
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

MODELING AND SIMULATION OF THE SARS-COV-2 LUNG INFECTION AND IMMUNE
RESPONSE WITH CELL-DEVS

Ali Ayadi

ICube UMR 7357 CNRS
Université de Strasbourg

300 bd Sébastien Brant, Illkirch
FRANCE

Claudia Frydman

LIS UMR 7020 CNRS
Aix Marseille Université

Marseille Cedex 20
FRANCE

Quy Thanh Le

Da Nang University of Science and Technology
VIETNAM

ABSTRACT

Understanding why patients’ viral loads vary dramatically across individuals is a critical challenge in
addressing respiratory infections, especially the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The spatial-temporal dynamics of viral infection in the respiratory system and the immune
system’s response remain difficult to study. Using modelling and simulation (M&S) techniques may
address this problem. In this paper, we present a novel modelling approach using the Cell-DEVS formalism
(a combination of Cellular Automata and DEVS), to simulate the spatial-temporal dynamics of viral spread
in the lungs. Using a two-dimensional cellular space that mimics a lung, the proposed approach focuses also
on the immune system response, viral infection spread, state of lung epithelial tissue damage, and immune
cells’ state. We demonstrate the pertinence of our proposal on three different scenarios representing three
types of patients. Qualitative evaluation by expert biologists confirms that the produced simulations match
the observations made on patients.

1 INTRODUCTION

Respiratory viral infections (RVIs) are infections of parts of the body involved in breathing, such as the
sinuses, throat, airways, or lungs. These infections are the leading cause of disease and mortality (Troy and
Bosco 2016). They have always been a subject of major interest in various disciplines, but their importance
has increased in recent years. With the Coronavirus Disease 2019 (Covid-19) pandemic, we have seen how
an RVI can have a devastating impact on human health, economy, and society as a whole.

RVIs are studied in many disciplines, including medicine, virology, epidemiology, molecular biology,
and computer science. These disciplines work together to understand the nature of RVIs, how they spread,
and how they can be prevented or treated. However, the mechanisms that determine why some individuals
suffer from severe illness whilst others do are not well understood (Troy and Bosco 2016).

Mathematical and computational modeling, along with simulation techniques, play a crucial role in
understanding and combating respiratory viral infections (RVIs) such as Covid-19. These tools contribute
to the design of efficient strategies for controlling the pandemic, predicting the effectiveness of antiviral
treatments, studying infection dynamics, and comprehending viral transmission mechanisms. By modeling
the intricate behaviors of viruses, their interactions with host cells, and the immune response, simulation
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tools provide valuable insights, particularly from a spatio-temporal perspective, aiding in the advancement
of RVI research and intervention strategies (Bernhauerová et al. 2021).

SARS-CoV-2 primarily targets the epithelium in the respiratory tracts as well as other cells within organs
such as the lungs, heart, and vasculature (Ashraf et al. 2021). The immune system plays a crucial role in
combating this viral infection by recognizing the virus through pattern recognition receptors and initiating
the release of inflammatory molecules that facilitate viral elimination. Enhancing our understanding of
the mechanisms underlying SARS-CoV-2 propagation in the respiratory system and the immune response
can contribute to the development of targeted therapeutic interventions to mitigate the adverse effects of
respiratory viral infections.

Thus, there is an urgent need for understanding the (i) SARS-CoV-2 replication and its interaction
with host cells, and (ii) how it spreads in the different tissues and cellular hosts. We already addressed
the first challenge in our previous works (Ayadi et al. 2021) by developing a DEVS-based approach for
modeling and simulation of the SARS-CoV-2 life cycle, from entry to release, and studying its behavior
at each stage of its replication process. While this paper will focus on the second objective.

In this study, we introduce a novel modeling approach utilizing the Cell-DEVS formalism (Ameghino
et al. 2001), which combines Cellular Automata and DEVS, to simulate the spatial-temporal dynamics of
viral spread in the lungs. The model incorporates the immune system response, viral infection spread, lung
epithelial tissue damage, and immune cell activation within a two-dimensional cellular space representing a
small lung. Implemented using the CD++ toolkit, a tool built to implement DEVS and Cell- DEVS models
(Wainer 2022), the Cell-DEVS model leverages a specification language to define cell behavior, including
computing functions and delays, as well as the coupled model’s configuration and initial conditions. Through
three distinct scenarios representing different patient types, namely weak immune system with low viral
load, strong immune system with low viral load, and strong immune system with high viral load, we
demonstrate the relevance of our simulation approach. These case studies shed light on the significant
variability in viral loads observed among SARS-CoV-2 patients and showcase the potential of our model
to address crucial questions related to infection dynamics.

2 BACKGROUND AND RELATED WORKS

2.1 Background

As depicted by Figure 1, the SARS-CoV-2 virus hijacks the respiratory system through the angiotensin-
converting enzyme 2 (ACE2) receptors on the surface of the pulmonary alveolar epithelium (transition 1
in Figure 1) and causes pulmonary infections that result in Covid-19 (Diamond and Kanneganti 2022).
At that time, the state of the epithelial lung cell moved from a healthy, uninfected cell to an infected one
(transition 2). It then enters the epithelial cell and releases its RNA genome, which is used to produce
viral proteins and replicate the viral genome (Ayadi et al. 2021). The new viral proteins and genomes are
assembled into new virus particles, which are then released from the host cell (transitions 4a and 4b) until
it is cleared (transition 6) and can infect other cells and starts their spread in the epithelial tissue (transition
5) (Ayadi et al. 2021). Throughout this life cycle, the virus can be transmitted between individuals through
respiratory droplets or contact with contaminated surfaces (Kumar et al. 2020).

When the immune system detects SARS-CoV-2 particles, it launches an immune response to fight the
virus. The innate immune system is the first line of defense (transitions 2a and 3a). Immune cells forming the
innate immune system such as macrophages, dendritic cells, and natural killer cells are activated (transitions
2a and 3a) (Moses et al. 2021) and then release cytokines, small proteins that are secreted by immune cells,
in response to the viral infection. They have the capacity to recognize the virus and trigger a response to
neutralize it. Cytokines play a key role in regulating the immune response and act as messengers to signal
other immune cells to respond to the threat. Thus, they recruit innate and adaptive immune cells, such
as macrophages, dendritic cells, T cells, B cells, and NK cells, leading to a self-amplifying inflammatory
cascade in a positive feedback loop manner (transition 8). For example, B-cells produce antibodies that
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bind to the virus and prevent it from infecting cells, while T-cells can recognize and kill infected cells,
which helps to prevent the virus from spreading (transitions 9 and 10). For the sake of simplicity, in this
study, we will not address the different types of immune cells, and the different pro-inflammatory molecules
secreted by these cells. We will only talk about immune cells and cytokines.
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Figure 1: Anatomy of the respiratory system and the interactions among of epithelial lung cells, immune
cells, virus and cytokines (inspired from (Moses et al. 2021)).

2.2 Related works

While there are many simulation models developed at an epidemiological level for analyzing the transmission
of SARS-CoV-2 among populations, there are too few models at within-host level addressing the SARS-
CoV-2 spread in cells, and the immune system response (Hernandez-Vargas and Velasco-Hernandez 2020).

Most prior work uses mathematical models to represent within-host virus dynamics. Chowdhury et al.
(2022) analyze the interaction between SARS-CoV-2 and the immune system by considering the role of
natural killer cells and T-cell. Li et al. (2020) develop a viral dynamic model to analyze the SARS-CoV-2
kinetics in host cells, using the chest radiograph score (Au-Yong et al. 2022). Carruthers et al. (2022)
propose a within-host model, describing viral dynamics in the upper respiratory tract of individuals. Nath
et al. (2021) develop a model, focusing on the properties of the model, such as non-negativity of solutions.
Other mathematical models (Davies et al. 2020; Ferretti et al. 2020; Kyrychko et al. 2020) focused on the
viral spread and involved pharmacological interventions to reduce the infection.

These models are useful for studying the duration of the incubation period (Nath et al. 2021) and the
impact of therapeutics given at different times (Mahesh et al. 2022; Chatterjee et al. 2022). However,
they have limited ability to fully account for dynamics in the large and complex structure of the lung
(Sadria and Layton 2021; Quirouette et al. 2020), as they did not consider the scalable and spatial-temporal
effects of viral spread and immune response in determining the time course of viral load within patients.
Additionally, the non-spatiotemporal aspect of these models assume that the distribution of the modelled
quantities are uniformly distributed in space and time (Sego et al. 2020), an assumption that might not be
realistic in solid tissues, where viruses and host immune cells are not usually distributed homogeneously.

Other agent-based model have been proposed to address this spatio-temporal aspect. (Moses et al.
2021) develop the SIMCoV tool that replicates the viral growth dynamics observed in patients and shows
how spatially dispersed infections can lead to increased viral loads in a 2D layer of epithelial cells. Sego
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et al. (2020) propose a very useful open-source platform for multiscale spatio-temporal simulation of an
epithelial tissue, viral infection, cellular immune response, tissue damage, and the impact of treatments.

To address the spread of, and response to, the SARS-CoV-2 viral infection, we start by developing a
Discrete-Event Modelling and Simulation-based approach for modeling and simulation of the SARS-CoV-2
life cycle, from entry to release, and study its behavior at each stage of its replication process. The
proposed model benefits from the advantages of formalism as its rigorous formal definition, and its support
for modular composition. However, it does not consider the spatio-temporal effects of the viral infection
in an epithelial tissue, and cellular immune response. In this paper, we extend these works to consider the
spatial-temporal dynamics of viral spread in the lungs using the Cell-DEVS formalism.

3 PROPOSED CELL-DEVS SIMULATION MODELLING

The choice of a Cell-DEVS simulation model for simulating the dynamic behavior of the SARS-CoV-2
is justified by its advantages over other simulation models. By discretizing time and events, the proposed
model captures the stochastic nature of viral replication, immune responses, and cell state changes,
offering a more realistic representation of the complex dynamics of virus-host interactions. Furthermore,
the cellular automata framework allows for the explicit modeling of spatial aspects within lung tissue,
facilitating the understanding of the viral local behaviors, its spatial propagation, and tissue damage. In
contrast to continuous mathematical models like differential equations, the discrete-event simulation model
better captures the discrete nature of viral infections and incorporates various biological factors and events
occurring at different time scales. This choice ensures a comprehensive analysis of COVID virus progression,
integrating detailed spatial and temporal dynamics to provide valuable insights that could complement other
simulation approaches. The proposed Cell-DEVS simulation model uses a series of interlinked multi-layer
models that draw upon the biological background presented in section 2.1. It includes epithelial cell status,
immune cell status, as well as cytokine and virus concentrations, all of which are intricately connected for
understanding the SARS-CoV-2 lung infection and immune response. Such model allows visualizing the
propagation of the virus within lung tissue, the damage to epithelial cells, and the corresponding reaction
of the immune system to this viral infection.

In our multiscale model, cells are divided into two broad groups, epithelial and immune cells. Each
one has its proper characteristics and how it interacts with the other components of the model. The specific
interactions (resp. biological processes) of these cells are also defined for each one to describe its function,
depending on its state. Epithelial cells can have one of four types healthy, infected, virus-releasing and
dead. While immune cells can be inactivated or activated. For each cell’s state, an identifier is associated.
Both cells change according to their inputs, which arise from specific components of the model. Depending
on the type of input, a specific biological process will occur. These biological processes are defined in
the model and ensure the passage of cells from their initial states to another specific state. When cells
(epithelial or immune) or viruses are dead, they are inactive.

As well, a particular cell function (corresponding to a biological process) was defined for each epithelial
cell. These cell functions, corresponding to the transitions 2, 3, 6, and 9 in Figure 1 define the cells’ state. To
define the viral entry, we define a function that assigns the epithelial cell with a probability of engrossing viral
particles from the total concentration of SARS-CoV-2 viral particles present in the extracellular environment,
according to the number of ACE2 receptors in the epithelial cell surface and the connection between them.
The viral particles absorbed by the cells are subtracted from the extracellular environment. Once infected,
the epithelial cells stop absorbing viral particles. The viral replication described by transition 3 is defined by
a simple generic formula including a viral replication parameter. Internal viral replication processes such as
cell’s metabolism, number of ribosomes cell’s metabolism, . . . were not considered in this study. The viral
secreting biological function corresponding to transition 9 was also defined by a simple formula, producing
viral particles in the extracellular environment. The secreted virions are added to the total amount of viral
particles in the cells’ extracellular environment. The duration of the incubation phase (time between virus
entry and release of virions) of an epithelial-infected single-cell was also defined. A formula was also defined
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to perform both virally-induced apoptosis of a secretory cell due to the number of intracellular viral particles
and the cell death due to oxidizing cytotoxicity due to the concentration of cytokines (transition 6). We
also consider that a part of the secreted viral particles are damaged by the immune responses and therefore
become inactivated in dead state (transition 10). The rule of virus spread can be written in CD++ as follows:

{~virus := $vi; ~virus_movement := $vim;}//Output
{ $vim := if(round($vi*0.8) &gt; 0, round($vi*0.8), 0);
$vir :=round(((1,0,0)~virus_movement + (-1,0,0)~virus_movement

+ (0,1,0)~virus_movement + (0,-1,0)~virus_movement)/4);
$vi := max(0,$vi + round((0,0,1)~virion/4 - $vi*(0,0,1)~uptake_rate) - $vim +
$vir);}//Postcondition
250//Delay

The total number of immune cells is constant. These cells are by default inactivated. Their activation
depends on the amount of absorbed cytokines. Once triggered by cytokines (transition 2a and 3a), they
move to the activated cells and secrete in turn cytokines (transition 8). After a long cytokine secretion,
they become dead and are no longer active (transition 11). The propagation cytokines rule can be written
in CD++ as follows:

{~cytokine_secreting := $cs; ~cytokine_movement := $cm;}//Output
{ $cm := if( round($cs*0.9) &gt; 0, round($cs*0.9), 0);
$cr:=round(((1,0,0)~cytokine_movement+(-1,0,0)~cytokine_movement
(0,1,0)~cytokine_movement + (0,-1,0)~cytokine_movement)/4);
$cs := $cs + round((0,0,-1)~immune_signal +((0,0,1)~immune_signal ))*0.7*1000 -
$cm + $cr - $cs*((0,0,1)~uptake_rate + if((0,0,-1)~state &gt; 0,0.1,0));
}//Postcondition
250//Delay

Table 1 presents the values of the baseline parameter set for the proposed model. The source code of
the proposed models and instructions on how to run them are provided in our publicly available repository.

Table 1: Main parameter values.

Parameter Value Description
Dimension of epithelial tissue 50 x 50 A 2D cellular space that mimics a lung, with 50 by 50 cells.
Virion released 1-100 Number of virions secreted by an epithelial cell.
Cytokines secreted by infected cells 1 Concentration of cytokines secreted by infected/secretory cells.
Cytokines secreted by immune cell 1.2 Concentration of cytokines secreted by activated immune cells.
Virus attached to ACE2 receptor 20% Percentage of virus that ACE2 receptors in the epithelial cell surface.
Virus moves spread 80% Migration rate of viruses within the epithelial tissue.
Virus absorbed by cells 10% Percentage of viruses will enter the epithelial cells.
Cytokine attached to cell’s surface 10% Percentage of cytokines that hijack infected cells.
Cytokine moves to neighbor’s cell 90% Percentage of the cytokine transport among cells.
Cytokines absorbed by cells 10% Percentage of cytokines attached to secreted/infected cells.
Virion release time 20 hours Duration of viral secretion of secretory cells.
Anti-virus time 8 hours Duration of epithelial cells in the non-secresecreting state.
Cytokine release time 8 hours Duration of cytokines secretion of immune cells.
Immune cell activation time 10 hours Duration of an immune cell in active state.
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4 CASE STUDIES

4.1 Simulation Scenarios

To demonstrate the versatility of our simulation model, we conducted experiments across different case
studies representing various categories of patients. For sake of space, we present here three specific types
of patients, the selection was made in collaboration with biological experts to showcase the diversity of
outcomes within different immune system states. These three scenarios are suitable for observing the
spatial-temporal dynamics of viral propagation in the respiratory system and the immune system’s response
to the viral infection in three categories of patients, as follows:

1. Patients with a weak immune system and exposed to low viral loads:
In the first scenario, we simulate patients with a weak immune system and low viral loads. Due
to the compromised immune response, minimizing the concentration of cytokines is crucial. This
scenario promotes accelerated viral spread and replication within the lung tissue, leading to a higher
number of infected epithelial cells and increased release of virions. The infection initiates from a
single epithelial cell, allowing the virus to propagate rapidly and cause extensive tissue damage,
ultimately resulting in the destruction of all cells within the lung tissue.

2. Patients with a strong immune system and exposed to low viral loads:
This scenario concerns patients with a strong immune system and low viral loads. In contrast to
the first scenario, a significant quantity of cytokines will be produced by the immune cells. These
cytokines will aim to bind to the infected epithelial cells, leading to their elimination and hindering
viral replication and diffusion. The infection will originate from a single epithelial cell, resulting
in a slow and sparse viral spread. As a consequence, minimal damage is expected to occur to the
epithelial cells in this scenario.

3. Patients with a strong immune system and exposed to high viral loads:
The last scenario involves patients with a strong immune system and high viral loads. In contrast
to the previous scenarios, the virus infects eighteen cells scattered in the epithelial tissue at the
onset. To impede viral replication and clustering, the immune cells in this scenario secrete a high
concentration of cytokines. Consequently, the simulation of this scenario is anticipated to show a
gradual viral spread with low density, despite the initial high viral exposure. The resulting damage
is expected to be minimal, similar to that observed in the second scenario.

4.2 Simulation results

4.2.1 Scenario 1

The simulation of the SARS-CoV-2 viral infection progression in an epithelial tissue of size 50 x 50 cells
starting from a single infected cell, corresponding to the scenario 1, is shown in Figure 2. In the initial
stages, a single infected epithelial cell releases extracellular viruses and contaminates neighboring cells,
triggering the activation of immune cells and the rapid release of cytokines. The virus spreads to adjacent
cells, leading to virus-induced death of epithelial cells and immune cell activation. After 1500 minutes,
the infection expands to the superior lobes of both lungs, accompanied by high cytokine concentration.
By 3000 minutes, the viral infection extends to the middle lobe, with a notable concentration of the virus
attributed to secretory epithelial cells. After 4500 minutes, most epithelial cells in the inferior lobes have
died or are infected, while the virus has spread throughout the lung tissue mainly in the inferior lobes.
Cytokines are shifting from upper to lower lobes. By 6000 minutes, all epithelial cells have died except for
one immune cell. The virus has spread throughout the lung tissue at a low concentration, with cytokines
still concentrated in the lower lobes. A video of this simulation can be viewed at link.

Furthermore, a Python script was developed to obtain the results of the simulation for each of the
analyzed features, such as the state and number of epithelial cells, number of activated immune cells,
concentration of cytokines, and viral load. The results are saved in a log file at the end of the scenario
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Figure 2: Simulation of the viral infection spread in an epithelial tissue corresponding to the scenario 1.

simulation, and an evolving curve is generated, such as in Figure 3. Figure 3.A presents the number of
healthy or uninfected (blue), infected (orange), secreting or virus-releasing (green), non-secreting (red)
and dead (purple) epithelial cells over the simulation time in minutes. As depicted in the figure 3, it can
be observed that after approximately 6000 minutes, all the epithelial cells transitioned from an uninfected
state to dead. During the time frame of 2000–3000 minutes, the epithelial cells were most heavily infected
with the virus. By observing the two lines representing the number of cells in secreting and non-secreting
states, it becomes clear that the majority of infected cells are incapable of resisting the virus and generating
virions for export. Figure 3.B displays the activation of immune cells over the simulation time in minutes.
The graph shows a rapid increase in the number of activated cells from the onset of the infection, reaching
a peak at around 2200 minutes, followed by a gradual decrease until the number of activated cells becomes
null. The activation of immune cells is directly proportional to the number of infected cells and the viral
concentration, indicating that they are the first cells to sense the danger signals from the infected epithelial
cells or the presence of the infectious agent. Furthermore, the cytokine quantification curve shown in Figure
3.C can be explained by the activation of immune cells. The curve closely resembles the activation curve
shown in Figure 3.B, with a slight shift. This activation leads to the release of cytokines into the extracellular
environment, which can recruit circulating cells, eliminate the pathogen, and repair the lesion. Figure 3.D
shows the evolution of the viral load concentration during the simulation time. We note that the curve of
the viral load exhibit a remarkable similarity with the curve of the cytokine concentration, with a slight
difference. Although they are not directly related, this similarity can be explained by their homologous
relationship with epithelial cells in the secreting state. The viral load in the extracellular environment depends
on the number of epithelial cells in the secreting state, while the extracellular cytokine concentration is
dependent on the number of cells in the infected, secreting, and non-secreting states. Since most infected
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Figure 3: Simulation time series corresponding to the scenario 1.

cells quickly switch to the secreting state, it can be inferred that the number of cytokines largely depends
on the number of epithelial cells in the secreting state.

4.2.2 Scenario 2

Figure 4 depicts the simulation of SARS-CoV-2 viral infection progression in a 50 x 50 epithelial tissue,
focusing on scenario 2. A single infected epithelial cell releases extracellular viruses, which infect
neighboring cells. Activation of immune cells results in the rapid release of cytokines. At 1500 minutes,
the virus spreads to the main bronchi, accompanied by deceased surrounding epithelial cells. By 3000
minutes, viral spread remains limited, with reduced immune cell activation and cytokine concentration. At
4500 minutes, the initially infected region near the main bronchi dies off, leaving the rest of the lung tissue
healthy and uninfected. The viral load is minimal, and cytokine concentration continues to decrease. A
video of this simulation can be viewed at link.

For sake of space, we do not include the temporal series figure corresponding to Scenario 2, but you
can access it at this link. By analyzing the Figure A (here), it appears that the number of epithelial cells
that died during the first stage of the infection remained relatively stable at around 1000 cells throughout
the simulation. The reason for this can be observed from Figure B (here), which displays the number of
activated immune cells throughout the simulation. The number of activated immune cells increases rapidly
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Figure 4: Simulation of the viral infection spread in an epithelial tissue corresponding to the scenario 2.

from the start of the infection until around 2200 minutes, at which point it reaches its peak. After that, the
number of activated cells remains stable but slightly elevated until 4000 minutes, when it begins to decline
gradually until there are no more active immune cells at the end of the simulation. Compared to scenario 1,
the curve in Figure C (here) depicts a notably high concentration of cytokines, which significantly inhibited
the viral infection and mitigated the damage to the epithelial tissue. This effect is also evident in the viral
load curve (Figure D, here), which displays an initial peak followed by a sharp decline, possibly due to
the high cytokine concentration.

4.2.3 Scenario 3

Figure 5 presents the simulation of the SARS-CoV-2 viral infection progression in an epithelial tissue of
size 50 x 50 cells starting from a single infected cell, corresponding to the scenario 3. For this scenario, we
selected patients with a robust immune system, but they were exposed to a high viral load at the beginning.
The simulation in Figure 5 demonstrates the progression of SARS-CoV-2 viral infection in an epithelial
tissue of size 50 x 50 cells, focusing on the scenario with multiple initial infected cells. After an incubation
period, infected cells release viruses, leading to a secretory state. Virions spread to neighboring cells,
prompting a significant release of cytokines. Around 1500 minutes, the virus reaches the main bronchi,
causing the death of surrounding epithelial cells. At 3000 minutes, the infection plateaus, with a slightly
higher viral load but similar to that observed at 1500 minutes. The distribution of activated immune cells
aligns with the deceased epithelial cells, particularly near the main bronchus. By 4500 minutes, the majority
of the bronchial epithelial cells affected by the virus had died, leaving the remaining lung tissue healthy and
virus-free. The number of activated immune cells decreased gradually as cytokine distribution decreased,
and the viral load continued to decrease. At the end of the simulation, the viral infection ceased to spread
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Figure 5: Simulation of the viral infection spread in an epithelial tissue corresponding to the scenario 3.

entirely, with the damage to the epithelial cells being restricted to the infected region, resulting in most
of the epithelial cells dying. There were no further activated immune cells, and the viral load dwindled
until it was almost nonexistent, while the cytokine concentration continued to drop rapidly. A video of this
simulation can be viewed at this link.

Due to space limitations, we are unable to include the temporal series figure for Scenario 3 in this
paper. However, you can access it at the provided link link. In terms of the state of epithelial cells (Figure
A, here), Scenario 3 exhibits similarities to Scenario 2, with a slightly higher number of infected cells.
However, the number of dead cells is three times greater than in Scenario 2. In Figure B (here), the
number of immune cells rapidly increases until around 1900 minutes, reaching a peak and then stabilizing
at a slightly higher plateau compared to Scenario 2. The concentration of cytokines gradually decreases
starting at 5700 minutes. Similar to Scenario 2, Figure C (here) demonstrates a significant concentration
of cytokines that effectively inhibits viral infection and reduces damage to the epithelial tissue. This effect
is also reflected in the viral load curve (Figure D, here), which shows an initial peak followed by a sharp
decline, potentially due to the high cytokine concentration.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a Cell-DEVS model to simulate the spread of SARS-CoV-2 in lung epithelial cells.
This model integrates different biological components including viral replication, immune system response
to the viral infection through the immune cells and their secreted cytokine molecules, and cellular epithelial
tissue damage in both time and space. While this simulation model did not employ real parameters, it
could allow biologists to observe the spread of the virus in lung tissue, the destruction of epithelial cells,
and the body’s response to the virus. The proposed simulation model could hold great potential for helping
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virologists, biologists and clinical researchers in making more informed decisions. Virologists and biologists
can leverage the model to gain deeper insights into the intricate dynamics of viral load and its impact on lung
tissue at different stages of infection. By manipulating various parameters within the simulation, such as
viral replication rates or immune response strength, researchers can explore hypothetical scenarios, enabling
them to study the effects of potential treatment strategies or viral mutations. Additionally, ICU doctors
can benefit from the model’s ability to predict patient-specific outcomes by integrating individualized and
real clinical data. They can use the simulation results to evaluate the effectiveness of different ventilation
strategies to maximize patient recovery while minimizing complications. Overall, this proposed model
could offer a valuable tool for these professionals, enabling them to make decisions.

While our simulation model serves as a valuable tool for studying the dynamics of lung infection
caused by SARS-CoV-2, its current usage is primarily for demonstration and research purposes. It provides
insights into viral dynamics and aids in the development and evaluation of potential treatment strategies,
but it does not have real-time monitoring capabilities or the ability to act on the lung infection evolution
of actual patients. It does not serve as a reference tool for clinicians, as it has not been validated on real
data. It should be regarded as an approximation tool developed in collaboration with expert biologists,
who have qualitatively validated its plausibility. It is important to note that the model does not possess the
necessary validation or regulatory approvals for clinical use.

As mentioned earlier, we already worked on the modeling of the SARS-CoV-2 life cycle, from entry to
release, and study its behavior at each replication process stage (Ayadi et al. 2021). A future perspective
would be to explicitly incorporate these works within the proposed simulation model to quantify the different
molecules produced at each stage according to the spatio-temporal evolution of the virus. Furthermore,
extending our model to include treatments would be useful to study their impact on the viral progression.

CODE AVAILABILITY

The source code of these proposed simulations and the instructions on how to run them are provided in
our publicly available repository at https://github.com/AliAyadi/SARS-COV-2_LUNG_INFECTION.
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