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ABSTRACT

Harmful Algae and Cyanobacteria Blooms (HACBs) are dangerous dynamic processes for the users/inhabitants
of the hydric resources. Their development and contingency plans can be anticipated by using Autonomous
Surface Vehicles (ASVs) equipped with a self-driven system capable of deciding how to displace the ASV
and its multi-parametric probe to take measurements in the 3D locations of the water body where the HACB
is likely to occur. This paper presents a new self-driven system for that purpose, consistent on 1) an offline
trajectory planner for the ASV that exploits the information provided by a commercial HACBs simulator
to optimize, in turn, the ASV horizontal and probe vertical displacements; and 2) a guidance and control
system specially designed for making the ASV follow the planned trajectories. The paper also presents a
comprehensive set of simulations to evaluate our proposal’s performance and adjust its parameters.

1 INTRODUCTION

The sixth goal of the United Nations 2030 Agenda for Sustainable Development is to ensure the availability
and sustainable management of water and sanitation for all (United Nations 2023). This objective is
motivated by an alarming growth of the degradation of water-related ecosystems and the lack of monitoring
of the water quality used by billions of people. Reducing water misuse and pollution; mitigating climate
change effects such as extreme floods, droughts, and global warming; and carefully controlling/managing
the water resources will not only strengthen the resilience of watersheds, but will also help national health
systems and economies to fulfill their populations needs (United Nations Environment Programme 2023).

The need for autonomous real-time water monitoring systems is of particular concern in developing
countries. The situation in developed countries, with automatic monitoring stations located upstream of
water treatment stations or as elements of the early warning systems of their river basins, also requires
improvement. This happens because these means, located in fixed positions, do not provide information
with the spatio-temporal resolution necessary to know the local state of the variables of interest in the
different elements of the hydrographic system (e.g., rivers, reservoirs, lakes, or marshes).

This situation is especially problematic when the pollutants to be detected are Harmful Algae Blooms
(HABs, Shumway et al. 2018) or Cyanobacteria Blooms (CBs, Meriluoto et al. 2017), which occur when
algae or cyanobacteria colonies grow uncontrollably. On the one hand, HABs can 1) consume much the
oxygen in the water as they decay, 2) smooth fish and submerged aquatic vegetation, 3) create smelly
heaps/scums on the shore/water surface, and 4) produce toxic or harmful substances for the fauna inhabiting
the aquatic environment or the people using the water resource (for drinking or recreation). On the other
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hand, CBs share the proprieties of the HABs and add their capability to appear and disappear from the
water surface (by displacing themselves vertically in the water column) and the extreme toxicity of their
secondary metabolites, which make them a relevant public health issue. Finally, the dynamic behavior of
both (which will be called here-after HACBs) is related, among other causes, to their biological growth, to the
competition between colonies, and to the water currents and wind that move them in the three-dimensional
(3D) space of the water body. Hence, the awareness of the water authorities of the toxicity and complex
behavior of HACBs are hardening the international regulations related to water (e.g., those in United States
Environmental Protection Agency 2021 and in European Commission 2021), which currently indicate that
HACBs should be monitored more frequently and at more locations to be able to anticipate their presence
and improve the management of the water bodies where they appear.

The fulfillment of the indications of the new regulations can be partially supported by the use of
Autonomous Surface Vehicles (ASVs, a type of robotized boat) specially designed to take the multi-
parametric probes that measure the variables under study to the points of interest within the water body
(Hitz et al. 2012; Siyang and Kerdcharoen 2016; Girón-Sierra and Chacón-Sombría 2021). Moreover, to
make an ASV an intelligent self-driving 3D monitoring platform, it is also necessary to equip it with 1) a
motorized reel in charge of moving the probe vertically and 2) a complete automation system (incorporating
advanced localization, sensing, planning, guidance and control techniques) responsible for deciding how
to move the ASVs (and its probe) and for moving it safely (Liua et al. 2016). This paper focuses on
developing several elements of the complete automation system for HACBs monitoring, and analyzing
their performance through multiple simulations.

The planning, guidance, and control of an ASV depend largely on the available information about
the water body and the phases contemplated by its automation system. For instance, when there is no
information about the water body, the ASVs displacements can be directly driven/controlled (without a
pre-planning step) by the measurements taken by their onboard probes (de Marina et al. 2021; Besada-Portas
et al. 2021), or pre-planned as a trajectory (to be followed by the ASV during the monitoring mission) by
solving a coverage problem with different types of patterns (Valada et al. 2012; N. Karapetyan and Rekleitis
2019) or as a Travelling Salesman Problem among shore points (Arzamendia et al. 2016; Arzamendia
et al. 2019). Otherwise, when the information to be gathered in the regions of interest is relevant, the
ASV trajectory can be pre-planned by setting up an information gain problem and solving it with different
evolutionary optimizers (Xiong et al. 2019; Xiong et al. 2020). Another alternative consists of building
online the trajectory of the ASVs according to water quality uncertainty models adjusted to the information
gathered by the ASVs in previous monitoring missions and updated with the ASVs measurements obtained
during the current one (Kathen et al. 2021; Peralta et al. 2023). Finally, it is possible to exploit the
information provided by simulators of the water body dynamics and of the HACBs dispersion to pre-plan
3D trajectories for the ASV/probe horizontal/vertical displacements that maximize the chances of detecting
them while minimizing the mission time and trajectory length (Carazo-Barbero et al. 2021). The trajectory
pre-planner presented in this paper falls within this last category, differing from Carazo-Barbero et al.
(2021) by 1) optimizing a 3D probe trajectory that alternates ASVs displacements with the probe fixed at
a constant depth and vertical profiles of the probe while keeping the ASV fixed at a given location, and
by 2) exploiting a commercial simulator of the water body and HACB.

The approaches presented in the previous paragraph can be further classified into two categories. The
first two ones (i.e., de Marina et al. 2021 and Besada-Portas et al. 2021) directly control the ASV based on
the information provided by the probes without planning any trajectory. In contrast, the remaining ones are
centered on trajectory planning without considering how to make the ASV follow the trajectory. That is,
they are focused on the development of two complementary parts of the complete automation systems, since
the performance of the guidance and control (G&C) usually improves when it is programmed/fitted for its
particular intent (in this case, making an ASV follow a given type of trajectory). Hence, this paper also
presents the G&C designed for our automation system, which is partially based on the Vector-Field guided
Path-Following (VF-PF) algorithm presented by de Marina et al. (2017), where the guiding vector field is
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Figure 1: Schematic representation of the relationships between the different elements

a) designed to make the field integral curves converge to the desired path and b) used to derive the control
law for the vehicle. Besides, to adapt the path-following part of VF-PF for the trajectory tracking required
by our G&C, we follow the strategy presented by Yao et al. (2021). Other trajectory followers/trackers
that could be of interest to our G&C are the ones introduced by: de la Cruz et al. (2015), which is capable
of making the ASV adapt its movement to any trajectory of changing curvature; Wang et al. (2022) and
Fan et al. (2023), which is supported by sliding mode controllers; and Liu et al. (2021), which is based
on a line-of-sight guidance algorithm commonly used for ASV path-following.

In summary, the three main contributions of this paper are the following. First, an offline planner that
exploits the information of a commercial water body and HACB simulator to optimize, in turns, the ASV
horizontal trajectory and probe vertical displacement. Second, a G&C especially designed to make the
ASV follow the trajectory returned by the planner as closely as possible. And finally, the analysis of the
performance of both subsystems under simulations, which is extremely important to support the different
phases of our research by helping us, for example, to tune the parameters and validate the different systems,
characterize their behavior as a whole, and avoid later experimental problems.

The rest of the paper is organized as follows. Sections 2, 3 and 4 describe the main properties of the
water body and HACB simulator, of the USV trajectory planner, and the G&C, which are respectively used
and presented in this paper for HACBs monitoring missions, while Figure 1 schematizes the relationships
among them (and anticipates the name of some variables that will be used through the paper). Section
5 shows several simulations with the purpose of characterizing the system’s behavior. Finally, Section 6
draws the conclusions and presents some future lines of research.

2 WATER BODY AND HACB SIMULATOR

The simulator of the 3D water body and HACB behavior must include, at least, models of the fluid
dynamics, and the HACB growth and 3D transportation. When considering those requirements, many
existing simulators related to water quality ecosystems are not valid since they work in lower dimensions
(e.g., CE-QUAL-W2 , DYRESM-CAEDYM , GLM , or ATK, LAKE2K and QUAL2K ), or do not include
hydrodynamics (e.g., WASP ) or eutrophic modules (e.g., ECOMSED or UNTRIM ). Besides, others (e.g.,
EFDC-EPA or Delft3D ) are too difficult to use since they lack a Graphical User Interface (GUI) to

specify the initial and contour conditions of all their modules.
After discarding the previous options, we decided to use EEMS , which extends EFDC-EPA by including

a GUI, and by supporting new functionalities such as the capability of simulating several kinds of algae
and cyanobacteria. However, it is worth noting that EEMS discretizes the water environment into a 3D grid
and the time evolution in periodic steps, in order to perform the simulations and manage the data storage.
However, our ASV + probe trajectory planner needs to evaluate the state of some given variables (e.g.,
algae or cyanobacteria concentration) at any time instant t and 3D location (lon, lat,z) of the water body.
Hence, we have implemented a function g(t, lon, lat,z,v) that obtains the value of the variable of interest
v at the given (t, lon, lan,z) by interpolating the value of v linearly in the time, and linearly or with the
nearest neighbors in the 3D space.
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3 TRAJECTORY PLANNER

This sections explains the main characteristics of our planner, starting with a description of the trajectory
encoding, following with the criteria used to evaluate the trajectories manipulated by the planner, and
ending with the main characteristics of the optimizer used to determine a feasible overall good trajectory.

3.1 Trajectory Encoding

The 3D trajectory to be optimized alternates ASVs displacements with the probe depth fixed and vertical
profiles of the probe with the ASV fixed at its current location. The planner optimizes this type of trajectory
(instead of a 3D trajectory with simultaneous ASV and probe displacements as in Carazo-Barbero et al.
2021) to combine the two types of displacements that are usually performed when sampling the water
manually. Besides, as the Nv probe vertical profiles are all equal except for the ASV locations from where
they are performed, the 3D probe trajectory can be built up from the ASV horizontal trajectory.

The ASV 2D trajectory σσσ(t) = [σlon(t),σlat(t)]T is encoded as a natural cubic spline (Ravanka et al.
2018), constructed using N f = Nv+1 third order polynomials for each dimension, each of them 1) defining
the value of the corresponding coordinate between two given time steps (i.e., fi,l(t) =σl(t)when ti−1 < t < ti,
i ∈ {1 : N f } and l ∈ {lon, lat}) and 2) having to pass at ti through one of the i ∈ {1 : Nv} intermediate control
points ccci = [ci,lon,ci,lat ] of the spline (i.e., fi,l(ti) = fi+1,l(ti) = ci,l , with i ∈ {1 : Nv} and l ∈ {lon, lat}). The
spline is also required to have C2 continuity (i.e., ḟi,l(ti) = ḟi+1,l(ti) and f̈i,l(ti) = f̈i+1,l(ti) for i ∈ {1 : Nv}
and l ∈ {lon, lat}) and a null second derivative in its initial and end locations. This encoding is chosen
since 1) its C2 continuity makes the ASV position, velocity, and acceleration change smoothly; 2) each ccci
can be used as the ASV fixed location for a vertical probe profile; and 3) when the ASV starts at a point
that is not the first of the spline, it follows a straight line to start the trajectory.

The planner optimizes the location of the Nv spline control points ccci and their passing time ti,
manipulating 3 ·Nv decision variables. With that information, obtaining the ASV trajectory at any instant
between t0 < t < tN f is possible. Nevertheless, this trajectory needs to be discretized and extended to the third
dimension (including the probe depth) for evaluation. To do it, we carry out the following process. First, we
discretize with a sampling period of TUAV each segment of the spline fi,l(t), valid from ti−1 to ti, and store
the information in the auxiliary vectors vvvi,l = [σi,l(ti−1),σi,l(ti−1 +TUAV ),σi,l(ti−1 +2 ·TUAV ), . . . ,σi,l(ti)]
and vvvi,∆T = [0,TUAV ,2 ·TUAV , . . . , ti − ti−1]. Next, we initialize the discretized location, probe, time, and
type segment vectors with the information related to the first segment of the spline and the probe placed
at fixed depth dprobe

f ixed , (i.e., we make pppl = [vvv1,l] for l ∈ {lon, lat}, pppz = repmat(dprobe
f ixed ,1, length(vvv1,1)),

ppptime = [t0 + vvv1,∆T ] and pppprobe = repmat(fixed,1, length(vvv1,1))). Afterwards, maintaining the last ASV
location, we add the information related with the first downward vertical displacement of the probe, that
starts at dprobe

f ixed and moves every Tprobe seconds a distance of ∆probe during Nprobe steps (by extending vectors
pppl = [pppl, repmat(pppl(end),1,Nprobe)] for l ∈ {lon, lat}, pppprobe = [pppprobe, repmat(moving,1,Nprobe)],
ppptime = [ppptime, ppptime(end)+Tprobe, ppptime(end)+2 ·Tprobe, · · · , ppptime(end)+Nprobe ·Tprobe] and
pppz = [pppz,d

probe
f ixed +∆probe,d

probe
f ixed +2 ·∆probe, . . . ,d

probe
f ixed +Nprobe ·∆probe]). At this stage, the discretized vectors

contain information about the spline’s first segment and the first downward vertical probe displacement.
Afterwards, all the remaining spline segments must be included, adding first the information of the current
i segment of the spline (by making pppl = [pppl,vvvi,l] for i ∈ {lon, lat}, pppz = [pppz, repmat(dprobe

f ixed ,1, length(vvv1,1))],
ppptime = [ppptime, ppptime(end) +Nprobe · Tprobe + vvvi,∆T ] and pppprobe = [pppprobe, repmat(fixed,1, length(vvvi,1))]) and
afterwards, except for the last segment of the spline, the downward vertical probe displacement (as
explained before). In short, the process discretizes and alternates Nv pairs of ASV + probe displacements
and ends with a last ASV displacement. Besides, in each segment inclusion (except for the initial ASV
displacement), ppptime gets delayed 2 ·Nprobe ·Tprobe seconds with respect to the original spline due to the
downward and upward vertical probe displacements (the first half of the delay is accounted in the Nprobe
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Table 1: Planner evaluation criteria.

Type Purpose Expression
C

on
st

. Maximal time duration CF1 = tN f − t0 −2 ·Nv ·Nprobe ·Tprobe ≤ Tmission

Maximal ASV velocity CF2 = max(||ṗppxy(tk)||)≤ vmax,∀tk ∈ TimeSubset(pppt p, f ixed)
Spatial Domain CF3 = ∑tk∈ppptime

OutSide(pppllz(tk)) = 0

O
bj

ec
tiv

es

Minimize ASV trajectory length minOF1 = ∑tk∈TimeSubset(pppt p, f ixed) ||ṗppxy(tk)|| ·TUAV

Maximize HACB concentration maxOF2 = ∑tk∈TimeSubset(pppt p, f ixed) g(tk, plat(tk), plong(tk), pz(tk),ρ)
during ASV displacements
Maximize HACB concentration maxOF3 = ∑tk∈TimeSubset(pppt p,moving) g(tk, plat(tk), plong(tk), pz(tk),ρ)
during probe displacements

increments of Tprobe seconds of the downward probe displacement, while the second half is accounted for
in the Nprobe ·Tprobe seconds delayed at the beginning of each UAV segment addition).

Finally, the spline and its previous discretization are codified in geographical coordinates to help
the planner to decide if the trajectory is contained within the water body and to measure the concentra-
tion directly from the interpolator of the HACBs simulator. However, part of the trajectory evaluation
process presented in the next section uses the ASV location and velocity in a Cartesian coordinate
space centered at the beginning of the ASV trajectory σσσ(t0). To obtain the values of the locations in
the new coordinate space, the geographical coordinates are projected into a plane using equirectangu-
lar projection, an effective streamlined method for small distances compared to the Earth’s radius. In
particular, assuming that the Earth is an ellipsoid of revolution, of radius D meters in the poles and of
R meters in the equator, and pre-calculating ∆pl(tk) = pl(tk)−σl(t0) for i ∈ {lon, lat}, we can obtain
[px(tk), py(tk)] = 1

360 [∆plon(tk)cos(σlat(t0)) ·R,∆plat(tk) ·D]. Finally, the ASV horizontal speeds ( ṗx(tk) and
ṗy(tk)) are obtained by finite differences between two consecutive locations of the trajectory in the Cartesian
coordinate space.

3.2 Evaluation Criteria

This section presents the Constraint and Optimization Functions (CF and OFs) that the
planner uses to evaluate the feasibility and goodness of the trajectories. They are
summarized in Table 1, where for shortness, pppllz(tk) = [plon(tk), plat(tk), pz(tk)], pppxy(tk) =
[px(tk), py(tk)], pppt p = [ppptime, pppprobe], OutSide(pppllz(tk)) = {1 i f pllz(tk) /∈ waberbody,0 otherwise} and
TimeSubset(pppt p,v) = {tk ∈ ppptime|pppprobe(tk) = v}. On one hand, the constraint function CF1 ensures that the
ASV and probe perform the complete monitoring mission in at most Tmission hours; CF2 guarantees that
the trajectory is feasible from the ASV maneuverability point of view (i.e., constrained by the maximal
velocity vmax); and CF3 ensures that the trajectory is contained within the water body. On the other hand,
the optimization function OF1 minimizes the trajectory length (without accounting for the vertical probe
displacement because it is the same for all the trajectories); OF2 maximizes the accumulated observed algae
or cyanobacteria concentration (ρ) along the ASV trajectory at constant depth; while OF3 maximizes the
accumulated observed ρ while the probe is moving downwards. In short, the planner is expected to select
feasible short trajectories that pass over and make vertical profiles in regions of high algae or cyanobacteria
concentration.

3.3 Optimizer

We decided to solve the constrained multi-objective optimization problem of obtaining the ASV trajectory
for HACB monitoring with the Non-Dominated Sorting Genetic Algorithm (NSGA-II, Deb et al. 2002),
since it is a well-known evolutionary approach successfully applied to many other real-world problems.

We configure NSGA-II as follows. In the initialization step, the values of the 3 ·Nv decision variables
of a population of Np solutions are sampled from a uniform distribution, bounded in the case of ccci between
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the horizontal limits of the water-body and in the case of ti between [t0, t0+Tmission]. The parents’ selection
is made using binary tournament. The mating of each pair of parents is performed with a probability pcross
using simulated binary crossover with distribution index ηcross (Deb and Agrawal 1995). The values of
some decision variables of some children (selected uniformly with mutation probability pmut) are slightly
modified using polynomial-based mutation with distribution index ηmut (Deb and Agrawal 1999). The
population of the next generation is formed by the best Np old and new solutions sorted in Pareto fronts
and with the crowding distance. And the stop criterion is to reach a given number of generations Nstop.
Finally, it is worth noting that after running NSGA-II, it is necessary to select one solution among all those
returned by the planner that, belonging to the first Pareto front, are equally good.

4 ASV GUIDANCE AND CONTROL

This section explains the G&C approach that we have developed to make the ASV follow the planned
trajectories, and which is inspired by the vector-field guided path-following (VF/PF) algorithm presented by
Yao et al. (2021). Due to its closed-loop iteration with the ASV model, we start introducing this element.

4.1 ASV Model

A common approach in path-following problems is to consider that the control loop that acts over the
system dynamics is fast and accurate enough to assume that the control inputs to the system model are
the linear and angular velocities (Kapitanyuk et al. 2017). Under this assumption, the horizontal dynamics
of the ASV can be modeled as a non-holonomic vehicle in two dimensions (de Marina et al. 2017), with
the following kinematic expressions: ṡss(t) = [ṡx, ṡy, ṡθ ]

T = [uv · cos(sθ )+wx,uv · sin(sθ )+wy,uθ ]
T , where

sss(t) = [sx,sy,sθ ]
T stands for the ASV state, [sx,sy]

T for its location over the water body surface in the
Cartesian coordinates, sθ for its heading angle, uuu = [uv,uθ ]

T for the control vector input, uv and uθ for the
ground and angular velocity control signals, and www = [wx,wy]

T for the water speed disturbances.

4.2 Law for the Angular Velocity Control Signal

This law, responsible for obtaining uθ and for making the ASV state converge to the trajectory despite the
disturbances www on its dynamics, is constructed in two steps (de Marina et al. 2017). In the first step, we
define a vector field that will make the ASV converge to the desired trajectory, while in the second one,
we identify the control law that will make the vehicle converge to the vector field.

In our case, the difficulty arises because the desired trajectory is encoded as a natural cubic spline, which
is a parametrically-defined self-intersecting path. Overcoming its parametric definition by transforming
it into implicit functions (to be used in the vector field computation) can be computationally expensive
to be used often. Besides, Vector-Field Path-Following (VF-PF) algorithms such as the one presented by
de Marina et al. (2017) can not handle self-intersecting trajectories because near the intersections, the
vector field degenerates to zero and the guidance signal cannot be calculated. Nevertheless, both issues can
be avoided following the strategy proposed by Yao et al. (2021), which extends the vector field by adding
an extra dimension that allows the elimination of all singular points at once. The resultant expressions are
summarized in Table 2 and explained next from a user perspective.

In the first column of the table, the desired path P is defined (using the generalized states of the ASV ζ =
[sx,sy,sw], which include the additional dimension sw) as the set where the error eeex,y, defined as the difference
between the ASV location and the spline evaluated at sw (i.e., eeex,y = [φx,φy]

T = [sx −σx(sw),sy −σy(sw)]
T )

is equal to zero. To fulfill this requirement during the whole mission in spite of the water disturbances,
we must define a vector field χχχ and controller that makes eeex,y → 0 as the time evolves. For this purpose,

the dynamics of the extra dimension may be modeled as ṡw = χ3/
√

χ2
1 +χ2

2 (where χi are the elements of
the extended guiding vector field) and added to the extended ASV’s dynamical model. Besides, and as a
consequence of having followed the methodology proposed by Yao et al. (2021), the new dimension and
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Table 2: Controller equations.

Desired Path Guiding Vector Field Orientation Error Control Signal
P = {ζζζ ∈ R3|φx = 0,φy = 0} χχχ = [χ1,χ2,χ3]

T uθ = θ̇d − kθ hhhT E χ̂χχP

ζζζ = [sx,sy,sw]
T χ1 = k3

Lσ̇x(sw)− kLkxφx eeeori(t) =

 hhhθ − χ̂χχ
P

ṡw − χ3√
χ2

1+χ2
2

 θ̇d =− 1
||χχχP|| (χ̂χχ

P)
T

EJ(χχχP)ζ̇ζζ

φx = sx −σx(sw) χ2 = k3
Lσ̇y(sw)− kLkyφy hhhθ = [cos(sθ ),sin(sθ )]

T E is the 90 degrees
rotation matrix

φy = sy −σy(sw) χ3 = k3
L − kLkxφxσ̇x(sw)− kLkyφyσ̇y(sw) χ̂χχ

P = [χ1,χ2]
T /

√
χ2

1 +χ2
2 J is the Jacobian matrix

its dynamics avoid the desired path P to self-intersect in any point, ensures that our ASV does not stall
at the control points, and guarantees by construction that the extended guiding vector field χχχ ̸= 000,∀R3.

After defining the desired path P and constructing the vector field χχχ (according to the expressions
in the second column of Table 2) that guides our ASV, we can compute the control signal uθ that makes
the ASV converge to P . For this purpose, we could define the orientation error eeeori as the difference

between the ASV’s generalized speed ζ̇ζζ and the guiding vector field orientations χ̂χχ = χχχ/
√

χ2
1 +χ2

2 . As

the dynamical model of sw makes ṡw−χ3/
√

χ2
1 +χ2

2 = 0, our problem can be transformed from R3 to R2,

by redefining eeeori as the actual physical error between the ASV’s orientation hhhθ = [cos(sθ ),sin(sθ )]
T and

the physical guiding vector field χ̂χχ
P. Finding a Lyapunov function V dependent on this error and a control

signal uθ that makes V̇ negative-semidefinite will make eeeori → 0 as time evolves. Selecting V = 1
2 ||eeeori||2,

whose time derivative is V̇ = (ṡθ − θ̇d)hhh
T E χ̂χχ

P, makes V̇ =−kθ (hhh
T E χ̂χχ

P)2 ≤ 0 when kθ ∈ R+ and the uθ

of last column of Table 2 is chosen. Besides, if hhhθ and χ̂χχ
P are aligned, V̇ = 0, keeping the ASV on P .

4.3 Law for the Ground Velocity Control Signal

Finally, we assume that the speed uv is fixed by an external controller and equal to that of the spline
evaluated at sw since this choice will make the G&C behave as follows. On the one hand, when the ASV
is on track, ṡw ∼ 1 to measure the concentration at the time instants specified by the planner. This will
ensure that the elapsed time between two control points of the spline is sufficiently close to the difference
of the time breaks ti − ti−1 of the spline evaluated fi(sw). On the other one, if the ASV is out of track,
ṡw ∼ 0 to evaluate the spline at an almost constant sw, making the ASV on track again, since χχχ will guide
it to the constant point fi(sw).

For this purpose, four constants were introduced in the angular velocity control law presented in the
previous section. Within the vector field computation, kx ∈R+ and ky ∈R+ tune how aggressive the vector
field is in the sx, sy and sw directions. In contrast, kL ∈ (0,1] scales down the vector field and makes sw less
sensitive to the remaining parametrization. That is, if kL is small, each vector field component becomes
smaller, sw changes slower, and uθ is lower and smoother. The constant kθ ∈ R+ used in uθ , determines
how fast the ASV converges to χχχ , since V̇ = −kθ (hhh

T E χ̂χχ
P)2. Thus, as big values of kθ make V̇ more

negative, eeeori → 0 faster.

5 SIMULATIONS

This section analyzes via simulation the performance of the different parts of our proposal after presenting
the main properties of the scenarios under study. It is also worth noting that all the software is programmed
in Python, using the open-source framework pymoo (Blank and Deb 2020) for the evolutionary optimizer.

5.1 Scenarios Under Study

The water body under study is Lake Washington, since EEMS provides a pre-tuned ready-to-use example
that includes the initial state and contour conditions for the hydrodynamics, temperature, wind, solar
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(a) Algae concentration (b) Trajectories for A1 and A2 (c) Trajectories for B1 and B2

Figure 2: Scenario setup and selected optimized trajectory by the operator.

radiation, and water quality modules related to the transport and the concentration changes of inorganic
compounds (e.g., oxygen, phosphorous, nitrogen, and ammonia) and algae. Although Figure 2a shows the
algae concentration (using greener/bluer colors for higher/lower values) at the fixed probe depth dprobe

f ixed and
at t=1.5 hours, the algae concentration at the probe measuring time and depth will be used by the planner.

To set up four different scenarios, we select two particular regions of the lake and provide an initial
trajectory location σσσ(t0) and two final locations σσσ(tN f ) within each region. In particular:

Scenarios A1 and A2 are carried in the middle of Lake Washington, framed in red in Figure 2a,
where algae concentration is high in several zones. As the ASV starts in a low-concentration region,
these scenarios are set up to see if the planner can obtain trajectories that identify areas of high algae
concentration. Besides, A1 differs from A2 only in the final location of the trajectory, since in A1, the ASV
must start and end in the same place, while in A2 the last location is different from the initial. Hence, in
A1, the ASV must perform a closed trajectory, while in A2, it has to follow an open one.

Scenarios B1 and B2 are carried at the bottom of the lake, framed in violet in Figure 2a, to see how the
planner adapts the trajectories to the curvature of the lake and this tighter area. Again, B1 and B2 differ in
the final location of the trajectory, forcing the ASV to perform a close trajectory in B1 and an open in B2.

5.2 Performance Analysis of the Trajectory Planner

The optimizer of the planner, supported by NSGA-II, is expected to return a different set of solutions
whenever it is run. Hence, to analyze its behavior statistically, we run the planner, parameterized as Table
3 summarizes, 40 times for each scenario and store, the CF and OF values of all the solutions that belong
to the best Pareto front of each of the 100 generations. From those values, we can first calculate the
HyperVolume Estimation (HVE, Bader et al. 2010) for each run and generation and the best OFi in the
best front, and afterward their mean and standard deviation within each generation. The top 4 subplots
of Figure 3 represent the evolution of those means and of twice the standard deviations for each scenario
(using blue for the closed-loop ones and red for the open-loop ones), while the bottom color plots represent
the number of runs where the solutions of the first Pareto front fulfill the constraints.

Observing all those graphics, we can conclude the following. In Scenario A1 and A2, the planner often
finds feasible solutions reasonably quickly (after generation 30) and improves them during the remaining
generations, where the trajectory length (OF1) decreases, and the algae concentration accumulated along
the ASV trajectory (OF2) and at the probe profiles (OF3) increase, as expected. Moreover, the longer
the trajectory (which corresponds to A2), the higher the algae concentration measured along it. However,
feasible solutions are usually found later for scenarios B1 and B2 since the planner must build a trajectory
that fits within a tighter area. Besides, while OF1 decreases, OF2 and OF3 increase with the generation
number as expected, and in this case, the trajectory is longer for B1 than for B2, due to the tighter region.

Besides, from the final set of non-dominated solutions returned NSGA-II, the operator systematically
selects the one with the best OF3 value, which is represented in Figures 2b and 2c, using a blue line for
the closed trajectories of scenarios A1 and B1, a red line for the open trajectories of scenarios A2 and B2,
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Table 3: Trajectory planner parameters.

Encoding Evaluation NSGA-II

Nv
TUAV Nprobe

Tprobe dprobe
f ixed ∆probe Tmission vmax Np pcross ηcross pmut ηmut Nstop

(s) (s) (m) (m) (hour) (m/s)
6 0.5 36 1 2 0.5 3.5 1.4 50 0.9 15 0.9 20 100

(a) Scenarios A1 and A2 (b) Scenarios B1 and B2

Figure 3: Evolution of the HVE and objective functions.

a cyan cross for σσσ(t0), a black cross for σσσ(tN f ), and dots of the color used for the trajectory for its splines
control points (where the probe profiles are performed).

Finally, it is worth noting that our planner needs 22.66 minutes to optimize the ASV trajectory during
100 generations in a Dual-Core 2.3 GHz Intel Core i5 with 8 GB RAM PC with macOS Monterey. Note
also that some extra time can be required to make OFi curves reach a converging plateau.

5.3 Performance Analysis of the G&C

The following simulations allow to determine a suitable G&C parameterization from the combinations of all
the values presented in Table 4, where kθ is fixed since the G&C is more sensitive to the other parameters.

The results of those simulations, for the trajectory selected by the operator for scenarios A2 and some
representative parameterizations of the table, are presented in Figure 4. In particular, Figure 4a represents
the time evolution of x and y components of the planner trajectory [σx,σy]

T with a black dashed line and the
trajectories followed by the ASV [sx,sy] with different colored solid lines for the selected parameterizations.
Figure 4b and 4c represent respectively, the evolution of the distance errors {φx,φy} and of the control signal
uθ . Note that the limits of the ordinate axis change and that the control signal is bounded to uθ ∈ {−π,π}
for a better simulation of a real-world scenario. The observation of the figures allows us to conclude
the following. First, regardless of the values of kx and ky, the low value of kL = 0.01 scales down too
much the vector field, making ṡw ∼ 0 and stopping the ASV at the beginning of the trajectory (as the
representative trajectory with kL = 0.01 of Figure 4a shows). Second, the high value of kL = 0.8 makes the
ASV turn too soon before reaching the control splines (as the big φ values, associated to control points,
of the case of Figure 4b with kL = 0.8 shows). Third, if kL = 0.1 and kx ky are low, the trajectory and
control signal uθ have an oscillatory behavior (observable in the cases of Figure 4b and 4c with kL = 0.1
and kx = ky = 0.005). Forth, when kL = 0.1 and kx = ky = 0.075, the vector field guides the ASV to the
desired trajectory. Finally, if kx and ky are further increased, the control signal oscillates again. Figure 5
shows a similar overall behavior of all the graphics for the trajectory selected for scenario B1, despite its
higher complexity (due to the multiple intersections of the spline).

All these simulations allow us to set our G&C parameters to kx = ky = 0.075 and kL = 0.1 since 1)
φx and φy are small for all t, 2) the control signal is smooth enough, and 3) the ASV reaches the control
points with the smallest error possible both in time and space.
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Table 4: Controller parameters.

Vector Field Aggressiveness Vector Field Scaling Control Signal Constant
Parameter kx ky kL kθ

Testing range [0.005 : 0.070 : 0.285] [0.005 : 0.070 : 0.285] [0.01,0.1,0.8] Fixed
Selected value 0.075 0.075 0.1 4

(a) Trajectories (b) Distance error (c) Control signal

Figure 4: Controller testing for scenario A2.

(a) Trajectories (b) Distance error (c) Control signal

Figure 5: Controller testing for scenario B1.

6 CONCLUSIONS

This paper presents a new trajectory planner and a new guidance and control system for self-driving an ASV
performing HACBs monitoring missions in lentic waters. The planner optimise the ASV’s horizontal and
probe vertical trajectories and the G&C makes the ASV move in accordance to the planned trajectory. To
this end, on the one hand, the planner optimizes the control nodes of a 2D spline with NSGA-II (a proven
multi-objective method), taking into account the simulation of the evolution of the algae o cyanobacteria
concentration. On the other one, the G&C system combines the definition of an appropriated vector field
for the splines with a Lyapunov-inspired non-linear controller for the ASV orientation. Finally, the multiple
optimizations of the planner and simulations of the G&C show that the new system can determine overall
good trajectories followable by the ASV, providing that the water body and HACB model is well-tuned.

Some future lines of research can be the following. Improving the planner, e.g. including new constraints
related to the ASV maneuverability or new decision variables to determine the maximal depth of the probe
at each profile. Adapting the G&C to more complex dynamical models of the ASV (e.g. for a catamaran
with two propellers). Defining the dynamic behavior of the probe before developing a controller to make
the vertical profiles with it.
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