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ABSTRACT

A dynamic job shop scheduling problem where jobs are transported by automated guided vehicles (AGVs)
is considered to minimize the mean flow time. This problem is first modeled with a timed Petri net (TPN)
which is widely used for modeling and analyzing discrete event systems. A firing rule of transitions in
a TPN is modified to derive more efficient schedules by considering jobs that have not arrived yet and
restricting the unnecessary movement of the AGVs. We propose a Monte Carlo Tree Search (MCTS)-based
algorithm for the problem, which searches for schedules in advance within a time given limit. The proposed
method shows better performance than combinations of other dispatching rules.

1 INTRODUCTION

Many manufacturing systems have been using automatic transport robots, such as overhead hoist transports
(OHTs) or automated guided vehicles (AGVs), to automate the systems and improve their productivity. It
is important to obtain a schedule by considering both machines and robots at the same time because these
two different resource types are closely related in that jobs must use two resource types in turn.

There have been several studies on job shops with transport robots. Bilge and Ulusoy (1995) addressed
integrated scheduling of machines and robots with a time window heuristic approach and provided the
benchmark instances, which are used for performance evaluation in this study. Other studies have also
developed efficient meta heuristic based algorithms, such as the tabu search, simulated annealing, and
genetic algorithm (Deroussi et al. 2008; Zheng et al. 2014; Reddy and Rao 2006). Recently, Ham (2021)
applied constraint programming(CP) to solve large-sized instances of job shop scheduling with robots.

In practice, it is common to observe dynamic automated manufacturing environments, such as dynamic
job arrivals, machine breakdowns, and battery charging of the robots. However, most previous studies
on job shops with AGVs have focused on deriving a schedule without considering dynamic events, due
to their complexity. We, therefore, consider a dynamic job shop scheduling problem with AGVs where
the arrival time of jobs is not known. Unpredictable arrival of jobs frequently occurs in flexible and
customized manufacturing systems. There have been many studies on dynamic job shops by developing
dispatching rules (Dabbas et al. 2001; Dominic et al. 2004), simulation methods (Xiong et al. 2017),
heuristics (Kundakc and Kulak 2016), and reinforcement learning (Liu et al. 2022). However, they have
not considered AGVs in the system.

In this study, a timed Petri net (TPN) is used for modeling the job shop scheduling problem with
AGVs (Wang 2012). A TPN, which consists of places, transitions, arcs, and tokens, is widely used for
modeling and analyzing discrete event dynamic systems. An extended disjunctive graph can also be used
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for modeling the problem, but it is hard to represent robots moving between machines with the graph
(Lacomme et al. 2013).

In dynamic job shops with AGVs, it is important to use future state information when assigning jobs
to machines or AGVs to obtain good schedules. Specifically, it can be better to wait for a job that is
being processed in the previous machine if its processing time in the next machine is large. However,
firing only enabled transitions in a TPN cannot derive such a schedule. We, therefore, propose a modified
enabling rule with relaxed conditions compared to the original TPN in order to consider such jobs that are
not available for machines or robots at the current time. We further propose a strategy that restricts the
unnecessary movement of transport robots to reduce the search space. We then propose a Monte Carlo tree
search (MCTS)-based scheduling algorithm based on the TPN model and adjust a search step for a dynamic
job shop problem. The proposed method shows better performance compared to several combinations of
machine and AGV dispatching rules. We first explain the problem and TPN model in Section 2 and the
MCTS algorithm in Section 3. We then show the experimental results and conclusion in Sections 4 and
5, respectively.

2 PROBLEM AND MODELING
2.1 Problem Description

We consider a job shop problem with N AGVs and M machines (Bilge and Ulusoy 1995). There are J
job types, each of which has multiple sequential operations, o, 1 < j <J,1 <k < K, which indicates
the kth operation of job j. Each job type j has n; units. All jobs enter or exit the system through the
load/unload (L/U) stocker, where all the robots are located initially. A robot can transport one job between
two machines, and the transportation time depends on the distance between them. When the AGV moves
to a machine for unloading a job, it is called an empty trip whereas a load trip is used when the AGV
is transporting a job for its next process. All of the processing times and the transportation times are
deterministic. Jobs arrive randomly to the L/U stocker, and it is assumed that the arrival time interval
follows the Exponential distribution. Other distribution can also be assumed.

Figure 1 shows four different layouts of the job shop with AGVs (Bilge and Ulusoy 1995). Each
machine has an unlimited input/output buffer for pickup/delivery (P/D) points for the robots, respectively,
and no preemption is allowed for all the operations. It is assumed that each robot moves along the shortest
path, no collision occurs, and there is no delay in travel time from the congestion. The objective is to
minimize the mean flow time of all jobs.

L/U M4 M3

Layout 1 Layout 2

i =

L/u

Layout 3 Layout 4

Figure 1: Problem layout configurations.

3310



Kim and Kim

2.2 Problem Modeling: Timed Petri Net (TPN)

We first model the job shop scheduling problem with AGVs by using a TPN. A TPN is a bipartite directed
graph, which can well represent system dynamics with tokens and interrelations between resources (Wang
2012). Figure 2 shows a simple example with two machines, two job types, and two AGVs. The token
marked at p10 means that job 2 has arrived at the L/U stocker, and the token at p22 represents the availability
of AGV located in front of machine 1. A detailed description of each place and the transition is given
in Table 1. We define four types of places, pua, pyr. pi» and p,, which indicate places for machine
availability, input/output buffers, load trips, and robot availability, respectively, and six types of transitions,
tstart_lt> Tend_lt> Tstart_ets tend_ets tstart_ps» aNd feng_ps, Which represent the start and end of the load trip, empty
trip, and process, respectively.

Robot
Availability
at Machine 2

t21 p26 22

Avallablllty t17 p24 t18
at L/U stocker I m I p22 1
Robot | |
Availability ( @ t24 p27 t23
L. /. [ atMachine1 1
./ |

| ] t25 p28 t26
t20 p25 t19 L.\ .1
N |

p23

Machine 1 Machine 2
Availability Availability P20

Figure 2: A TPN with two machines.

2.3 Modified Enabling Rule

A transition is enabled if all of its input places contain a token, and the token stays in the input place longer
than the holding time. Scheduling of a TPN is to determine the firing sequence of enabled transitions
connected to a conflict place.

Figure 3 is a part of Figure 2, and left and right figures show enabled transitions in red according to
the original enabling rule and our modified enabling rule, respectively. In Figure 3, t3 is enabled and can
be fired, which leads to the process of job type 1 in machine 1. Or, waiting for job type 2 (t15), which is
being transported to machine 1, can also be an alternative and provide a better schedule. However, with
the original enabling rule, t14 cannot be enabled, and we, therefore, modify the enabling rule as follows:

Definition 1 A transition of type #yq,_ps is enabled if its p,,, type input place is marked and pj, type input
place or its preceding place p;; is marked.

This enabling rule makes it possible to consider jobs that are being transported to the corresponding
machine or processing in the previous machine.

In Figure 3, the token marked p22 indicates that there is an available AGV in front of machine 1. In this
case, transitions for empty trips (t19, t21) are always enabled, which can cause unlimited and unnecessary
firing of empty trip transitions. An empty trip transition should be fired by following the corresponding
load trip transition if the AGV is not located at the requested machine. The following enabling rules explain
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Original Enabling Rule Modified Enabling Rule
p3 t3 p4 p3 t3 p4

P19 Enabled Enabled
Machine E> Enabled
p15  t14 p16  t15 pi7 p15 t14 p16  t15 pi7
Enabled
p22 p22
Enabled t21 p26 t22 t21p26  t22

Enabled Enabled

t20

E> p25

t19

Transport
Robot p25 t5 p6

Enabled

Figure 3: Modified enabling rules.

that a load trip transition is enabled regardless of the AGV location, and the empty trip needs to be fired
if needed.

Definition 2 A transition of type g4, is enabled if its p; type input place is marked, and at least one
of places of type p,, is marked. Also when p,r is not marked, but its preceding p,s place is marked, then
tsrare1: 18 enabled.

Definition 3 A transition of type fy4_ is fired when enabled z,,, s is fired, p,, type input place is not
marked, and the trip destination of ty,s ¢ 1S prq. After tyq e and its succeeding transition f,,4 o, are fired,
then #y4,, 5 18 fired automatically.

In Figure 3, there is one idle AGV located at machine 1 (p22 is marked). Jobs 1 and 2 can be transported
from machines 1 to 2 and L/U stocker to machine 2, respectively (p5 and p10 are marked). Then t5 and
t9 are considered as enabled transitions, and t5 can be fired immediately because the idle AGV is located
at machine 1. For job 2, located at L/U stocker, the AGV needs to make the empty trip from machine 1
to L/U stocker. Thus, we should fire the empty trip transitions, t19 and t20, to fire t9. After firing t19 and
t20, t9 is fired automatically.

In addition, when p5 is not marked, but p4 is marked (machine 2 processes job 1), we can still consider
t5 as an enabled transition because the AGV can go ahead and wait for the process completion. In this
case, t5 is fired automatically after firing t4.

3 METHODOLOGY
3.1 Monte carlo tree search

MCTS is an iterative algorithm that searches the state space and builds statistical evidence about the
decisions available in particular states (Browne et al. 2012). MCTS repeats the iterations of four 4 steps:
Selection, Expansion, Simulation, and Backpropagation. We explain each step in detail.

Selection: It starts from the root node and selects successive child nodes until a leaf node is reached.
We use a general selection policy, the upper confidence bound (UCT), which attempts to balance between
exploration and exploitation (Kocsis and Szepesvari 2006).
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Table 1: Description of places and transitions of a TPN in Figure 2

Place Type Description

pl, p10 Dbf L/U stocker for job 1,2

p2, pll Dt Load trip from the L/U stocker to the M1(M2) input buffer for job 1,2
p3, pl2 Dby M1(M2) input buffer for job 1,2

p4, p13 Dps M1(M2) processes a job 1,2

pS, pl4 Dbf M1(M2) output buffer for job 1,2

po, p15 Dit Load trip from the M1(M2) output buffer to the M2(M1) input bufter for job 1,2
p7, pl6 Dby M2(M1) input buffer for job 1,2

p8, pl7 Dps M2(M1) processes a job 1,2

P9, p18 Dbf M2(M1) output buffer for job 1,2

p19, p20 Pma M1,M2 available

p21, p22, p23  pyy L/U stocker, M1, M2 available for robot

p24, p25 Det Empty trip from the L/U(M1) to the M1(L/U stocker)

p26, p27 Det Empty trip from the M1(M2) to the M2(M1)

p28, p29 Det Empty trip from the L/UM2) to the M2(L/U stocker)

Transition Type Description

tl, t9 totart It Start load trip from the L/U stocker to the M1(M2) input buffer for job 1,2
t2, t10 tond It End load trip from the L/U stocker to the M1(M2) input buffer for job 1,2
t3, t15 Lstart_ps M1 starts process for job 1,2

t4, t16 fend._ps M1 finishes process for job 1,2

t5, t13 tstart It Start load trip from the M1(M2) to the M2(M1) input buffer for job 1,2
t6, t14 Lend_ps End load trip from the M1(M2) to the M2(M1) input buffer for job 1,2
t7, t11 Lstart_ps M2(M1) starts process for job 1,2

t8, t12 Tend._ps M2(M1) finishes process for job 1,2

t17, t18 tstart_etstender  Start, End empty trip from the L/U stocker to the M1

t19, t20 tsrart_etstender  Start, End empty trip from the M1 to the L/U stocker

t21, 22 tstart_etstend_er  Start, End empty trip from the M1 to the M2

t23, t24 tstart_etstendr  Start, End empty trip from the M2 to the L/U stocker

25,626 tsrart_etstender Start, End empty trip from the L/U stocker to the M2

t27, 128 tsrart_etstender  Start, End empty trip from the M2 to the L/U stocker

selection policy = argmaxgcion(Q(s,a) + ¢

where Q(s,a), used for exploitation, denotes the average simulation result of action a in state s. N(s) is
the number of visits of state s, and N(s,a) is the number of samples that action a is selected in state s.
c is a coefficient. Each action means firing a load trip or process transition in our problem. If there are
multiple idle robots, each pair of a load trip and robot are considered as an action.

Expansion: When a leaf node is reached, child nodes are expanded and added to the tree according to
the available transitions. Child nodes are generated by firing enabled transitions that indicate the start load
trip and start process in the leaf nodes TPN. If there are enabled start process transitions in the current
TPN, they are first fired. Otherwise, enabled load trip transitions are first considered as child nodes.

Simulation: Random rollout of the problem is performed until the terminal state from the leaf node state.
In our problem, it is impossible to reach the terminal state because the jobs randomly arrive. Also, rollout
until the terminal state is not useful with the dynamic job arrivals. Hence, the time window parameter to
limit the rollout times is used. A large time window parameter can allow for many future states in advance
but the generated schedule may not be useful due to newly arriving jobs. We only consider jobs that have
arrived and select enabled transitions randomly within the time window.

Backpropagation: To minimize the mean flow time, the return of the simulation, z, is set to the average
job waiting time within the time window. The job waiting time is by adding the time during which the job
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stays in the input and output buffers. The waiting times are normalized with the current time to have values
between 0 and 1. The return, z, and the number of visits of nodes are propagated and updated through the
path selected in the tree up to the root. After the given number of iterations, the most visited child node
is selected to be the next transition to fire, and the TPN simulator steps over to the next state.

4 EXPERIMENTAL RESULTS

We compare our MCTS method with the combination of the machine and AGV dispatching rules. Tables
2 and 3 show the mean flow time of the proposed method and the dispatching rules. For the comparison,
shortest processing time (SPT), longest processing time (LPT), most work remaining (MWKR), and first
in first out (FIFO), are used for scheduling the machines. For the AGVs, minimum empty trip time job
(MET), minimum load trip time job (MLT), minimum robot empty trip + load trip time job (MELT), and
FIFO are used. The benchmark instances with four machines and 10 job types in Bilge and Ulusoy (1995)
are used for the comparison. The arrival time interval is assumed to follow the Exponential distribution
with A = 0.05. The total number of newly arrival jobs is 20, and a job type is selected randomly. The
MCTS exploration coefficient, c, is set to v/2. The number of iterations in MCTS is 50, and the time
window size is set to 100. It takes less than 10 s to determine the next action on average.

Table 2: Performance result: Mean flow time
tp  MCTS(W,p) SPI/MET SPI/MLT SPI/MELT SPI/FIFO LPI/MET LPI/MLT LPI/MELT LPI/FIFO

ex11 0.59 93.88 149.95 146.47 146.84 112.14 151.45 153.64 150.7 115.66
ex12 0.47 80.64 106.28 109.18 93.14 87.17 114.13 115.93 122.96 87.17
ex13 0.52 75.48 116.94 103.62 108.83 86.6 119.52 104.97 108.15 86.65
ex14 0.74 150.52 193.55 203.15 185.43 147.49 193.53 222.69 185.43 149.73
ex21 0.61 76.27 85.3 89.07 84.47 77.41 85.27 89.07 84.47 78.57
ex22 0.49 58.46 5891 61.04 59.92 57.91 59.0 61.04 60.2 57.82
ex23 0.53 57.04 64.79 66.02 63.45 61.82 65.41 66.73 64.83 62.65
ex24 0.76 89.65 92.54 95.64 90.03 90.33 92.54 95.61 90.03 90.53
ex31 0.59 79.88 119.56 134.96 114.44 93.59 120.46 137.29 115.08 97.22
ex32 0.47 65.46 79.08 83.27 82.52 70.4 79.82 82.59 82.52 69.84
ex33 0.52 64.81 82.26 81.67 74.23 71.03 82.91 89.12 74.23 71.18
ex34 0.74 99.35 177.18 209.27 176.78 169.72 186.69 208.97 180.46 170.59
ex41 0.91 175.2 211.12 226.65 218.85 216.82 213.23 227.1 219.06 216.98
ex42 0.73 90.48 146.92 170.37 152.16 130.74 149.35 169.88 152.91 142.29
ex43 0.80 98.48 165.39 187.62 160.09 167.83 164.88 187.72 160.08 170.66
ex44 1.14 205.32 261.89 326.58 273.96 373.12 261.89 326.58 273.96 375.37
ex51 0.85 81.4 108.34 110.03 105.02 100.22 109.35 109.85 104.95 98.14
ex52 0.68 66.6 69.89 79.04 67.58 70.66 70.92 82.05 75.7 71.32
ex53 0.74 71.96 76.24 78.09 76.59 76.62 78.49 80.44 76.91 76.09
ex54 1.06 106.04 146.76 166.08 143.71 146.36 146.76 167.67 143.71 140.18
ex61 0.62 97.27 178.93 238.29 156.53 116.23 171.32 237.36 154.85 116.1
ex62 0.50 70.54 97.87 119.4 100.61 81.46 101.82 120.65 104.08 82.54
ex63 0.54 70.81 98.15 158.98 106.55 85.62 98.98 148.06 105.19 85.9
ex64 0.78 106.04 225.48 230.8 199.81 153.23 225.48 230.36 199.81 153.52
ex71 0.78 72.21 71.19 76.11 71.37 75.36 71.19 76.38 71.37 74.89
ex72 0.62 50.14 53.07 53.57 51.28 56.54 52.75 52.61 51.28 56.54
ex73 0.68 55.5 553 60.85 54.89 57.75 53.88 60.86 54.13 58.49
ex74 0.97 88.29 85.99 100.95 87.19 95.59 86.25 100.98 87.46 95.7
ex81 0.58 115.69 231.23 238.64 237.36 155.88 231.23 236.58 237.36 157.89
ex82 0.46 94.96 142.21 181.11 145.67 120.72 150.8 182.14 146.04 124.98
ex83 0.50 101.23 157.67 201.2 155.52 129.53 161.32 199.64 156.07 128.2
ex84 0.72 145.46 291.78 343.58 303.66 248.58 291.78 343.19 303.66 250.41
ex91 0.61 139.08 240.41 249.47 248.2 209.4 237.0 243.98 256.84 207.89
ex92 0.49 102.88 156.76 184.15 158.06 105.34 153.55 173.1 158.06 105.01
ex93 0.53 105.68 157.46 147.12 155.56 106.89 153.41 140.04 155.56 109.6
ex9%4 0.76 131.08 265.23 271.06 268.46 284.72 265.23 270.91 268.21 253.27
ex101 0.55 133.58 249.62 287.81 265.54 179.53 256.93 288.23 268.48 183.96
ex102 0.44 115.31 219.3 231.15 210.27 138.34 220.81 232.33 214.05 144.86
ex103 0.49 115.12 219.76 235.82 217.13 141.95 233.96 237.46 223.25 170.09
ex104 0.69 197.88 305.15 324.32 295.56 253.71 305.21 327.79 295.63 265.22
Average 99.89 150.39 166.56 149.18 130.11 151.71 167.04 150.94 131.34

3314



Kim and Kim

The proposed algorithm is tested in two versions, MCTS(W,P), which considers the proposed enabling
rules from Definitions 1 to 3, and MCTS(P), which only considers rules in Definitions 2 and 3. In the table,
t/p indicates the ratio of the average transportation time to the average processing time. We implement the
MCTS algorithm and dispatching rules with Python and run all experiments on a PC with an Intel i9-9900
CPU @ 3.1 GHz and 32GB of RAM.

It is observed that both proposed methods show better performance than the dispatching rules in most
cases. MCTS(W,P) performs better than MCTS(P) on average, confirming that it might be beneficial to
wait for not yet enabled transitions in some cases.

Table 3: Performance result(continued): Mean flow time

t/p MCTS(P) MWKR/MET MWKR/MLT MWKR/MELT MWKR/FIFO FIFO/MET FIFO/MLT FIFO/MELT FIFO/FIFO

ex11 0.59 102.0 147.5 146.47 146.84 112.14 153.32 146.55 150.7 111.31
ex12 0.47 78.44 111.05 111.88 94.56 83.75 105.61 107.12 107.62 84.64
ex13 0.52 78.56 118.16 105.0 107.98 86.5 116.66 104.14 109.88 86.59
ex14 0.74 137.52 193.53 211.59 185.43 148.19 193.55 202.45 185.43 147.49
ex21 0.61 78.65 85.27 89.07 84.47 78.57 85.12 89.07 84.47 77.41
ex22 0.49 57.35 59.0 61.04 60.2 57.91 58.91 61.04 59.92 57.82
ex23 0.53 57.04 65.41 66.73 64.83 62.65 64.73 65.99 63.54 61.78
ex24 0.76 89.65 92.54 95.61 90.03 90.53 92.54 95.54 90.03 90.33
ex31 0.59 80.58 119.56 134.99 114.44 92.73 119.08 135.53 114.47 93.02
ex32 0.47 64.62 78.02 83.15 81.61 72.1 80.04 82.79 82.44 69.59
ex33 0.52 64.81 83.27 83.6 74.06 70.96 82.88 87.16 74.23 71.25
ex34 0.74 100.77 177.12 209.22 176.78 169.72 186.69 209.0 180.46 169.72
ex41 091 169.76 211.49 222.82 219.06 216.3 211.23 225.32 218.85 211.23
ex42 0.73 91.92 149.25 170.94 155.62 134.92 146.92 169.36 15291 129.04
ex43 0.80 101.04 164.88 185.67 160.08 176.93 165.24 189.89 160.33 145.7
ex44 1.14 200.88 261.89 326.58 273.96 373.94 261.89 326.58 273.96 373.52
ex51 0.85 81.36 109.41 105.66 105.58 102.95 108.34 108.37 104.4 97.24
ex52 0.68 63.92 70.92 80.82 67.94 71.01 70.85 80.82 75.04 69.1
ex53 0.74 70.44 76.37 80.65 77.62 75.46 78.87 78.47 76.59 75.46
ex54 1.06 109.84 146.76 167.67 143.71 140.18 146.76 166.08 143.71 146.21
ex61 0.62 97.27 173.06 237.13 154.85 116.1 171.32 237.06 156.53 115.89
ex62 0.50 72.19 101.82 120.65 104.08 82.73 95.59 120.59 100.58 82.37
ex63 0.54 75.5 98.98 148.06 105.19 85.9 97.72 158.43 106.27 85.67
ex64 0.78 106.04 225.48 230.36 199.81 153.52 225.48 230.3 199.81 153.02
ex71 0.78 73.43 71.19 76.29 71.37 75.18 71.19 75.99 71.37 74.89
ex72 0.62 50.39 52.75 52.61 51.28 56.54 52.75 52.61 51.28 56.5
ex73 0.68 53.5 53.88 60.86 54.13 58.49 53.92 60.12 54.13 57.11
ex74 0.97 87.32 86.25 100.98 87.31 95.7 86.25 100.98 87.46 95.59
ex81 0.58 112.65 231.23 238.19 237.36 166.41 231.23 239.22 237.36 147.03
ex82 0.46 94.65 150.34 181.02 148.09 127.3 141.41 182.26 145.65 124.62
ex83 0.50 102.23 161.32 203.11 156.07 130.86 159.16 204.81 155.94 132.03
ex84 0.72 143.5 291.78 343.19 303.66 243.25 291.78 343.28 303.66 243.98
ex91 0.61 163.44 237.01 243.98 256.84 210.1 236.97 246.75 248.2 205.94
ex92 0.49 90.2 153.55 183.21 158.06 105.01 153.56 172.15 158.06 102.85
ex93 0.53 121.56 153.43 140.43 155.56 109.6 152.49 146.41 155.56 107.22
ex9%4 0.76 164.92 265.23 271.06 268.46 252.85 265.23 271.35 268.21 251.57
ex101 0.55 131.96 255.68 287.8 273.18 196.05 250.65 287.8 253.02 177.81
ex102 0.44 119.08 216.38 236.04 208.49 145.87 219.32 236.45 211.36 140.79
ex103 0.49 118.35 222.73 236.06 216.87 156.08 219.64 235.44 216.06 143.91
ex104 0.69 204.92 305.21 327.49 295.63 255.48 305.15 324.68 295.56 256.37
Average 101.56 150.72 166.44 149.78 131.01 150.25 166.45 149.63 128.09

More experiments are performed with larger instances, named FT10, which have 10 machines and 10
jobs by modifying them for dynamic job shops with AGVs (Muth and Thompson 1963). We generate two
layouts for dynamic job shops where the ratio of the average transportation time to the processing time is
0.2 and 0.4, respectively. There are five transport robots, and the job arrival interval is set to A = 0.01. The
total number of jobs is 30. The time window size of MCTS is 100, and the number of iterations is set to
200. It is observed that the proposed MCTS method provides better solutions compared to the dispatching
rules as in Table 4.
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Table 4: Performance result with larger instance

Instance t/p MCTS(W,P) SPT/MET SPT/MLT SPT/MELT SPT/FIFO LPT/MET LPT/MLT LPT/MELT LPT/FIFO

FT10 0.2 1239.60 1390.43 1766.64 1796.69 1089.36 1504.72 2131.34 1936.29 1244.19
0.4 1216.13 1725.18 2498.42 2322.61 1430.94 1782.05 2699.03 2225.68 1521.36
MCTS(P) MWKR/MET MWKR/MLT MWKR/MELT MWKR/FIFO FIFO/MET FIFO/MLT FIFO/MELT FIFO/FIFO
1057.73 1474.37 1949.54 1960.87 1181.55 1428.88 1946.17 1853.86 1141.17
1344.23 1760.64 2704.18 2315.56 1510.05 1727.47 2627.52 2119.58 1436.15

5 CONCLUSION

We have addressed the dynamic job shop scheduling problem with AGVs by applying the MCTS-based
algorithm. We have modeled the problem with a TPN and modified the transition enabling rules to consider
the machine or robot waiting instead of selecting only the available jobs. We have further restricted empty
trip transitions from firing infinitely. We have shown that the proposed method can provide better schedules
in terms of the average flow time compared to other dispatching rules in most cases.

However, the computation time of our algorithm is still long when the instance size becomes large. Therefore,
we are planning to replace the return value of simulation with a parameterized value function using neural
networks and reinforcement learning to shorten the time-consuming simulation step of MCTS.
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