
Proceedings of the 2022 Winter Simulation Conference 
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and    
P. Lendermann, eds. 

A BAYESIAN OPTIMIZATION ALGORITHM FOR CONSTRAINED PROBLEMS WITH 
HETEROSCEDASTIC NOISE 

 
Sasan Amini Inneke van Nieuwenhuyse 

  
VCCM Core Lab, Flanders Make VCCM Core Lab, Flanders Make 

Data Science Institute Data Science Institute 
Hasselt University Hasselt University 

Diepenbeek, 3590, BELGIUM Diepenbeek, 3590, BELGIUM 
 
 
ABSTRACT 

In this research, we develop a Bayesian optimization algorithm to solve expensive constrained problems. 
We consider the presence of heteroscedastic noise in the evaluations, and propose an identification 
procedure that considers this uncertainty in recommending the final optimal solution(s). The primary 
experimental results show that the proposed algorithm is capable of finding a set of optimal (or near-
optimal) solutions in the presence of noisy observations. 

1 INTRODUCTION 

Simulation optimization is an often-used approach for optimizing black-box problems. Different 
approaches exist and have been used successfully in, e.g., engineering design (Qing et al. 2021) and 
hyperparameter tuning of machine learning algorithms (Wu et al. 2019). Most of these approaches (e.g., 
evolutionary algorithms) require many function evaluations before converging to the optimal solution(s). 
Yet, this causes a problem when the simulation model is expensive to run (because of long running times, 
high monetary cost, or hazardous experiments), implying that data-efficient optimization algorithms are 
needed. Moreover, in many simulation optimization problems, the true objective and constraint functions 
are not observable with perfect accuracy; only noisy observations are available (Amaran et al. 2016). This 
noise makes it harder to study/predict the effect of the input vector on the output values. While replication 
is a common strategy to reduce this noise, this again poses a problem in settings with an expensive simulator 
(Zhan and Xing 2020). 
 This research proposes a Bayesian optimization (BO) algorithm to solve expensive and noisy 
constrained problems in a data-efficient way. Work on using Bayesian optimization for solving noisy 
constrained problems is scarce . All these articles pose a questionable assumption on the distribution of the 
noise; they assume that the noise is homoscedastic. Furthermore, when the stopping criterion is met and 
they switch to the identification phase, they return a single feasible solution with the best observed (or 
predicted) mean and disregard uncertainty on the values of the functions because of noise. Contrary to the 
current algorithms, the goal is not to return a single solution; given the noisy outcomes for objective and 
constraint functions, obtaining such result may require a large budget to be used in the ranking and selection 
phase. Instead, the proposed algorithm identifies the solution with the best expected performance, and then 
returns the subset of all solutions in the search space that are estimated to be statistically equivalent to this 
solution in terms of the goal function, while ensuring that they reach a user-defined probability of feasibility. 

2 PROPOSED ALGORITHM 

The proposed algorithm follows the general framework of the BO algorithms, using a Latin hypercube 
sample to obtain a space-filling set of initial design points, and approximating the objective function and 
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the m constraints using  m+1 independent stochastic kriging surrogates (Ankenman et al. 2008). The search 
space is discretized into a (very large) set of candidate points. In the first phase, the search tries to move to 
an estimated optimal solution using a modification of the barrier acquisition function proposed in 
(Pourmohamad and Lee 2022). When the variation of the objective function at the optimal solution is below 
a user-defined threshold, the algorithm moves to the accuracy phase. In this phase, using two novel 
acquisition functions the algorithm improves (1) the accuracy of the approximated functions among 
solutions that fall in the vicinity of the optimal solution so far ,  and (2) the probability of feasibility among 
the same solutions. In the identification phase, the most recent metamodel information is used to screen out 
candidate solutions that do not meet a prespecified probability of feasibility, or that are statistically inferior 
(to that end, we modify the screen-to-the-best procedure proposed in (Boesel et al. 2003)). The algorithm 
then returns the remaining solutions. 
 To assess the performance of the algorithms, we solve three problems: the synthetic problem proposed 
originally in (Gramacy et al. 2016), a modified version of this synthetic problem, and a popular mechanical 
engineering test problem focusing on the design of a spring (used also, for instance, in (Tao et al. 2020)). 
We modify the objective and constraint functions with different noise patterns. The primary experimental 
results show that the proposed algorithm is capable of finding a set of optimal (or near-optimal) solutions 
in the presence of noisy observations. 

3 CONCLUSION 

This research proposes a Bayesian optimization algorithm for constrained problems with heteroscedastic 
noise, including a novel identification procedure that considers the uncertainty in recommending the final 
optimal solution(s). The algorithm’s performance are examined and its efficiency are demonstrated. 
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