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ABSTRACT

Recently, constructing ABS from detailed and large amounts of behavioral data and a statistical model have
been attracted attention. However, it is difficult to utilize such models for assessing social policies because
of a lack of behavioral data under the policies. In this paper, we propose a new training framework based
on theory-guided neural network, which trains neural networks taking advantage of theoretical knowledge.

1 INTRODUCTION

Agent-based simulation (ABS) has been actively developed and used in the field of urban design and
urban transportation management. In addition, detailed and large amounts of urban data, such as image
recognition data and GPS data, has become easier to be collected. In recent years, statistical models,
such as hidden markov models or a recurrent neural network, have been attracted attention as methods for
constructing ABS from detailed and large amounts of behavioral data (Baeder et al. 2019). However, it is
difficult to utilize the models for assessing social policies because of a lack of behavioral data under the
policies. For example, if we want to find optimal expressway discount for congestion reduction, we need
behavioral data under various expressway toll for the modeling, but it is hardly available.

In physics, there are notable works called theory-guided neural network, where researchers investigate
how to construct statistical models utilizing theoretical knowledge. For example, Daw et al. (2017)
succeeded in constructing a neural network model consistent with physics theory through training the
model to minimize violation of physics laws in addition to training error. Their core idea is to use a loss
function defined by

L = E(Ŷ ,Y )+λP(Ŷ ). (1)

Ŷ is a model prediction when a feature vector, X , inputs to the model. Y is a ground truth for X . E(·) denotes
training error function calculating inconsistency between the prediction and the ground truth. P(·) denotes
penalty function that calculates physical inconsistency in the output structure. λ is a hyper-parameter
deciding relative importance of the training error and the penalty. Theory-guided neural network can
generate models that is consistent with physics theory by training the models to minimize equation (1).

However, it is difficult to apply the previous penalty function to the agent modeling because there are
few obvious input-output relationships in the agent modeling. Our challenge is to construct a novel training
framework for agent-based simulations based on theory-guided neural network.
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2 METHOD

Our method introduces a new penalty function that calculates a penalty by comparing multiple outputs,
which inspired by a control experiment in psychology. We propose a loss function defined by

L = E(Ŷ ,Y )+λP(Ŷ ,Ŷ ′). (2)

In the agent modeling, the input vector X is social data when action(s) Y is obtained. Ŷ is model prediction
when X inputs to the model. X ′ is a synthetic data that is generated from X and only different in a parameter
related to interested policy, e.g., price of train is 5 dollar in X but 2 dollar in X ′, and Ŷ ′ is model prediction
for X ′. In equation (2), P(·) evaluates whether variation from output Ŷ to output Ŷ ′ is consistent with the
rational choice theory.

Figure 1 is an example of the loss calculation using a series of behavioral data. Whole training procedure
is as follows. 1) Generating a synthetic input vector, X ′, from a original real data ,X , which is only different
in a parameter related to interested policy. 2) Getting predictions Ŷ from inputting X to the model and a
prediction Ŷ ′ from inputting X ′ to the model. Then, checking whether inequality relation between Ŷ and
Ŷ ′ is consistent with a theory. 3) Executing 1) and 2) for all of data included in the training data set and
calculating percentage of data that violates the theory as penalty. Then, training the model to minimize
the loss function that consists of training error and the penalty (equation (2)).
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Figure 1: The loss function: training error is calculated based on inconsistency between the ground truth
and the maximum probability behavior; penalty is calculated based on whether variation of target behavior
probability is consistent with the theory (whether the train probability increases linked with decrease of
the train fare). The input vectors are variety of social data when each behavioral result was observed. The
predictions are a set of probabilities of the behaviors.
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