
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

MAINTENANCE DECISION-MAKING SUPPORTED BY A MULTI-FIDELITY SIMULATION
OPTIMIZATION FRAMEWORK

Yiyun Cao
Christine S.M. Currie
Bhakti Stephan Onggo

Centre for Operational Research
Management Science and Information Systems

University of Southampton
University Rd, Highfield

Southampton, SO17 1BJ, United Kingdom

Russell Barton

Department of Supply Chain
and Information Systems

The Pennsylvania State University
State College, PA 16801, USA

Abstract

Digital twin technology is becoming more prevalent in manufacturing. Simulation optimization is often used
as the main component in digital twin. However, if simulation optimization is to be used to make real-time
decisions, there is a need to improve its efficiency. We describe a multi-fidelity simulation optimization
framework to support a real-time repair scheduling problem on a production line. When several machines
are out of action on a production line, it is not obvious how to choose the order in which they should be
repaired and the optimal choice will depend on the current state of the line. Simulation can be used to
estimate the throughput of the line in the short term future for different repair orders and a given system
state, but the speed at which results are required necessitates the development of an efficient optimization
framework that minimizes the number of replications made of the complex simulation model.

1 INTRODUCTION

Unscheduled disruption to production lines can occur and when more than one machine on the line has
malfunctioned, a decision often needs to be made about the order in which they should be repaired.
Optimizing the repair order can improve the production throughput and simulation is often the most
effective tool to assess the effects of a repair policy on production throughput. We use a multi-fidelity
simulation optimization approach to find a good repair policy for maximizing the system throughput, given
the current state of the system, in the subsequent three hours of system time. This draws on the method
in (Cao et al. 2021), but applies it to a more complex situation. A key requirement of the optimization is
that it can return results quickly (i.e., within minutes) to enable real-time decision-making.

2 CASE STUDY OF A PRODUCTION LINE

We consider a manufacturing production line consisting of 30 workstations, which are a mix of single and
parallel machines (See the illustration in Figure 1). The high fidelity model used to describe the system
is a Discrete Event Simulation (DES) model built with Simpy package (SimPy 2020). We use empirical
distribution functions (EDF) to model the key repair distributions ‘time between failure’ (TBF) and ‘time
to repair’ (TTR), where the EDFs are based on historical data from the production line. As we simulate
the performance from a given system state, a hot start is used so that the simulation can start from any
given system state.
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Figure 1: Illustration of a production line.

The optimization problem we solve is one of identifying the best repair policy to follow in order to
maximize throughput over the following three hours. Based on Panwalkar and Iskander (1977), we consider
ten repair policies: FIFO: earliest breakdown first; LIFO: latest breakdown first; SRT: shortest repair time
first; LRT: longest repair time first; FOR: fewest operations remaining first so that machines nearer the end
of the line have the priority; MOR: most operations remaining first so that machines nearer the start of the
line have the priority; NOSQ: prioritize the machine whose next operation has the shortest queue; COLQ:
current operation with longest queue first; AP: adjacent processes first so that adjacent breakdowns have
the priority; NAP: non-adjacent processes first.

A metamodel is a surrogate model of the simulation in a fixed feasible area Rd built from noisy
observations Y = [y1,y2, ...,yN ]
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parameters (i.e. the status of every buffer and machine) were included in the metamodel, the state space
would be very large and a significant number of replications would be needed in order to fit the metamodel.
As a result, we consider a simplification where we split the line into four sections and use as our input
variables the status of the line in each of these four sections. This leaves us with five variables in our
metamodel: the total buffer content in each of the four sections of the line; the number of parallel machines
broken down in each of the four sections; the number of single machines broken down in each of the four
sections; the adjacency of breakdowns; and the repair policy being implemented.

Having simplified the space, several different system states are described by just one metamodel input.
In order to explore the difference between scenarios with the same set of metamodel inputs, we investigated
extreme scenarios (e.g. same buffer content in each section but work-in-progress clustered at the start or
end of the section) to determine whether the throughput was significantly different. After simulating 100
replications for each scenario, over half (43/81) of the scenarios are found to have no statistically significant
difference and consequently we believe that the simplification is valid. Sequential sampling is used to
guide the experimental design.

3 CONCLUSIONS AND FUTURE WORK

We apply a multi-fidelity simulation optimization algorithm to the problem of identifying an appropriate
repair policy on a production line. The work is useful in situation where the digital twin simulation model
is computationally expensive to run while real-time decisions are needed. Current work is focused on
fitting a neural network metamodel to the DES output.
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