
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

APPROXIMATE DISCRETE-EVENT METHOD FOR SUPERVISORY CONTROL

Maaz Jamal

Gabriel Wainer

Systems and Computer Engineering

Carleton University

1125 Colonel By Dr

Ottawa, ON K1S 5B6, CANADA

ABSTRACT

Supervisory systems are used to and act when certain events are detected. Studying supervisory using

formal Discrete Event Modelling & Simulation allows analyzing an application and then using the model

to build the controllers. Supervisors can lead to a state space explosion if the model size increases, thus,

reducing the state space complexity can expand the practicality of the model. We present a method based

on Discrete Event System Specifications using an approximate method that reduces the state space

complexity. The plant models and synthesized controllers can then be deployed on embedded hardware

providing model continuity. We discuss the method and present a case study of a supervisory system.

1 INTRODUCTION

Digital Control Theory (Fadali and Visioli 2013) translates continuous to digital control systems with a

discretization process introduced by a digital clock. Controlling such systems involves sensors, actuators,

and a controller that keeps the system between a range of acceptable values. This controller, which can be

derived by analyzing models of the system, is usually modeled by differential equations. To guarantee the

correct functioning of the devices, supervisory systems are used to evaluate the control system and act when

certain events are detected. Since the 1960s, Finite State Machines (FSM) have been used to represent these

Discrete Event Dynamic Systems (DEDS) and make them more manageable (Wonham et al, 2018).

Supervisory systems’ actions can be described by discrete events and the transitions between those events.

These Discrete-Event Supervisory systems (DES) can be studied using a formal model of a physical

system and its specifications. The events in the plant are described as alphabets that are either controllable

or uncontrollable. The role of the DES is to disable the appropriate events and preventing actuators from

responding to those events. To do this, we can use supervisor synthesis, a method that involves creating a

Global State Space (GSS) that contains every possible path the model can follow for given starting states

and conditions, and subsequently extracting the supervisor states from this GSS by removing any state and

transition that will cause the model to behave against the control specifications defined by the modeler.

DES were first defined for monolithic models, which caused state space explosion during the GSS

definition (Gohari 2000). This limits the feasibility of the method to small use cases. Instead, modular and

hierarchical architectures can reduce this state space complexity: modular approaches allow splitting the

model into smaller pieces and thus reducing the state space for each module (Wonham 1988). Similarly,

hierarchical models use a minimalistic supervisor at the top that controls significant events on the lower

level of the plant. The supervisor is then synthesized on the high-level model which imposes high-level

specifications. Despite this, reducing the complexity of the state-space remains a challenge.

Among the different methods used to model supervisory control there are different formalisms like Petri

Nets as well as computation techniques like binary decision trees (Wonham 2018). In this research we

explore the use of DEVS (Zeigler 2000), as its modular and hierarchical nature is well adapted to the

problems just discussed. In (Zeigler et al. 1995), a method was presented to synthesize DES using the

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 1363

Jamal and Wainer

Cartesian product. The resulting GSS contains every state and transition, ignoring the hierarchical structure

of the DEVS model regardless of whether those states are feasible or not. This creates a GSS that for larger

models may be infeasible. In this research we introduce a new method that uses that structural information

to reduce the number of transitions in the GSS. We use the coupling information to decide which states and

transitions are feasible and which can be safely ignored, thus producing a smaller GSS, from which to

extract a supervisory controller. It is an approximate method as there might be safe sequences of events that

are ignored. We focus on the state-space explosion problem for DEVS models, and the GSS we generate

only considers logical time (timing analysis on the GSS is left for future research). The method is applicable

to discrete-event supervisory control systems (continuous systems are excluded). We introduce the method

and present a case study showing how to model a system, extract a supervisory controller and execute the

controller both in simulation and on embedded hardware targets.

2 BACKGROUND / RELATED WORK

Research on DES includes using different modeling formalisms, solving the problem of GSS explosion,

observability, reachability, and permissibility. A large state-space can make the process of extracting the

controller and performing analyses computationally infeasible. (Ramadge 1982) introduced the idea of

deriving supervisory controllers from formally defined DES. The method disables discrete event transitions

to enforce control objectives. Modular approaches can isolate subsets of the model with local interactions,

reducing overheads and state-space complexity. However, coordination between subsets can lead to race

conditions or deadlocks. Solving these problems using global coordination becomes computationally

expensive (Teixeira 2011). Hierarchical approaches, instead, use a top-level DES with a limited view of the

lower levels. This could cause inconsistent information use or hierarchical inconsistencies (Zhong 1990).

(Brandin 1994) extended the use of supervisory control for temporal models with timed automata,

including forcible events. This is akin to passivation of DEVS models, which will be discussed later. More

recently (Alves 2017) used a method to generate an untimed model to investigate delays and loss of

observation between plant and supervisor and conditions for the existence of supervisors.

These formalisms treat the values of data variables as distinct states. This causes a state space explosion

as the values of the variable need to be enumerated for analysis. For such cases (Le Gall et al., 2005)

proposed the use of Symbolic Transition Systems where the set of uncontrollable states is abstracted,

allowing the model to become decidable and a supervisor to be synthesized. (Forschelen 2012) showed that

formal methods for designing controllers are suitable in an industrial setting and are more scalable,

maintainable, and dependable as formal methods provide a better structural approach in software design,

have fewer ambiguities and are more dependable as the correctness of the model is embedded in the design.

(Yamalidou 1996) used Petri Net (PN) place invariants (regions where tokens remain constant for all

markings) to compute the DES. Fluid PNs (Silva 2016), where markings can take real negative values, and

Hybrid PN (Giua and Silva 2018), which can model a larger class of systems, help to solve the state space

explosion problem. However, they are difficult to analyze formally and there is no general methodology to

design controllers. For timed PN, the method of discretization of the clock produces more complex models.

DEVS (Zeigler 2000) is better suited to solve these problems, including hybrid systems (Grossman

1993). DEVS is a modular and hierarchical modeling formalism for systems whose state transitions are

driven by discrete events. DEVS atomic models define component behavior using states, transitions, and

events that trigger the transitions. Coupled models define the hierarchical structure of the model, defining

subcomponents and couplings between them. (Maione 2004) defined a genetic event supervisor that can

adapt over time to fit the conditions of the system. (Marcosig 2017) showed the use of DEVS to verify,

validate and design event-based controllers for hybrid systems through iterative development and model

continuity. (Zeigler et al. 1995) introduced the use of DEVS for supervisory control of hybrid systems but

research is needed in new methods to gauge the observability, permissiveness, deadlock analysis,

reachability and other properties for DES. DEVS allows model continuity across platforms, which is

important to ensure the specifications of the model remain intact and therefore ensure models are formally

1364

Jamal and Wainer

equivalent (Niyonkuru 2022). We can use DEVS Modelling, Simulation, and Real-Time (RT) control on

embedded platforms, ensuring model continuity. We achieve this goal using Cadmium (Belolli 2019), a

DEVS software stack written as a C++17 header-only library, and RT-Cadmium.

3 A METHOD FOR OBTAINING DISCRETE-EVENT SUPERVISORS

We introduce a methodology for obtaining DES presented in Figure 1, an extension of (Zeigler 1995).

Figure 1: Modified methodology for obtaining the Discrete-Event Supervisor.

The first step is to define a DEVS model of the plant. Then, we use our approximate method (discussed

in the next section) and obtain a GSS of reduced complexity that keeps the structure of the coupled plant

model. This GSS is a DEVS model represented as a weighted directed graph with information about how

the plant evolves from a state by the influence of external inputs and internal transitions. The states form

the vertices of the graph, and the transitions make up the edges. Supervisory control objectives can be

specified and then applied to the GSS, defining states and transitions that are unwanted. The controller can

only disable events and therefore the control objectives include unwanted states and transitions that need to

be removed (which represent states and transitions that violate the control goals). In addition, the control

objective also specifies if a control path between two states exists. These states define the start and endpoints

of the control loop the plant is expected to take. If there is a path between two states, a control loop exists

in our reduced GSS. We then apply controllability analysis to show any transitions with the potential to

move the controller away from the desired control path and onto an uncontrollable path (weak transitions).

If the reduced GSS does not contain weak transitions, we apply Inverse DEVS transformation and obtain a

DES (Discrete-Event Supervisor) that satisfies the control objectives. The DES and plant model are coupled

together and tested through DEVS simulation, and we can make any necessary changes to the plant or

controller to fix any issues found. The models can then be ported over to hardware and executed in real-

time, maintaining model continuity between simulation and deployment.

1.1 Calculating the Cartesian Product

We calculate the GSS of the plant model using the Cartesian product, which takes the directed graph of

each atomic model and then computing the Cartesian product with the previous product. Consider the case

of two atomic models G and H in Figure 2(a). V(G) = {u1, u2…, un} and V(H) = {v1, v2 ,…, vn} are the sets

of vertices of the two graphs. E(G) and E(H) represent the edges of the model. To compute the product, we

form a set of ordered pairs of V(G) and V(H), which forms the combined states of the global state-space.

They are built as follows: for each vertex ui form a pair with vertex vj where j is the index of the vertices of

V(H). If we take vertex ui in Figure 2(a), we form the ordered pairs (ui,vj), (ui,vj+1),(ui,vj+2), shown in the

first line of Figure 2(b). We repeat the procedure for ui+1 and ui+2 and get the set of 9 ordered pairs shown

in the figure (these are ordered pairs: the order of appearance is important; (ui, vj) ≠ (vj, ui) in the product).

Next, we need to find if two combined states in the global state space are adjacent to each other; in

other words, if they can be connected by an edge. Two vertices are adjacent if for an edge (ui,vj),(uk,vl): i=k

and vj,vl is an edge of H; or j=l and ui, uk is an edge of G. This means that two combined states in GSS are

adjacent if one is fixed in both the combined states, and the unfixed state has an edge in its original graph
with the corresponding unfixed state in the combined state (Figure 3(c) and 3(d)). The direction and weights

of the edges are preserved as the ordered pairs differ by only one state coming from one atomic model.

1365

Jamal and Wainer

Therefore, the original weights still represent the transition condition (full lines for internal transitions and

dotted lines for external). Two states can have multiple edges if the weights are different; in this case, the

combined states also have multiple edges between them.

Figure 2: (a) Atomic models G and H; (b) Ordered pair sets of two graphs V(G), V(H); (c) Adjacent vertices
due to edges of G; (d) adding vertices due to edges of H.

The edges in 2(c) are due to the edges of G. Notice V(H) does not change between the connected nodes

and only V(G) changes. If two vertices are adjacent, we add the edge between the two states, this transition

will cause the system to move to the other combined state. The ordered pairs imply that edges (and therefore

transitions) can only exist between nodes that have only one state change in their combined states. As the

Cartesian product is not commutative, we choose the order of operations based on the select function of the

coupled model. We can see that the Cartesian product does not use the structural information available in

the DEVS coupled model of the plant. This leads to the addition of extra transitions that will never occur.

The method presented next uses this information to attempt to reduce the number of transitions.

1.2 Approximate Method to Generate the GSS

We use the structural information of the coupled model to generate the GSS. The couplings define the

model’s structure, which restricts the input events the model can react to, and the output events the model

will generate. Feasible transitions for a coupled model are determined by EIC, IC, and EOC sets. If there is

no coupling to an input or output port of an atomic model, events cannot input/output the model and certain

transitions can be ignored. Further, for the output function λ, we need the EIC or IC to be coupled with the

output ports of the atomic models of interest. The output ports transmit output events; thus, they do not

affect the model. Figure 3 shows two models whose structure includes components in which the output

ports are not in the IC or EOC sets.

Figure 3: Two coupled models: a) no IC between A and B; b) no EOC with ports of B.

Figure 3(a) shows a model with no IC between two atomic models. Outputs of A cannot reach B (so, we

can ignore them in the GSS). Model B can only be influenced by the EIC through B.In and only λ of B can

generate outputs. Therefore, we include it by adding the associated δint to the GSS. This is done by finding

the two combined states (as explained earlier) and after, δint is executed. The coupled model generates

information through the λ of B, the EOC with port B.Out. In Figure 3(b), the λ associated with port A.Out2

influences model B. However, model B has no EOC and only the λ associated with A.Out1 can provide the

information. Therefore, the internal transitions of B can be ignored. We utilize this information to only add

the transitions that affect the model to the GSS. These transitions can then be added between the combined

states of the GSS that have the state change defined in the transition. By doing so we remove impossible

transitions from the system and reduce the global state space to a more manageable size.

1366

Jamal and Wainer

This is done as follows. For a coupled DEVS model CM = < X , Y, D, {Mi}, EIC, IC, EOC, select >

Order the set D according to the Select function

for each i in D, choose the corresponding instance Mi:

if i in EIC.component:

 for Mi.external_transition.port in Mi.port:

 if Mi.external_transition.input_type == EIC.port.InputType

 Add external_transition to global state space

 if i in IC.first_component: {

 for Mi.internal_transition.port in IC.out_port:

 Add δint to global state space

 Mi2 = IC.second_component

 for Mi2. δext.port in IC.in_port:
 Add δext to global state space

 }

 if i in EOC.component:

 for Mi. δint.port in EOC.outport:
 Add δint to global state space

The algorithm first selects a component from the coupled model using each submodel i from set D and

its couplings (the algorithm shows the top model, but this can be applied recursively for lower levels of the

hierarchy). For each component i, its associated atomic model is used to obtain the transitions and their

weights. The couplings are used to decide which transitions to consider and which to ignore.

The algorithm first searches the EIC and checks if it contains any entry with the component name

(remember that not every component may be in the EIC set; this includes components of the same atomic

model type where all the components may not be connected to the input port of the coupled model). If it is

found, we access the external transitions and search for the port and input type that matches the given EIC

entry. We then add this δext to the GSS between the combined states. The δint that may be triggered after this

external transition is not considered. As discussed, for a λ associated with a δint to influence the model it

must be present in either the IC or EOC.

Figure 4 shows a coupled model with atomic models; A and B (states are rectangles). INT represents

internal and EXT external transitions; the names after “/” refer to the ports associated with outputs or inputs.

Figure 4: Coupled model with atomic models A (left) and B (right); states, transitions and couplings.

There are two EICs: port In coupled with atomic A and In2 coupled with atomic B. For model A, the

δext affected by the input coupling are 1→2, 3→6 and 4→5. These are thus added in the GSS using combined

states that differ by these states. For example, the transition 1→2 is added as a link from the combined

states that have the A set as 1, to the combined states that have the A set as 2. Similarly, the δext of B affected

by the EIC are 4→5 and 5→3 and these are added to the GSS. The δint of atomic A or B that are triggered

after δext are ignored and are considered in later steps when the IC or EOC are analyzed. Finally, the δext of

B that are triggered by input from port AOut are ignored as these are due to the IC between A and B.

 Next, we search the list of Internal Couplings. An IC can be used by two transitions (internal and

external) across two components. The first is a λ/δint that generates an output from the first component in

the IC list. The output is sent to the second component as an input. This input then triggers δext in the second

component. We use a two-step process. First, we match a component d with the first component from the
IC list. If they match, the internal transitions are filtered, and their output functions are matched with the

output port in the second component of the IC. The δint is added between the two combined states of the

model with the state change specified by δint between them. Then, we take the second component for this

1367

Jamal and Wainer

IC and find δext in the second component with an input port matching the output of the first component.

This transition is added between the combined states that contain the state change, with an added filtering

step. We realize that δint moves the system from one combined state set x to a combined state set y. The δext

can only occur from the combined state set y as the GSS must be in that state because, after the time advance,

δint and λ occur simultaneously. The GSS at that time must then be in state y when the δext is executed in the

second component. Further, δext also occurs instantaneously and the GSS cannot move away from state set

y as no other events can occur at this point. This filtering step ensures that the transitions due to the IC only

exist between combined states that can exist at that instant.

The case of the IC can be better explained using the coupled model in Figure 4. The δint of A and the

associated output functions involved with the IC coupling between the A and B are transitions 2→3 and

6→1 from A. These are added to the GSS, and B is saved as the second component involved in the IC. For

B, the external transitions are matched with the relevant input port; in this case, transitions 1→2 and 4→3

match AOut, which is added because of the IC. The external transitions due to ports In and In2 were

considered in the previous step. The δint and the λ associated with port AOut2 and BOut are next.

Finally, the EOC list is like the EIC, except that we match the λ associated with the δint of the component

d to the output port specified in the EOC. Referring once again to the Figure 4, the EOC only considers the

λ associated with the coupled ports AOut2 and BOut and the associated δint. This means we only add

transitions 3→4 and 5→6 from A and 2→4 and 3→1 from B. All the other δint are ignored.

1.3 Obtaining a Reduced GSS

Given a GSS represented as a directed graph G = (V, E), the control objectives can be applied to remove

unwanted transitions and states that can move the model onto an uncontrollable path. The controller that

we then obtain can disable unwanted transitions. This is done by not having state transitions that would

lead to unwanted transitions or illegal states, or not having output functions that would produce outputs to

the actuators causing unwanted transitions. Three general rules are applied to the state graph to obtain a

reduced GSS. They ensure that the controller that is obtained at a later step from this reduced GSS will

comply with our specifications. The three rules are a) no-state, b) no transition, and c) the path exists.

The no-state rule removes unwanted states that violate objectives or states whose transitions can move

the model away from the control path. This rule can also be used to remove nonsensical states that are in

the GSS but whose necessary conditions for being reachable are not feasible. We search the vertices V(G)

and find the combined states that match this rule. These states are then removed. The transitions from these

states are also removed and only transitions to these states are kept for controllability analysis later.

The no transition rule searches the edges and removes transitions between states specified in the rule.

There are two reasons for this. The first is to remove unwanted transitions to states that are illegal or would

cause the model to stray away from controllable states. The second is to prevent the controller from

switching between legal states and creating multiple paths that would make the model uncontrollable. Both

the no transition and no state rules can be applied to a subset of a combined state.

Finally, the path exists rule establishes that there is a closed path between any two combined states.

Since it is a directed graph, the closed loop can have different forward and reverse paths to the two states

specified and must be searched in both directions. The uniqueness of the path is not determined and there

can be other paths between the starting and ending states. If there is a strongly controllable loop between

starting and ending states the controller should be able to keep up with the state of the plant model.

The specifications need to be applied in a specific order as they cannot be applied in parallel. Each rule

application changes the connections and paths of the graph, therefore making a parallel computation

impossible. We apply the control objectives in such a manner to use the minimum number of operations to

obtain the reduced GSS: 1. No State; 2. No Transition; 3. Path exists. Applying the rules in this order results

in minimum operations and a reduced GSS in which the determination of path existence from the path-exist

rule holds. Applying the no state rule first removes all unwanted states from the system. We then apply the

no transition rule and remove all unwanted transitions. These rules change the structure of the GSS, thus,

if the path exists rule is applied before them, the result can be invalidated by any subsequent rule application.

1368

Jamal and Wainer

1.4 Controllability Analysis and Inverse DEVS Transform

The application of the control objectives leaves a reduced GSS that can be used to obtain a supervisory

controller that meets the specifications. Before a supervisory controller can be extracted from this graph,

controllability analysis needs to ensure the obtained DES keeps the model on the desired path. The objective

is to ensure the DES and the reduced GSS only have very-strongly or strongly controllable transitions.

At a given state, if δext executes and the model moves to an illegal state, the transition is weakly

controlled and the control path becomes weakly controllable. Since this is an external transition, its

execution cannot be prevented. If instead δext moves to an allowed state and the time advance is finite, this

transition is strongly controllable: δext may be followed by δint and the finite time advance can allow new

external inputs to be received, changing the model to a state outside the control path. For δint, if the time

advance is finite and transitions to an allowed state, the transition is strongly controllable (δint cannot change

states). However, the next δint may switch the model to an illegal state. If the transition is to an illegal state,

the transition and the path are weakly controllable. The δint will take the DES off the control path unless δext

moves it back onto the path. Similarly, if the time advance is infinite, δint is strongly controllable as the

model and DES cannot stray away from the path due to internal transitions. The component passivates after

the transition and therefore no other δint can shift the component away from the current state. In summary

for a strongly controllable path, transitions must only be to allowed states, and for internal transitions, the

time advance should passivate the model after the execution of the transition to an allowed state.

Ideally, our path should only contain very strongly controllable transitions. However, strongly

controllable paths can still be utilized to make DESs: there must be time before a transition and there must

be external transitions on the path that can force the model on the desired control path. In these conditions,

a strongly controllable path can be kept on the control path by external transitions of the model. Otherwise

strongly controlled transitions run the risk of straying from the path.

The Inverse DEVS transformation is performed on the reduced GSS to obtain a candidate DES. The

information about the transition type is stored in the weights of the edges. We can change the type of the

edge by modifying the weights and switch internal transitions and external transitions. The I/O ports are

switched as well: input ports become output ports for λ, and output ports become input ports. If the Inverse

DEVS of a model, our DES, and the model are coupled together, the output types of the model are the same

as the input types of the DES and vice versa; hence, if the two models are coupled and start in the same

state, the model and DES stay coordinated.

Once we obtain a DES, we can simulate the DES and the plant model coupled together to test for proper

functioning. This is useful to identify any extra transitions and combined states that are not used during the

normal operation of the plant-controller coupled model. These transitions do not alter the course of the

operation and may be left as is; however, they take up storage resources and should be removed. These

extra transitions arise primarily because the control objectives did not identify them as problematic and

were not removed during the application of the control objectives.

At this point, it is important to identify missing transitions using the DES and the coupled model. We

search for external transitions in the DES with infinite time. For these, we note which state has changed in

the combined state (i.e., the component that caused the state change). This is done by comparing the position

of the state in the combined state with the Select function. Once we identify this atomic model, we know

the second component of the IC and from this, we can identify δext that will be triggered in the second atomic

model. This δext can now be used to find the inverse δint in the DES. We find the δint in the DES that

corresponds with the state change in δext. With the identification of both the transitions involved in the

missing transition, δext of the DES is altered such that the transition is to the state after δint has been executed.

The DES and the model can be simulated using the DEVS Cadmium tool to identify problems in the

model. After testing through simulation, the models are downloaded onto an embedded platform using the

RT-Cadmium tool. Since all our models are DEVS models, no changes need to be made. The simulation

scenarios defined for the software simulation can now be executed on the embedded platform. This testing

1369

Jamal and Wainer

can more realistically test the DES in real environmental conditions and identify any further problems. If

no problems are found, then we can be assured that the DES and the model work effectively.

4 CONTROL OF A ROOM WATER TEMPERATURE MODEL

We show how to apply our method in a case study for a supervisory system for room water temperature

control. The water temperature in the room is controlled such that the occupant has access to warm water.

For this reason, we require the water should be kept between Cool and Hot temperature ranges and not dip

to Cold or rise to VeryHot and cause burns (although the control of the temperature heater could be done

using traditional continuous control such PID, here we focus on supervisory actions in the system).The

boiler affects the water temperature and cycles between On and Off states. When the room is occupied, the

boiler should turn on and ensure the water is warm. For this reason, we also include an occupancy sensor.

Figure 5: Boiler actuator, occupancy sensor, and the room water temperature model.

Figure 5 shows the top model and its components. The occupancy model checks a sensor, and based on

its value δint changes the state back and forth between ‘Occupancy-On’ and Occupancy-Off. The actuator

model transition Off → Switch-On can be caused by two input events: ON, which triggers the transition due

to water temperature rising above the threshold value, and OCC, caused by the room being occupied.

The room water temperature model states represent the water temperature ranges when the boiler is on

(suffix –On) or off (suffix –Off). When the boiler is on, the temperature rises and the internal transitions go

from Cold-On to VeryHot-On. Similarly, when the boiler is off, the water temperature falls, and δint moves

from the VeryHot-Off to Cold-Off. The λ outputs values for each of the water temperature ranges Cold,

Cool, Warm, Hot and VeryHot. The δint checks the value of the sensor and changes the states based on this

value. The δext switches between the -Off and -On versions of the temperature states based on the input.

Once we have defined the model of the plant, we need to extract the GSS from the coupled model using

our method. To compute the Cartesian product we use NetworkX, a Python package that provides tools to

create graphs and perform operations on them (Hagberg et al 2008). We sort the graphs according to the

Select function and compute the Cartesian product and note the number of states and transitions in the

resulting GSS. We then compute the GSS for each model using the approximate method, by passing it

through a python script that returns a file with the vertices and a list of associated edges that are transitioning

from this combined state. We note the number of states and transitions for each of the models. In our case,

the model needs to keep the water temperature between Cool and Hot ranges and turn the boiler On when
there is an occupant in the room. This is defined as follows:
path,water.cool-off,boi.off,?,water.hot-on,boi.on,?

no_state,water.cold-on,?,?

1370

Jamal and Wainer

no_state,water.cold-off,boi.on,?

no_state,water.cold-off,boi.switch_on,?

no_state,water.veryhot-off,?,?

no_state,water.veryhot-on,boi.switch_off,?

no_state,water.veryhot-on,boi.off,?

The path from water.cool-off, boi.off turns the heater On when the water temperature is Cool until the

water is Hot, and the boiler is On. From this state water.hot-on, boi.on we can go back to water.cool-off,

boi.off by turning the boiler Off and letting the water temperature return to Cool. The states Cold-On and

VeryHot-Off are removed as they are illegal. The states water.cold-off, boi.on, ? and water.cold-off,

boi.switch_on are removed to force the DES to switch the boiler On when the water is Cool as then the only

transition to switch the boiler On will be from Cool states. For similar reasons, the states water.veryhot-on,
boi.switch_off, ? and water.veryhot-on, boi.off, ? are removed to turn the boiler Off in the state Hot.

We apply the rules of controllability to the reduced GSS that we obtain after applying the control

specifications. A portion of the controllability analysis for the room water temperature is as follows:
water.cool-off,boi.switch_on,occ.occupancy_on,

water.cold-off,boi.switch_on,occ.occupancy_on,

int,water_out,vlow,fin,

water.cold-off,boi.off,occ.occupancy_on,

water.cold-off,boi.switch_on,occ.occupancy_on,

ext,boiler_in,on,fin,

The transitions are weak transitions arranged as triplets and separated by an empty line. Each triplet

represents one weak transition with the first line representing the starting states and the second line

representing the resulting state. The third line represents the weights of the transition.

The first pair moves the state from ‘Cool-off’ to Cold-Off, which is an illegal state. This transition is

highly unlikely to occur so long as the range of temperature represented by Cool is large enough and the

boiler can turn on and start heating the water. The boiler is already in the ‘Switch_on’ state and therefore

the boiler will start heating the water and the water will not reach the Cold temperature. The second triplet

represents states in which the water temperature is Cold. These states are also unlikely to occur as the heater

should be On and the water should start heating when the water temperature is in the Cool range. From this

analysis, the control loop is unlikely to transition to those states and therefore we can apply inverse DEVS.

Figure 6 shows the DES obtained from the reduced GSS after applying the Inverse DEVS

transformation and resolving the missing transitions. In this case, three missing transitions occur due to the

IC between the ports BoilerOut of the actuator model and the room water temperature model. The first

missing transition occurs when the DES is in the state Cool-Off, Off, Occupancy-Off and outputs ON to the

actuator model and moves to Cool-Off, Switch-On, Occupancy-Off. The actuator model executes δext and

changes to Switch-On, followed by the execution of δint, moving the actuator to On and λ generating On.

The actuator passivates and the room water temperature model moves to Cool-On. However, the DES is in

Cool-Off, On, Occupancy-Off after it receives the input On from BoilerOut and is passivated. This transition

is therefore changed, and we add Cool-Off, On, Occupancy-Off → Cool-On, On, Occupancy-Off and set

the time advance of the room water temperature model. This is shown in Figure 6 as a separate external

transition with no port or input event so that this modification is marked. In the implementation, there is

only one δext that changes Cool-Off, Switch-On, Occupancy-Off → Cool-On, On, Occupancy-Off. Similarly,

the other two missing transitions (Hot-On, Switch-Off, Occupancy-Off → Hot-Off, Off, Occupancy-Off, and
Warm-Off, Switch-On, Occupancy-On → Warm-On, On, Occupancy-On) are resolved.

The execution of the room water temperature, boiler actuator and occupancy models as well as the DES

are demonstrated through a scenario where simulated water temperature rises when the boiler is On and

falls when the boiler is Off. In addition, the occupancy sensor model switches between Occupancy-On and

-Off at fixed intervals. The models start in states Cool-Off, Off, and Occupancy-Off for the room water

temperature, boiler actuator, and occupancy sensor models, respectively. The DES starts in Cool-Off, Off,

Occupancy-Off. When the simulation starts the water temperature starts to fall as the boiler is off. The DES

outputs ON through BoilerIn and moves to Cool-Off, Switch-On, Occupancy-Off. This is received by

1371

Jamal and Wainer

BoilerIn of the boiler actuator model causing it to turn On after δext and δint. The boiler actuator model

outputs ON through BoilerOut. The room water temperature model receives this as an input and moves to

Cool-On. The DES upon receiving this input moves to the state Cool-On, On, Occupancy-Off. We observe

the water temperature rises due to the model being in one of the -On states.

Figure 6: DES for the room water temperature model.

After some time, the occupancy sensor model changes its state to Occupancy-On and outputs H through

the OccOut port. The DES receives this and moves to Cool-On, On, Occupancy-On and does not output

anything as the boiler is already On. The water temperature continues to rise and the room temperature

model outputs the corresponding event for each of the temperature ranges as the threshold is crossed. The

DES changes to match with what the water temperature model outputs and is observed to go through the

states Cool-On, On, Occupancy-Off → Warm-On, On, Occupancy-Off → Hot-On, On, Occupancy-Off.
When the DES reaches the state Hot-On, On, Occupancy-Off it signals the boiler actuator to turn off. The

boiler is turned Off, and the water temperature begins to fall. The DES moves to Hot-Off, Off, Occupancy-

Off. The DES is observed to move from Hot-Off, Off, Occupancy-On → Warm-Off, Off, Occupancy-On.

This time the DES generates an output OCC through BoilerIn. This causes the boiler actuator to turn On

and the water level begins to rise again until the water temperature reaches Hot and the boiler is turned Off.
From this simulation, we observe the DES keeps the water temperature between Cool and Hot

temperature ranges and does not let the water temperature reach VeryHot or Cold thresholds. The DES can

keep coordinated with the states of the models. When the occupancy sensor indicates the room is occupied

and the boiler is off, the DES signals the boiler to turn on. The boiler is kept on until the water temperature

reaches Hot. This behavior is per the control objectives set.

Figure 7 shows the hardware setup to test the room and water temperature model. A potentiometer

labeled Setpoint controls the temperature. An amber LED is turned on by the boiler actuator model when it

is in the On state. A red LED to the right is turned on by the AC actuator model when it is On. The LCD

shows the current water and room temperatures. Figure 7 shows various stages in the model execution.

Figure 7a) shows the initial states; the water temperature is set at 30 and is falling as the boiler is off. Figure

7b) shows that the temperature falls below the threshold 20 and the DES causes the boiler actuator model

to move to On, turning on the LED. The temperature then rises. In Figure 7c) the upper threshold of 60 is

crossed and the DES responds by turning the boiler actuator Off. This causes the LED to turn off and the

1372

Jamal and Wainer

temperature to fall. In Figure 7d) the temperature once again crosses the lower threshold value and the

boiler actuator turns on again. In Figure 7e) we activate the occupancy sensor when the temperature was

falling, and the water was Warm. The DES moves to Warm-Off, Off, Occupancy-On, and it generates an

output ON to the boiler actuator. The boiler actuator model moves to the On state and turns on the LED and

we observe the water temperature rise until it reaches the threshold for Hot state and turns off again.

Figure 7: Hardware setup. Right: a) Initial states; b) Boiler on, temperature rises; c) boiler off, water

temperature falling; d) boiler on, water temperature rises; e) occupancy sensor, water boiler on.

The DES was able to keep the room water temperature. In addition, we tested the effect of an occupancy

sensor on the DES and actuator model and found it turns the boiler actuator on when the room temperature

is in the Warm-Off state as we intended. This occurred even though the water temperature model did not

know the occupancy sensor, showing we can add other sensors outside of the property we are modeling,

provided the actuator is modeled to include the effect of the sensor. Finally, the states of the DES and the

models stayed coordinated and the DES did not move away from the control path.

Table 1: States and transitions of the GSS: cartesian product and approximate method.

Model

Cartesian

Product States

Cartesian Product

Transitions

Approximate

Method States

Approximate

Method Transitions

Percentage

Reduction

Room Water Temperature 80 304 80 284 6.6

Room Occupancy 16 48 16 40 16.7

Room Smoke Concentration 16 48 16 40 16.7

Room CO2 concentration 24 80 24 68 17.7

Table 1 lists the results of our experiment with the room water temperature model that we discussed

here and other models not included here for the sake of brevity. The results show the number of states for

the Cartesian method and the approximate method is the same in all cases (our method is not missing any

combined states). For the room occupancy and room smoke concentration models the percentage difference

is approximately 16.7% percent. The room CO2 concentration model has a slightly larger difference at

17.7%. Finally, for the room water temperature model, we observe that our method produces a 6.6%

reduction. This is because our method rejects some transitions that are not possible to occur based on the

structure of the coupled model. The Cartesian product, on the other hand, still computes all the possible

transitions. A reduction of 6.6% is significant and in larger cases can cause a substantial reduction in the

total number of transitions, making the next steps easier and more manageable to complete.

5 CONCLUSIONS

We used the DEVS formalism and devised an approximate method that replaces the Cartesian product to

generate the state-space with a reduction in the number of transitions. The approximate method utilizes the

structural information present in a DEVS coupled model to include or exclude transitions. The approximate

method produces a GSS with either an equal number of transitions as the Cartesian product or less. We

presented a methodology for obtaining a DES from a coupled DEVS model represented as a directed

weighted graph and in the process. The method was used in a case study, producing a reduction of 6% to

17% in terms of transitions. The obtained DES and the model were simulated in software and then executed

on an embedded platform, achieving the proposed objectives. This work can be extended to incorporate the

1373

Jamal and Wainer

use of timing analysis and reachability analysis identifying impossible states and transitions, reducing the

complexity of the GSS. In addition, the use of timing analysis of GSS for embedded applications can be

investigated for timing guarantees. The approximate method algorithm can be further developed to

recursively search coupled models in the hierarchy of a DEVS model.

REFERENCES
Hagberg, A., P. Swart and D. S Chult. 2008. "Exploring Network Structure, Dynamics, and Function Using NetworkX". SCIPY

08. Pasadena, CA.

Alves, M., Carvalho, L. and Basilio, J. 2017. "Supervisory Control of Timed Networked Discrete Event Systems". In Proceedings

of IEEE 56th Annual Conference on Decision and Control, Dec 12th-15th, Melbourne, Australia.

Belloli, L., Vicino, D., Ruiz-Martin C. and Wainer, G. 2019. "Building DEVS Models with the Cadmium Tool". In Proceedings

of 2019 Winter Simulation Conference, edited by N. Mustafee, M.Rabe, K.Bae, C. Szabo, S. Lazarova, P. Haas, and Y. Son,

45-59. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Brandin B. and Wonham, W. 1994. "Supervisory Control of Timed Discrete-event Systems". IEEE Transactions on Automatic

Control 39:329–342.

Fadali, M. and A. Visioli. 2013. "Digital Control Engineering”. 2nd Edition, Academic Press.

Forschelen, S., van de Mortel-Fronczak, J, Su, R. and Rooda, J. 2012. "Application of Supervisory Control Theory to Theme Park

Vehicles". Discrete Event Dynamic Systems 22:511–540.

Giua, A. and Silva, M. 2018. "Petri nets and Automatic Control: A Historical Perspective". Annual Reviews in Control 45: 223–

239.

Gohari P. and W. Wonham. 2000. "On the Complexity of Supervisory Control Design in the RW Framework". IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics) 30:643–652.

Grossman, R., A. Nerode, A. Ravn and H. Rischel. 1993. Hybrid Systems. Berlin: Springer Berlin.

Le Gall, T., B. Jeannet and H. Marchand. 2005."Supervisory Control of Infinite Symbolic Systems Using Abstract Interpretation"

in Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain.

Maione G. and D. Naso. 2004. "Modelling Adaptive Multi-agent Manufacturing Control with Discrete Event System Formalism"

International Journal of Systems Science 35:591–614.

Marcosig, E., J. Giribet, R. Castro. 2017. "Hybrid Adaptive Control for UAV Data Collection: A Simulation-based Design to

Trade-off Resources Between Stability and Communication". In Proceedings of the Winter Simulation Conference, edited by

W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, 1704-1715. Piscataway, New Jersey:

Institute of Electrical and Electronics Engineers, Inc.

Niyonkuru D. and G. Wainer. 2022. "A DEVS Based Engine for Building Digital Quadruplets". SIMULATION. 97: 485-506.

Ramadge P. and W. Wonham. 1982. "Supervisory Control of Discrete Event Processes". Berlin: Springer-Verlag.

Silva, M. 2016. "Individuals, Populations and Fluid Approximations: A Petri Net Based Perspective" Nonlinear Analysis: Hybrid

Systems 22:72–97.

Teixeira, M., J. Cury and M. de Queiroz. 2011. "Local Modular Supervisory Control of DES with Distinguishers". International

Conference on Emerging Technologies and Factory Automation. Toulouse, France.

Wonham, W. and P. Ramadge. 1988. "Modular Supervisory Control of Discrete-event Systems". Mathematics of Control, Signals

and Systems 1:13–30.

Wonham, W., K. Cai and K. Rudie. 2018. "Supervisory Control of Discrete-event Systems: A Brief History". Annual Reviews in

Control 45: 250–256.

Yamalidou, K., J. Moody, M. Lemmon and P. Antsaklis. 1996. "Feedback Control of Petri Nets Based on Place Invariants"

Automatica 32:15–28.

Zeigler, B., Song, S., Kim, T. and Praehofer, H. 1995. "DEVS Framework for Modelling, Simulation, Analysis, and Design of

Hybrid Systems".In Hybrid Systems II, 529–55. Heidelberg: Springer Berlin Heidelberg.

Zeigler, B, T. G. Kim and H. Praehofer. 2000. Theory of Modeling and Simulation. New York: Academic Press.

Zhong H. and W. M. Wonham. 1990. "On the Consistency of Hierarchical Supervision in Discrete-event Systems". IEEE

Transactions on Automatic Control 35:1125–1134.

AUTHOR BIOGRAPHIES

MAAZ JAMAL has a Masters degree from the Department of Systems and Computer Engineering at Carleton University (Ottawa,

ON, Canada). His email address is maaz.jamal@carleton.ca.

GABRIEL WAINER is a Professor at the Department of Systems and Computer Engineering at Carleton University (Ottawa,

ON, Canada). He is the head of the Advanced Real-Time Simulation lab at Carleton University. He is a Fellow of SCS. His email

address is gwainer@sce.carleton.ca, and his website is http://www.sce.carleton.ca/faculty/wainer.

1374

mailto:gwainer@sce.carleton.ca
http://www.sce.carleton.ca/faculty/wainer

	ABSTRACT
	1 INTRODUCTION
	2 Background / related work
	3 A Method for Obtaining DISCRETE-EVENT SupervisoRS
	1.1 Calculating the Cartesian Product
	1.2 Approximate Method to Generate the GSS
	1.3 Obtaining a Reduced GSS
	1.4 Controllability Analysis and Inverse DEVS Transform

	4 Control of a Room Water Temperature Model
	5 Conclusions
	REFERENCES
	AUTHOR BIOGRAPHIES

