, Eqp-Arrange, and tact time data. 

Figure 1 presents static workload, which is calculated with 6 months (182 days) of demand for each 
workstation. To meet demand in 182 days, the workload must be less than or equal to 182 days. However, 
the workload of a machine may be much higher or much lower than the reference value, as shown in Figure 
1. This variability is very typical of existing wafer fabs. 

 
Figure 1: Static workload is unbalanced across workstations. Note that this static workload can be different 
from the optimization result or simulation result. 

To maximize the step moves which is the total wafer counts processed at steps, it might be helpful that 
bottleneck machines process jobs that only they can do and leave the rest to other equipment. An 
optimization model, Optimization 1, can be formulated to improve the balance of the workload among 
workstations. Table 1 defines the parameters and variables for both optimization models (i.e., Optimization 
1 and 2). 

 
The objective of the model is to maximize the total on-time delivery for all demands: 
 

𝑀𝑎𝑥		 ∑ ∑ 𝑢!""∈$!∈%  . 
 
The first constraint is the WIP balance constraint. For a product m, step s at time bucket t, the end on 

hand (EOH) WIP amount equals to beginning on hand (BOH) WIP plus incoming WIP minus outgoing 
WIP. For all steps except the last,		 ∀𝑚 ∈ 𝑃, ∀𝑠 ∈ 𝑅!, 𝑠 ≠ 𝑠!& , ∀𝑡 ∈ 𝑇 

𝑤!'" +	∑ ∑ 𝑟!'()"!"𝑥!'()*"!"!∈$,"!,"*∈-"#$% − ∑ 𝑥!'*"*∈-"# = 𝑤!'".). 
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Table 1: Set, parameters, and variables are defined for the optimization modeling. 

Notation Description 
Set 𝑃 Set of products 

𝑅! Route, which is a series of steps for a given product m 
𝐸 Set of workstations 
𝐿* Eqp-Arrange, which is a set of loadable products/steps at a given workstation e 
𝐸!' Eqp-Arrange, which is a set of loadable workstations for a given product m, step s 
𝑇 Set of time buckets in the planning horizon 

Parameter 𝑑!" Demand quantity for product m at time t 
𝜏!'* Processing time of product m, step s at workstation e 
𝜂* Number of machines at workstation e 
𝑐*" Capacity of a single machine at workstation e at time t 
𝑠!/ ith step of product m, where 𝑠!& 	is the last step of the product 
𝑟!'"!" The arrival ratio to the next step at time t when product m finishes step s at time 𝑡0 

Variable 𝑥!'*" Assigned number of product m, step s at workstation e at time t 
𝑤!'" Number of beginning on hand WIP of product m, step s, at time (bucket) t 
𝑢!" Number of products m with on-time delivery at time t 
𝑏!" Number of products m with delayed delivery at time t 
𝛼* Additional machine count at workstation e  

 
For the last step, ∀𝑚 ∈ 𝑃, 𝑠 = 𝑠!& , ∀𝑡 ∈ 𝑇 

 𝑤!'" +	∑ ∑ 𝑟!'()"!"𝑥!'()*"!"!∈$,"!,"*∈-"#$% − 𝑢!" = 𝑤!'".). 
 
The next constraint is the delivery to demand constraint: the current day’s demand plus the previous 

day’s backlog must equal the total of the current day’s delivery and backlog. The demand for product m at 
time t should equal the on-time delivered amount plus the current delayed amount minus the previous 
delayed amount: 

 
𝑢!" +	𝑏!" −	𝑏!"() = 𝑑!"				∀𝑚 ∈ 𝑃, ∀𝑡 ∈ 𝑇. 

 
The final constraint is the capacity constraint. The total processing time (i.e., workload), cannot exceed 

the capacity for each time and workstation. Every machine in a workstation is assumed to have the same 
processing time: 

 
 ∑ 𝜏!'*(!,')∈3& 𝑥!'*" ≤ 𝜂*𝑐*"			∀𝑒 ∈ 𝐸, ∀𝑡 ∈ 𝑇. 

2.2 Optimization 2: Calculating the Initial Required Machine Count using Optimization 

We construct another optimization model to determine the minimum required machine count to fulfill the 
demand. Note that Eqp-Arrange is updated with the result of the previous optimization model. 

The objective function is to minimize the additional capacity to satisfy all demands: 
 

𝑀𝑖𝑛		 ∑ 𝛼**∈4 .  
 
WIP balance constraints are the same as the previous model, but the delivery to demand constraint is 

different as this model does not allow late delivery for any demand: 
 

𝑢!" = 𝑑!"				∀𝑚 ∈ 𝑃, ∀𝑡 ∈ 𝑇. 
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The capacity constraint is modified to consider additional machine capacity: 
 

∑ 𝜏!'*(!,')∈3& 𝑥!'*" ≤ 𝜂*𝑐*" + 𝛼*𝑐*"			∀𝑒 ∈ 𝐸, ∀𝑡 ∈ 𝑇.  

2.3 Optimizing Required Machine Count using Machine Learning 

This optimization task is essentially a search problem to find the optimal required machine count for each 
workstation. Reducing the solution space to bottlenecks would be effective and efficient. Simulation using 
the initial value (𝛼* 	in Table 1) as calculated by Optimization 2 is performed, and the daily utilization for 
each workstation is captured. If a workstation has more than one day when its daily utilization equals 100% 
during the plan horizon, it is identified as a bottleneck workstation. 

The policy gradient with parameter-based exploration (PGPE) was proposed to address the issue that 
symmetric sampling in parameter space leads to lower variance gradient estimates (Sehnke et al. 2010). As 
a model-free reinforcement learning method, the policy is defined by a distribution over the parameters of 
a controller. The parameters are sampled from this distribution at the start of each iteration, and thereafter 
the controller is deterministic. Since the reward for each iteration depends on only a single sample, the 
gradient estimates are significantly less noisy, even in stochastic environments. 

Figure 2 depicts the procedure of applying the PGPE algorithm, where its reward considers the total 
tardiness and maximum daily utilization to avoid excessive investment; parameters are mean 𝜇 and standard 
deviation 𝜎 assuming the parameter distribution is normal. The samples are symmetrically drawn from the 
predefined parameter distribution with each iteration. Each scenario is simulated in parallel, and the results 
are used to update the parameters. Details on symmetric sampling and gradient formulation are found in 
Sehnke et al. (2010). 

 
Figure 2: Machine learning environment using the PGPE algorithm. 

3 EXPERIMENT AND RESULTS 

As a planning and scheduling solution provider, VMS has some test data sets that have been improved and 
now reflect behavior quite similar to that of the real fabs. The test model has 14 products, which have 
1,400–2,200 steps, including inspection and measuring steps. Eight processing work areas have 461 
workstations in total.  
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For the sake of run-time, the planning horizon is 6 months instead of more than a year where the 
monthly demand is around 150–200K. The simulation uses total tardiness as the key performance indicator. 
Let 𝐿5 denote the lateness of job j, which is equal to the difference between the job’s completion time 𝐶5 
and its due date 𝑑5. The tardiness of job j, 𝑇5, is equal to max(0, 𝐿5). Total tardiness is calculated as ∑ 𝑇55 . 

3.1 Eqp-Arrange Optimization 

A linear programming model is formulated with 32,944 variables and 16,776 constraints, as described in 
section 2.1. It completes within 1.22 s and reduces the row count of Eqp-Arrange data from 13,252 to 8,056, 
as indicated in Table 2. Simulations prove that the reduced Eqp-Arrange set outperforms the original data 
set in terms of step moves and tardiness, as indicated in Tables 2 and 3. 

Table 2: About 40% of Eqp-Arrange can be reduced, but total step moves are slightly increased. 

AREA EQP-ARRANGE COUNT STEP MOVES 
ORIGINAL REDUCED RATIO ORIGINAL REDUCED DELTA 

CMP 198  173  87% 6,130,246 6,115,685 -14,561 
CVD 981  897  91% 31,384,663 31,369,849 -14,814 
DIFFUSION 976  810  83% 28,605,689 28,847,976 242,287 
DRY 875  785  90% 26,874,488 26,923,893 49,405 
IMPLANT 561  551  98% 21,854,244 22,162,009 307,765 
PHOTO 1,393  1,008  72% 36,333,136 36,650,670 317,534 
PVD 132  126  95% 4,444,014 4,415,092 -28,922 
WET 8,136  3,706  46% 133,165,816 134,047,570 881,754 
Total 13,252  8,056  61% 288,792,296 290,532,744 1,740,448 

 

Table 3: With the reduced Eqp-Arrange, total tardiness is slightly decreased. 

PRODUCT ORIGINAL REDUCED 
PROD01  780,500   788,484  
PROD02  234,842   217,480  
PROD03  303,075   303,262  
PROD04  565,477   548,698  
PROD05  1,032   1,116  
PROD06  21,521   21,082  
PROD07  123,590   110,163  
PROD08  8,277,001   7,885,896  
PROD09  557,740   528,790  
PROD10  930,770   947,231  
PROD11  125,919   127,217  
PROD12  2,937,200   3,046,688  
PROD13  734,656   722,864  
PROD14  41,122   42,222  
TOTAL  15,634,445   15,291,193  

 

3.2 Calculation of Initial Required Machine Count 

Optimization 2 modeled in section 2.2 provides the required machine count, as described in Table 4. Fifteen 
workstations out of 461 require more capacity. For example, although workstation CVD_W18 has four 
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machines, it needs 10 (=4 * 2.5002) machines to complete demands on time. Instead of adding six additional 
machines, the simulation reduces the tact time for convenience. If the tact time of CVD_W18 is 10 seconds 
for a step, its new tact time is 4 (=10/2.5002) seconds. Note that optimization does not consider all 
constraints and rules; more machines may be required in reality. 

Table 4: Optimization results indicate that 15 workstations need to increase their capacity. 

RESOURCE CAPA_RATE 
CMP_W12 1.3033 
CVD_W06 1.2252 
CVD_W17 1.0627 
CVD_W18 2.5002 
CVD_W19 1.1182 
CVD_W26 1.0909 
CVD_W39 1.4105 
CVD_W48 1.1829 
DIFFUSION_W88 1.0173 
DIFFUSION_W89 1.2581 
DIFFUSION_W95 1.1602 
DRY_W10 1.5469 
DRY_W41 1.1041 
PHOTO_W14 1.0538 
WET_W27 1.9589 

 
A simulation is conducted to evaluate the impact of increased capacity with the initial required machine 

count. The total tardiness improves from 15,291,193 (See Table 3) to 6,697,307. The demand fulfillment 
chart in Figure 3 helps to assess whether the demand for each product can be achieved. The X-axis is work 
week over 26 weeks, and the Y-axis is the delivered quantity. Dark green indicates the quantity that met 
the due date (HIT the target), light green indicates the quantity completed with delay (MISS the target), and 
gray indicates the quantity that were not completed during the simulation (SHORT). The charts indicate that 
delivery was on time for the early months but became gradually delayed afterwards. 
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(a) Original capacity with reduced Eqp-Arrange 

 
(b) Capacity increased by optimization 

Figure 3: Demand fulfillment chart indicates that additional capacity reduced SHORT amount as well as 
total tardiness. 
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3.3 Optimizing Required Machine Count with PGPE 

From the simulation with the initial value of increased capacity for 15 workstations, an additional 26 
workstations with at least one day of daily utilization equal to 100% are identified as bottlenecks. We set 
up a 41-dimensional vector instead of a 461-dimensions and an initial parameter sigma as 0.5 for the PGPE 
algorithm. The reward considers total tardiness and maximum daily utilization as described in equation (1). 
The daily utilization term prevents increasing excessive capacity, and the constant c is set to 0.1. Note that 
the lower bound of each workstation capacity is 1.  
 
 𝑟 = 	−𝛴𝑇5 − 𝑐 ∗ 𝛴(100 −𝑀𝑎𝑥𝐷𝑎𝑖𝑙𝑦𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) (1) 

 
The average simulation run time is 19.3 minutes. Each iteration draws 11 samples from the multi-

normal distribution—five symmetric pairs and one with the mean value—and runs six simulations in 
parallel. It takes 36.4 hours to complete 50 iterations. The left graph in Figure 4 indicates that the reward is 
increasing over 50 iterations. The right graph indicates the total tardiness is improved from 6,697,307 to 
18,793; the additional equipment count is increased from 12.4 to 160.5 (this model originally had 1,653 
pieces of equipment and 461 workstations). 

 
Figure 4: PGPE result indicates that the total tardiness improved over 50 iterations. 

More capacity may lead to less tardiness by nature. Table 5 proves that our solution provides the 
minimum required machine count. OPT_CAPA is an initial value that is the same as the “CAPA_RATE” 
column in Table 4; PGPE_CAPA is the optimal value determined by machine learning; and MAX_BUSY 
and AVG_BUSY are maximum and average machine utilization, respectively, which are captured daily 
from the PGPE result. PGPE_CAPA is generally greater than OPT_CAPA for the 15 workstations. 
MAX_BUSY indicates that the workstations whose capacity increased are mostly bottlenecks and are a 
minimal set. 
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Table 5: Optimal value is mostly greater than the initial value and the results indicate that minimal capacity 
increases. 

RESOURCE OPT_CAPA PGPE_CAPA MAX_BUSY AVG_BUSY 
CMP_W12 1.3033 2.289 100.0 41.3 
CVD_W06 1.2252 3.149 100.0 46.7 
CVD_W17 1.0627 2.181 100.0 59.6 
CVD_W18 2.5002 4.267 100.0 62.5 
CVD_W19 1.1182 2.406 100.0 56.5 
CVD_W26 1.0909 2.196 100.0 56.4 
CVD_W39 1.4105 1.185 100.0 58.1 
CVD_W48 1.1829 2.257 100.0 60.4 
DIFFUSION_W88 1.0173 3.063 100.0 39.5 
DIFFUSION_W89 1.2581 2.216 100.0 60.7 
DIFFUSION_W95 1.1602 3.061 100.0 44.6 
DRY_W10 1.5469 2.387 100.0 68.8 
DRY_W41 1.1041 1.841 100.0 35.1 
PHOTO_W14 1.0538 2.123 90.7 33.4 
WET_W27 1.9589 1.828 100.0 84.7 
CMP_W02  1.763 100.0 62.1 
CVD_W07  1.278 100.0 61.2 
CVD_W08  2.12 99.8 52.1 
CVD_W14  1.114 100.0 82.6 
CVD_W20  2.449 100.0 41.5 
CVD_W23  1.547 100.0 81.5 
CVD_W32  1.428 100.0 72.6 
CVD_W35  2.11 100.0 54.2 
CVD_W40  3.539 100.0 62.0 
CVD_W43  2.695 100.0 40.2 
CVD_W44  1.005 100.0 87.5 
DIFFUSION_W82  2.035 97.2 57.4 
DIFFUSION_W83  1.107 100.0 79.5 
DIFFUSION_W90  1.251 100.0 81.2 
DIFFUSION_W91  2.388 100.0 42.3 
DIFFUSION_W92  2.298 100.0 54.5 
DIFFUSION_W94  2.954 99.8 41.4 
PHOTO_W02  1.809 100.0 54.5 
PHOTO_W05  2.455 90.7 52.3 
PHOTO_W07  1.848 100.0 54.8 
PHOTO_W08  1.494 100.0 71.3 
PHOTO_W19  1.296 100.0 61.7 
PHOTO_W23  1.171 100.0 45.6 
PHOTO_W32  1.259 100.0 68.0 
WET_W21  1.529 100.0 48.9 
WET_W77  1.126 100.0 56.6 

 
Figure 5 indicates that most demands are met. For some MISS cases, the initial WIP location was 

already late to meet the due date. Another simulation that increases the capacity for each and every (461) 
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workstations by 10 times results in a total tardiness of 18,881 (PGPE results 18,793); therefore, PGPE 
produces a near-optimal solution from a tardiness perspective. 

 

 
Figure 5: On time delivery is way improved with PGPE result. 

4 CONCULUSION AND DISCUSSION 

We divided the capacity planning problem into three sub-problems and applied a combination of 
optimization, simulation, and machine learning techniques. To resolve the unbalanced Eqp-Arrange issue, 
which is commonly found in real fabs, the optimization method (Optimization 1) was applied and resulted 
in better step moves and backlogs. Another optimization model (Optimization 2) identified bottleneck 
machines and provided their initial increased capacity, which reduced the search space for the practically 
optimal solution as an initial solution. Fab-level simulation verified the optimization result and identified 
another potential bottleneck machine. PGPE was used to run simulations in parallel and determine the 
optimal solution, which validated the proposed approach. 

In practice, capacity planning is conducted together with planners from each work area. This approach 
may help these planners determine how many machines are required in various use cases: (1) to consider 
the budget and unit price for each machine, (2) to review the result if some workstation tool counts are 
fixed, (3) to justify the purchase of select machines, or (4) to calculate maximum throughput with the current 
machine set. 

This study assumes parallel machines at a given workstation. However, these machines may have 
different features, processing times and Eqp-Arranges in reality. Further research on the comparison 
between workstation-level simulation and tool-level simulation are required. Future work should also 
explore the trade-off between accuracy and run-time of simulations. 
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