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ABSTRACT 

Hybrid modeling and simulation studies combine well-defined methods from other disciplines with a 
simulation technique. Especially in the area of output data analysis of simulation studies, there is great 
potential for hybrid approaches that incorporate methods from machine learning and AI. For their successful 
application, the analytical capabilities of machine learning and AI must be combined with the interpretive 
capabilities of humans. In most cases, this connection is achieved through visualizations. As methods 
become more complicated, the demands on visualizations are increasing. In this paper, we conduct a data 
farming study and delve into the analysis of the output data. In doing so, we uncover typical errors in 
visualizations making the interpretation and evaluation of the data difficult or misleading. We then apply 
concepts of visual analytics to these visualizations and derive general guidelines to help simulation users 
to analyze their simulation studies and present results unambiguously and clearly. 

1 INTRODUCTION AND MOTIVATION 

Hybrid modeling and simulation studies follow the idea to use simulation as a connecting link between 
methods from different research disciplines (Mustafee and Powell 2018). Especially in the area of output 
data analysis, there is great potential to use hybrid approaches that incorporate data analysis, machine 
learning and artificial intelligence (AI) methods (Feldkamp et al. 2020) to mutually create greater value for 
the analyst (Tolk et al. 2021).  

One approach to go beyond traditional simulation studies, which usually aim to perform scenario-based 
analysis or even simulation-based optimization, is data farming developed by Horne and Meyer (2005). 
Data farming aims to understand the behavior of the model in terms of the relationship between factors and 
outputs, potentially uncovering knowledge and interesting relationships that were previously hidden 
(Feldkamp et al. 2015). Data farming refers to the method of extracting large amounts of output data from 
the simulation model by using large-scale experimental designs, high-performance computers for massively 
parallelized experiments to focus on more complete coverage of possible system responses and machine-
assisted analysis (Horne and Schwierz 2008). The research within the field of data farming has also always 
been concerned with the application of advanced data analysis methods to process these large volumes of 
simulation output data and produce appropriate insights (Lucas et al. 2015; Sanchez 2014). The concept of 
Knowledge Discovery in Simulation Data (KDS) was developed to delve deep into the analytics side of 
data farming and provide a detailed process model for applying white-box machine learning and data 
mining methods to large-scale simulation data (Feldkamp et al. 2020). But more methods are constantly 
emerging in the field of machine learning and AI, which can be combined with simulation though the 
concepts of data farming and KDS to derive new insights about the simulation model. These methods are 
often also becoming more complicated. For example in recent papers we extended the KDS concept with 
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methods from explainable artificial intelligence (XAI) to enable the use of black-box algorithms like 
artificial neural networks and we showed that we could generate new and previously hidden knowledge 
about the system through these methods (Feldkamp 2021; Feldkamp et al. 2022). However, we also learned 
that the visualizations of the results by the XAI methods are not always intuitive or easy to interpret.  

To derive the most knowledge from your data farming output data, the strengths of humans and utilized 
algorithms must be combined. This means that the analytical capabilities of machine learning algorithms 
must be connected with the interpretative capabilities and analytical reasoning of the simulation user. The 
interface between these two aspects are visualizations, but their complexity often also grows with the 
amount of data that is available and the complexity of the analytical methods (Keim et al. 2008). The 
research discipline focusing on this interface is visual analytics. However, most recent research in visual 
analytics focuses on developing custom software to solve specific problems (Cui 2019; Ham 2010; 
Matković et al. 2018). But especially in research, to develop or modify a visualization software every time 
for a specific problem is usually not efficient, because individual visualizations are needed, which allow 
the analyst or researcher the specific freedom to present their results appropriately. This is why many resort 
to programming languages to create their visualizations and share their research results. As an author or 
domain expert it is usually easier to interpret and understand the visualizations although for others this is 
not always the case. As a result, time and scientific or industrial opportunities can be lost due to information 
overload or inconclusive presentation of the results because a reader may not understand them correctly 
(Keim et al. 2008). In addition, Cui (2019) showed in his literature review on visual analytics that there are 
very few publications in the context of simulation. Furthermore, the simulation community is missing 
scientifically published guidelines and techniques for presenting results, particularly in relation to data 
farming, which can lead to inconsistencies and difficulties in interpreting and comparing simulation 
analysis results. However, the ability to communicate results accurately among peers is crucial for scientific 
discourse (Keim et al. 2008). 

In this paper we want to make a first step in the direction of creating awareness for the importance of 
accurate and clear presentation of research results. To achieve this, we conduct an illustrative data farming 
study and delve into the analysis of the simulation output data using unsupervised learning. In doing so, we 
uncover typical errors in visualizations and apply concepts of visual analytics to them. Thereby we derive 
some method independent guidelines to help simulation users to analyze their simulation studies and present 
their results unambiguously and clearly. We also discuss general considerations and requirements for 
visualizations.  

The remainder of this paper is structured as follows: In Section 2, we give an overview of the related 
work, namely being visual analytics and the combination of data farming and knowledge discovery in 
simulation data. Section 3 discusses the general considerations and requirements that apply to 
visualizations. In Section 4, we present the data farming study, by first introducing the scenario and 
simulation model, followed by the analysis and visualization of the simulation output data. We conclude 
the paper with some final remarks and a discussion of possible future work in Section 5. 

2 RELATED WORK 

2.1 Data Farming and Knowledge Discovery in Simulation Data 

Simulation studies typically have a defined objective, and not having one is considered a major issue (Law 
2003). In the past, simulation experts focused on minimizing computational effort due to limited computing 
time and memory space. Furthermore, in practical scenarios, simulation analysts may rely on their 
experience to make an informed estimate regarding which factors are likely to have a significant impact on 
achieving the objectives of the simulation study (Feldkamp 2021). However, Kleijnen et al. refer to this as 
a trial-and-error approach and argue that analysts should spend more time analyzing the model than building 
it (Kleijnen et al. 2005). Traditional, goal-based experimentation aims to answer specific questions, while 
the Data Farming method seeks to explore the entire range of possible system behavior to gain a better 
understanding of all potential options and system behavior (Horne and Schwierz 2008).  
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Data Farming combines large-scale simulation experiments with high-performance computing and big 
data analysis methods to maximize data output, similar to how a farmer cultivates their land to maximize 
his crop yield (Sanchez 2014; Sanchez and Sanchez 2017). Knowledge discovery in simulation data is an 
extension of data farming and provides a process model and workflow for using data mining and machine 
learning methods as well as interactive visualizations to analyze complex simulation models (Feldkamp et 
al. 2015). This is particularly beneficial for models that have numerous outputs displaying a complex, 
multidimensional response surface. These outputs may even be conflicting or in a trade-off situation with 
one another, making their mutual interpretation extremely challenging (Feldkamp 2021). By grouping 
outputs into categories and using multidimensional pattern recognition algorithms, the relation between 
factors and outputs can be investigated, as shown in Figure 1 (Feldkamp et al. 2020).  

 
Figure 1: KDS process for analysis of simulation output data (Feldkamp et al. 2020). 

The process shown makes it more manageable to analyze and interpret large amounts of simulation 
data. Various case studies have demonstrated the effectiveness of this approach, revealing previously 
unknown knowledge that would have been difficult to gain using traditional methods (Lechler et al. 2021; 
Strassburger et al. 2018). More precisely, discovering patterns in unstructured data is referred to as 
unsupervised data mining. Once the simulation data has been categorized into various groups of system 
behavior, the relationship between outputs and corresponding factors can be explored using supervised data 
mining algorithms. These algorithms create models that reveal the relations between simulation input and 
output data, which can subsequently be used to derive rules that contribute to knowledge creation through 
human interpretation. Essentially, every simulation experiment serves as a training record for a supervised 
algorithm, making it necessary to solve basically a classification problem (Feldkamp et al. 2020). While 
the KDS process provides recommendations on appropriate visualization formats for the corresponding 
data mining methods, it does not address the specific challenges or potential pitfalls that may arise when 
presenting the results visually. Visual analytics, which will be discussed in the following section, aims to 
overcome these challenges for presenting data mining results and complex data. 

2.2 Visual Analytics 

Visual analytics is a multidisciplinary research field that draws on visualization, advanced data analysis 
techniques, and analytical reasoning. Visual analytics leverages human perception and visual interactions 
to enhance the ability of researchers to gain valuable insights, discover new knowledge, and obtain a deeper 
understanding of large and complex datasets through effective data visualization (Cui 2019). Recent 
advancements in computing technologies and data visualization techniques have enabled visual analytics 
to become an essential tool for scientific research, business intelligence, and many other fields (Endert et 
al. 2017). Figure 2 illustrates how visual analytics incorporates a broad range of research fields and also 
depicts the integration of human cognition, perception, and reasoning with algorithmic data analysis in 
visual analytics and how visual analytics acts as an interface between humans and machines. Through 
interactive visual representations of the data, the perceptive skills, analytical reasoning, and domain 
knowledge of humans are coupled with existing data analysis processes to gain insight and new knowledge 
from data (Ellis et al. 2010). More precisely, visual analytics facilitates analytical reasoning by utilizing 
effective visualizations and interactive tools that enhance human capacity to perceive and explore complex 
data in a human-in-the-loop process, as discussed by Keim et al. (2010).  
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Figure 2: Visual analytics as the interface between humans and machines. 

Specific visual analytics tools can be classified according to two different components: the dimension 
to be presented and the type of interaction (Cui 2019). Especially the interaction with visualizations is 
highly relevant for generating knowledge, but not necessarily for presenting that knowledge. Therefore, the 
primary focus of this paper is on the general visualization aspect of visual analytics and how it can enhance 
human perception, rather than on a specific technique or tool, which most of the time focus on the 
interactions. This paper aims to highlight common mistakes to avoid when visualizing data or developing 
a visualization software for simulation data. In the following chapter, we will outline the specific visual 
requirements that a scientific visualization should meet in accordance with the principles of visual analytics. 

3 GENERAL CONSIDERATIONS AND REQUIREMENTS TO VISUALIZE YOUR DATA 

Visualizations play a crucial role in understanding and interpreting simulation data. While visual aspects, 
such as color perception and imagination, may have a subjective influence, there are still general 
requirements and considerations that should be taken into account. Munzner (2014) and Ware (2021) 
provide the following considerations that should be considered when creating visualizations. First and 
foremost, visualizations must be accurate, properly labeled, and consistent with the underlying data. It is 
important to avoid introducing any bias or misleading representations that might obscure or misinterpret 
significant patterns or trends. This also means that the data should be presented in a way that accurately 
reflects its underlying meaning, with clear and appropriate labels for axes, scales, and units. Secondly, the 
choice of visualization technique should be appropriate for the data and the specific research question or 
hypothesis being investigated. This includes considerations such as the type (e.g., categorical or 
continuous), the scale (e.g., linear or logarithmic), the dimension, and the structure of the data (is the data 
sequential?). If these requirements are not met, then according to Keim (2001) and Spence (2014) a 
visualization is not expressive. Additionally, the visualizations should be designed with the audience in 
mind, considering the level of expertise and familiarity with the subject matter as well as the effort to create 
and interpret a visualization. This applies in particular to the analysis of data or the knowledge generation 
using complex or novel methods from the field of AI or machine learning. These considerations are needed 
to meet the requirements for an effective and appropriate visualization (Spence 2014; Ware 2021). 

Although the point of interaction by the simulation user is crucial during the knowledge discovery 
phase according to the concept of visual analytics, it is difficult to implement this aspect in a scientific 
publication. Therefore, to preserve and facilitate the reader's comprehension of the iterative process, the 
procedure leading up to the presented results should always be described and highlighted through filtering 
or comparisons. For the reason of not overloading the viewer with unnecessary information, visualizations 
should also only be tailored to the specific goals and function of the analysis, as shown in Table 1. This 
means, the simulation user should always think about the goal of the visualization and how it can be 
achieved. 
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Table 1: Functions and goals for visualizations (derived from Spence (2014)). 

Function Goal 
Identification Highlighting various features of objects 

Distinction Delimitation of different objects. 
Correlation Revealing a direct relationship between objects 
Association Linking object relationships 

Localization Clarification of the relative or absolute distance between objects 
Classification Classify objects based on properties 
Arrangement Assigning a specific order of precedence 
Comparison Highlighting similarities or differences 

 
Color schemes are an important aspect of visualizations and should be chosen carefully to ensure that 

viewers can easily distinguish between different categories or data points. It is important to avoid using 
colors that are difficult to distinguish. Colors can also be used effectively to achieve different goals in 
visualizations, as shown in Table 1. However, it is important to note that the more colors used in a 
visualization, the more complicated the analysis becomes for the viewer (Moreland 2009). Therefore, when 
something is to be highlighted, it may make sense to gray out all data points that are not relevant and not 
show each feature in a specific color. Creating and using color maps is also a good way to match colors and 
their effects. Brewer (2016) distinguishes between qualitative, single and multicolor sequential, rainbow, 
and divergent color maps. Sequential color maps run from a highly saturated color to a very unsaturated 
one, close to white. They are particularly well-suited for ordinal data and can be easily transferred to scalar 
values (Moreland 2009). For example, overlaps of data points can be represented by a more intense color. 
Diverging color maps consist of two main colors, which merge into each other by a third, but unsaturated 
color, such as yellow or white. Qualitative color maps are ideal for representing nominal data because their 
deliberately unordered sequence is good for distinguishing individual discrete data values or groups. The 
use of a rainbow color map is discouraged by Moreland (2009) and Schwabish (2021) because of disregard 
for perceptually specific requirements. Continuous values are difficult to map unambiguously because a 
uniform min-max value assignment is not possible, and the transitions of the colors are not perceived 
uniformly (Moreland 2009). 

Finally, visualizations should be accompanied by explanatory context (Keim et al. 2008), such as a 
description of the simulation model and parameters, and an explanation of the specific analysis being 
presented. Overall, visualizations that effectively communicate their findings and insights to a wide 
audience require careful consideration of both the data itself and the intended audience, with a focus on 
accuracy, clarity, and appropriate design choices. 

4 DATA FARMING STUDY 

4.1 Scenario and Simulation Model 

To analyze and illustrate the potential problems that can arise in visualizations, we conducted a data farming 
study using an academic use case to generate a sizable quantity of data. Specifically, we used a discrete-
event simulation model of an assembly line as an example, which we created using the simulation software 
AnyLogic, as is shown in Figure 3. In our application, three parts (A, B, C) are assembled onto one main 
part, which is then delivered to the customer. To accomplish this, the main part and the elements to be 
mounted undergo preprocessing. The three parts to be assembled are collected in batches for preprocessing 
and then pass individually through a quality assurance station before reaching the assembly station. If the 
quality assurance process fails, then the elements must be reworked and preprocessed again. Each station, 
except for the preprocessing of the main parts, is operated by workers. In this process, quality assurance 
and reworking of parts A, B, and C are performed by workers from the same worker pool.  
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Figure 3: Screenshot of the assembly line in AnyLogic. 

For the experiment design, the variable factors of the simulation model and their limits are summarized 
in Table 2. These factors mainly include time-specific factors (in minutes), such as the processing times 
and arrival rates of the various parts, as well as the assembly, quality assurance, and rework time. Other 
factors relate to the number of available workers for their respective station and the number of machines 
available for preprocessing the main part. These factors determine the number of possible processes that 
can run in parallel on the corresponding station. In relation to the buffers and batches of the system, the size 
of these can be varied. 

Table 2: Variable factors and their limits of the simulation model. 

Factor Name in the Model Lower Limit Upper Limit Description 
procTime{A,B,C} 1 10 Preprocessing time of element A, B, C 

procTimeMain 1 10 Preprocessing time of the main product 
batchSize{A,B,C} 1 15 Batch size for product A, B, C 
procWorkerCount 5 15 Worker count for preprocessing 

qaWorkerCount 10 20 Worker count for quality assurance 
assembleWorkerCount 5 15 Worker count for the assembly station 

arrivalRateMain 0.1 0.5 Arrival rate of the main product 
arrivalRate{A,B,C} 0.1 1.5 Arrival rate of product A, B, C 

assembleTime 1 5 Assembly time 
bufferMainAssembleSize 100 300 Buffer size before the assembly station 

buffer{A,B,C}AssembleSize 50 300 Buffer size before the assembly station 
bufferProcPartsSize 50 300 Preprocessing A, B, C buffer size 

bufferQASize 100 300 Quality assurance buffer size 
bufferReworkSize 5 50 Rework station buffer size 

qaTime{A,B,C} 0.2 1 Time required for quality assurance 
reworkTime{A,B,C} 0.5 3 Time required for reworking 

procMainCount 5 15 Number of machines for preprocessing  
For each experiment, we measured the average utilization of workers, stations, and buffers across all 

replications. Other key metrics include the cycle time and average time in a queue of a part, as well as the 
maximum number of parts in the respective buffers during an experiment. The last metric is particularly 
interesting to determine which experiments have not only high buffer utilization but also reach their 
maximum capacity at least for a short time during a simulation run. 

As a full factorial experimental design was not feasible due to the large number of possible 
combinations in our factor table, we used Latin hypercube sampling, which maintains good space-filling 
properties of our factor space (Viana 2013). For the Latin hypercube sampling, we used a correlation-
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minimizing sampling criterion to generate an orthogonal and correlation-free experimental design with ten 
thousand rows. After mapping the sampling results of the Latin hypercube to our factor table of the 
simulation model, this resulted in ten thousand experiments that were conducted in the data farming study. 
For each experiment, ten replications were performed, with each replication having a simulation run time 
of four days. The first day was not included in the output data due to the transient phase of the system. This 
resulted in a dataset with the size of ten thousand data points per factor, which is a rather small size for very 
complex models, but sufficient for our academic use case to demonstrate the visual problems. 

4.2 How Not to and How to Visualize Your Simulation Output Data 

In this chapter, we delve into the analysis and uncover common errors in visualizations making the 
interpretation and evaluation of the data difficult or misleading. To create these visualizations, the Python 
library Seaborn was used. It should be noted that due to the limited scope of this publication, we cannot 
cover all the methods, visualizations, and insights that were utilized and gained through an iterative process 
of adapting data mining methods and visualizations. Therefore, we present only selected results that 
highlight some common problems. 

In a data farming study, the first questions to ask are: How are the output parameters distributed, and 
which ones are significant? To answer these questions, we analyze the output parameter distributions and 
identify any positive or negative anomalies. We then investigate what may have caused these anomalies 
and derive rules that can be applied to the system. Figure 4 displays the utilization of various machines and 
workers using a violin plot, which combines box whisker plots with density estimation. 

 
Figure 4: Problematic display of different utilizations of the simulation model with violin plots. 

While density estimation can produce a less cluttered and more interpretable plot than a histogram, it 
may introduce distortions if the underlying distribution is bounded or not smooth. This problem is apparent 
here, and in fact the plots convey that there are utilizations, that are above 1 and below 0, which cannot be 
the case. This problem is apparent in Figure 4, where the plots suggest there are utilizations above 1 and 
below 0, which is not possible. In addition, statistical measures such as quantiles and means are not visible, 
x-axis labeling is not consistent, and large amounts of outliers in the distributions may be hidden. 
Consequently, this figure fails to meet the requirements for an expressive visualization. Therefore, a 
combination of visualizations and their corresponding benefits is often the best solution, provided they are 
consistent with one another.  

In Figure 5, we demonstrate this approach by combining the advantages of histograms, density 
estimation, and box-whisker plots in a consistent representation, using a qualitative color palette to meet 
the requirements for the visual functions: identification, comparison, distinction. In particular, the 
histograms reveal that Figure 4 hides many experiments in which the preprocessing workers have a 
utilization close to 100%. After performing the statistical analysis on all output parameters, the most 
relevant outputs for this simulation model according to their variance and anomalies are the utilization of 
the preprocessing workers and the station for preprocessing the main part as well as the total throughput of 
the system. 
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Figure 5: Appropriate visualization of the average utilizations in percent for different stations and workers 
using histograms and box-whisker plots. 

If a distribution exhibits a very one-sided peak, and lacks significant variation or anomalies, it will be 
excluded from further analysis because they will not reveal interesting patterns. Next, we applied the k-
means++ clustering algorithm to group experiments based on similarity of their relevant output 
performance measures. As a result, experiments within the same cluster show significant similarity with 
respect to the selected output performance measures, while experiments belonging to different clusters 
show significant dissimilarity. We have performed limited hyperparameter tuning, as this is not topic of 
this paper, but we achieved a good separation of the data with five clusters. Figure 6 presents the results of 
the clustering algorithm as a scatterplot matrix, where each data point represents one simulation experiment. 

 
Figure 6: Inaccurate and obscure scatterplot matrix for the clustered and relevant output dimensions. 
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The representation of clustering results, as shown in the Figure 6, does not facilitate the identification 
of system behavior that can be classified as good or bad. This is mainly due to issues such as visual clutter, 
an incorrect color palette, information overload, and an unclear legend that obscures data points. The use 
of crosses to represent data points further contributes to the confusion in the scatterplot matrix. The attempt 
to depict clusters by using a sequential color palette and density estimation fails, making it impossible to 
differentiate and evaluate individual clusters in both the scatterplots and the histograms on the diagonal. In 
contrast, Figure 7 presents a more effective representation of multidimensional cluster analysis. It combines 
scatterplots, stacked histograms with equal numbers of bins, and abstract dense representations of the 
clusters using a qualitative color palette with proper labels. This visualization allows for the classification, 
location, and comparison of clustering results, revealing distinguishable patterns in the output dimensions 
that enable the analysis and grouping of system behavior in terms of qualitative behavior. Based on the 
results, we can identify Cluster 3 (green) as a group of experiments with good performance. It achieves the 
highest throughput while maintaining an average utilization of the main preprocessing station and the 
workers responsible for preprocessing parts. Conversely, Cluster 5 (blue) summarizes experiments with 
poor system performance. 

 
Figure 7: Scatterplot matrix with stacked histograms for the distribution of values on the diagonal and 
abstract density representations for the clusters in the upper right corner for the clustered outputs: 
throughput, preprocessing station utilization, and preprocessing worker utilization. 

Our next objective is to identify the factor combinations that contribute to system performance. To 
achieve this, we can leverage supervised data mining techniques or skewed distribution analysis, as 
recommended by KDS. In Figure 8, we applied skewed distribution analysis to our good cluster by using 
the cluster as a filter to identify skewed factor value distributions. The greater the degree of skewness in a 
factor value distribution, the more significant and decisive that factor value becomes for the good cluster 
or experiment subset. Since our clusters are based on multidimensional patterns, we can determine the 
relationship between system behavior and its factors. But Figure 8's pie charts fail to show the distributions 
of arrival rates and hence do not display any skewness. 
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Figure 8: Ambiguous and confusing presentation of the arrival rates with pie charts. 

The limitation arises from the fact that humans have a poor ability to perceive and process areas and 
angles accurately (Schwabish 2021). For this reason, it is advised to avoid pie charts and the use of areas 
and angles to represent data completely. This is compounded by using a rainbow color palette, which further 
obscures the data presentation by seemingly illuminating some values and by creating a false impression of 
some values being more significant than others, even when they are not. In this type of presentation, it is 
impossible to identify the factors with peculiarities or anomalies because they also have different scales. 
However, if we normalize all the factors before plotting them in a box-whisker plot, it immediately becomes 
apparent that the arrival rates, particularly those of the main part, have a substantially different distribution, 
as displayed in Figure 9. Normalization is necessary for this presentation because the different scales of the 
factors have no importance when considering them collectively. Other factors do not appear to influence 
cluster affiliation based on this analysis.  

In summary, we can conclude that a high arrival rate is necessary to achieve good system performance. 
Although this finding may seem obvious for our simple simulation model, our study highlights how poor 
visualizations can conceal or hide valuable insights into the output data and the behavior of the system. 

 
Figure 9: Box-whisker plot of most of the normalized factors filtered by the cluster with the good 
performance. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we have successfully shown why it is important to create visualizations with their visual 
function, and the perception of humans in mind as well as being consistent with the underlying data. To 
achieve this, we have discussed some fundamental requirements for visualizations that should always be 
considered, as there is a fine balance between information overload and presenting too little information to 
understand the data. We have successfully applied these principles to a data farming study, while 
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highlighting how poor visualization choices and small mistakes can conceal information and obscure 
results. Throughout this approach, we explained the errors and mistakes that may occur when visualizing 
simulation output data and provided solutions to these issues while also contributing to narrowing the gap 
between simulation and visual analytics research. 

Some aspects of visual analytics are beyond the scope of this paper; therefore, we emphasized the need 
for further work in the context of simulation, visual analytics, and visualization of research results as 
accurate communication of results through visualizations is crucial for scientific discourse. In addition, to 
increase awareness for the importance of presenting research findings accurately and clearly, further 
research needs to be conducted on the specific requirements for interactions and other aspects that affect 
human perception. 

Future developments in visual analytics may also incorporate machine learning and deep learning 
techniques with interactive visualizations to enable users to explore and analyze data in more intuitive and 
efficient ways. However, a crucial research question that arises here is how to communicate iteratively and 
interactively generated results comprehensibly with other researchers. 
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