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ABSTRACT 

Production Planning and its parameterization is critical to fulfil customer demands and to successfully react 

on changes in high volatile markets. Therefore, demand updates should be considered to improve 

production planning. In this paper the performance of two production planning methods MRP (Material 

Requirements Planning) and RPS (Reorder Point System) are compared in a multi-item single stage system 

where customer orders are updated in a rolling horizon manner. Applying a simulation study, we investigate 

the performance of MRP and RPS for biased and unbiased forecast information and discuss the difference 

in the optimal planning parameters. The study shows that for a production system with underbooking and 

low demand uncertainty, RPS method is superior, in all other scenarios MRP outperforms RPS. For 

overbooking scenarios, the results show MRP leads to overall cost improvements ranging from 8 to 30 %. 

1 INTRODUCTION 

From a production planning and scheduling perspective, the worldwide crises since 2020 showed the 

necessity for manufacturers from different fields to be resilient against heavily fluctuating demands. As a 

result, some companies were confronted with customers supplying demand forecasts which lead to an 

overestimation or underestimation of the realized demand. In the context of demand forecasting this can be 

related to overbooking or underbooking behavior. Especially when customers change their demand for a 

respective due date, the production planning task becomes complicated. In this article, the focus is on 

overbooking and underbooking behavior of customers, this means the long-term forecast is lower or higher 

compared to the actual customer demand, see also Zeiml et al. (2019). Forecasting can be split up in 

systematic behavior and unsystematic disturbances, whereby underbooking and overbooking are part of 

systematic forecast behaviors (Heath and Jackson 1994). Independent of a forecast behavior, changing 

customer demand forecasts introduce uncertainty into the underlying production system. Two widely 

applied methods to plan the production are Material Requirements Planning (MRP) and Reorder Point 

Systems (RPS), compare to Hopp and Spearman (2011) and Silver et al. (1998). Both approaches follow 

simple rules and are applicable independent of the underlying production system. For MRP, based on the 

gross requirements of future periods, the steps: netting, lot-sizing, time phasing, and bill of material (BOM) 

explosion are applied, see Hopp and Spearman (2011). For RPS, a new production order is issued whenever 

the inventory position falls below the reorder point, see Hopp and Spearman (2011). This short explanation 
already shows one main difference between MRP and RPS, i.e., MRP uses demand forecast data (included 

in the gross requirements of end items) for planning and RPS not. For MRP, the three parameters safety 

stock, lot policy, and planned lead time must be set and for the reorder point system lot size and reorder 
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point is necessary to configure the method. Different studies from literature show that including accurate 

customer demand information into the production planning leads to a cost reduction; see Wijngaard (2004), 

Benjaafar et al. (2011), and Altendorfer and Minner (2014) studying different RPS systems extended by 

advance demand information and Enns (2001) as well as Altendorfer (2019) studying MRP. This means 

that MRP has a superior performance in comparison to standard RPS (without advance demand 

information) if forecast demand information is perfect. However, when uncertain forecasts occur, the 

performance of MRP decreases; see Enns (2002) and Altendorfer et al. (2016) for MRP effects as well as 

Altendorfer and Felberbauer (2023) for detailed forecast error analysis. If demand forecasts are updated 

regularly including unsystematic error and a systematic bias occurs, i.e., overbooking or underbooking, the 

performance of MRP suffers significantly as the performance gain by applying future demand information 

diminishes. Therefore, this article compares the performance of MRP and standard RPS (without advance 

demand information) under forecast related demand uncertainty by means of simulation. The overall costs 

applied for performance measurement consist of inventory and backorder costs. For the simulation study, 

a simple multi-item single-stage production systems is used. In this paper we investigate if an increasing 

forecast bias hinders the performance of the MRP algorithm. As higher unsystematic forecast errors 

negatively influence both, RPS and MRP, we conjecture that overall costs increase with increasing 

uncertainty for both methods. In detail, the following research questions are addressed: 

RQ1: What is the difference in performance of MRP compared to RPS if uncertain forecasts occur with 
regular updates that are unbiased? 

RQ2: What is the influence of overbooking and underbooking on the performance of MRP and RPS if 

uncertain forecasts with regular updates occur? 
RQ3: What are optimal planning parameters for MRP compared to RPS for the above-mentioned 

scenarios? Are there significant differences in the respective planning parameters? 

To make a fair comparison, the planning parameters for MRP and RPS are optimized in a large numerical 

simulation study using a full factorial enumeration of feasible planning parameters identified in preliminary 

studies. RQ1 and RQ2 contribute to better understand how demand uncertainty influences the performance 

of well-established production planning and control systems. RQ3 provides managerial insights in how to 

set optimal parameters for different forecast behaviors. 

2 RELATED LITERATURE 

Different inventory policies with continuous or periodic review are covered in various articles (Axsäter 

2007, Silver et al. 1998, Tempelmeier 2011). There are several papers where the assumption of stable 

uncorrelated demand is relaxed. Iyer and Schrage (1992) discuss a stochastic inventory model where time 

varying parameters depending on past empirical data. Janssen et al. (1998) and Janssen et al. (1999) 

critically discuss the effect of demand distribution assumptions on the realized service level within an (R, 

s, Q) inventory model and identify that distribution misspecification can have significant effects. Bertsimas 

and Thiele (2006) apply mixed-integer-linear programming (MILP) to optimize inventory model 

parameters based on empirical data, which leads to a distribution free solution reducing the assumptions 

needed in stochastic models. The literature stream focusing on “advance demand information” show that 

including accurate demand information improves performance (Altendorfer and Minner 2014; Benjaafar et 

al. 2011; Wijngaard 2004). Computing the ideal reorder point for reordering purchase items or reproducing 

self-produced items has already been investigated since several decades. It is still one of the most important 

planning decisions for the operation of a production system. This type of planning concept to avoid a stock 

out situation is related to so called reorder point systems also as known as (s,Q) system and is consumption 

driven (Silver et al. 1998). This means the reorder point is driven by customer consumption of sales items 

and sales items consuming components. Stock out situations are tried to avoid, due to decreasing service 

level and can lead to lost sales costs. Another well-known production scheduling approach is MRP with the 
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main difference, that a planning horizon is used (Hopp and Spearman 2011). Literature on MRP shows that 

with accurate demand information, MRP performs well (Altendorfer 2019). However, demand updates 

simultaneously leads to uncertainty that dampens the performance of the production system (Ho and Ireland 

1998; Li and Disney 2017). Several studies show that the forecast uncertainty in the supply chain leads to 

a significant performance loss of the MRP system (Altendorfer et al. 2016; Enns 2001, 2002). To model 

the setting with rolling forecast updates, forecast evolution models are an appropriate method to mimic such 

a common system (Heath and Jackson 1994; Norouzi and Uzsoy 2014). Altendorfer and Felberbauer (2023) 

study the influence of forecast error and forecast bias on forecast and production order accuracy assuming 

a streamlined MRP-System with one production planning level. They evaluate the performance of a 

correction model for real data and within a broad simulation study. Discrete Event Simulation is a well-

established method to model the production system and discuss or optimize its performance for different 

system settings (Altendorfer et al. 2016; Altendorfer and Felberbauer 2023; Enns 2001; Juan et al. 2015). 

In this study we contribute to available literature as specifically the influence of regularly updated biased 

forecasts in a rolling horizon MRP planning environment is addressed and compared to RPS. 

3 SIMULATION STUDY SETUP 

To answer the research questions a simulation study is conducted. For meaningful performance evaluation, 

the simulation runtime per replication was set to 800 periods (days), including 160 periods for warm-up. 

After the 160 days all the statistics are reset, as steady state of the simulation systems is assumed. This 

simulation runtime allows to investigate the evaluated production planning approach for two years with a 

daily planning frequency. Uncertainty is firstly included into the forecasting process of customer demand, 

and secondly, a stochastic setup time is applied. Processing time of items is considered to be deterministic 

assuming a stable production process. To account for stochastic effects, 10 replications were used for each 

iteration. The core components of the discrete-event simulation model are the (1) demand generation 

component, (2) production scheduling component, (3) stock booking component, (3) job shop processing 

component and (4) the database component. At first the production system is loaded once per simulation 

run using the database component. The database component stores the master data: Bill of Material (BOM), 

routing data, demand parameters, and basic setting for the simulation experiment. The production 

scheduling component knows from the master data, which production planning and scheduling method 

should be applied for the current simulation run and the demand scenario (forecasting) parameters. For this 

simulation study, standard MRP or standard RPS can be selected for the items of the BOM. After getting 

the simulation experiment settings from the database component, the next step in the simulation model is 

to start periodic demand generation using the described forecasting approach. The selected planning type 

is conducted periodically, demand and production planning methods are calculated every period (day). The 

production scheduling component takes the demand and generates a production schedule, which provides 

the release dates and quantities for the subsequent job shop processing. When a production order reaches 

its start date, the material release method is called and checks if enough quantity for the item of the 

production order is on stock. If enough inventory is on stock, the production order is passed to the machine 

queue, where job shop processing is done. For the current simulation study, the production orders are 

processed according to the planned start date. This means independent of the production lot size, the next 

order is selected from the queue and passed to the machine delay block for processing the item. Finally, the 

produced quantity is put on stock. In the moment of stock booking, the customer orders are queried to fulfill 

customer demand and material release is checked to release the next production order. This demand 

generation, production scheduling, and job shop processing cycle is done until the simulation time ends.  

3.1 Production System 

For the simulation study, Figure 1 shows the simple multi-item and single-stage production systems which 

is evaluated using the developed discrete event simulation framework. On the top level of the BOM (Bill 

of Material) with LLC=0 the sales items 10 and 20 are located. Both sales items are produced on resource 
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(machine) M1. Item 10 and item 20 both require raw material 100 from LLC = 1. To produce one unit of 

item 10, one unit of item 100 is required, the same relation holds for item 20 and 100. The raw material 100 

is regarded as always available. This means between LLC 0 and LLC 1, a delay due to unavailable raw 

material is not possible. This simple production system allows to meaningfully investigate the planning 

behavior of MRP and RPS, with the focus on forecast introduced demand uncertainty. Note that a multi-

stage production system might lead to additional insights, however, it would require identifying and setting 

up planning methods MRP or RPS for the underlying components with suitable planning parameters. This 

task is out of scope for this article as the single-stage production system perfectly reflects the core research 

target of a fair MRP to RPS performance comparison with focus on forecast related demand uncertainty. 

However, more complex production system structures with more items and multiple production stages will 

be investigated in future research. 

Figure 1: Bill of materials and production system. 

The average demand processed by the system simulation model is set to 800 pieces per period and per 

item, the associated processing time per item for the investigated utilization levels {90 %, 95 %, 98 %} is 

set deterministic with {0.675, 0.72, 0.747} minutes. The setup time of each production order is stochastic 

with an expected value of 108 minutes. For setup time, the coefficient of variation is set to 0.5. This 

deterministic processing and stochastic setup time is a practically interesting case, as it is more likely to 

have uncertain setup times but processing itself is often deterministic; especially when the same items are 

produced for longer time on a machine. For a daily capacity of 1440 minutes per machine and a production 

lot size of 800 pieces for each item, i.e., one production order per item each day, this leads to an average 

utilization of {90 %, 95 %, 98 %} whereby {75 %, 80 %, 83 %} are processing and 15 % are setup. These 

scenarios include different levels of unused capacity which enables additional orders to compensate forecast 

updates in MRP, however, the shop load is still high enough to create significant production lead times 

influencing the reorder point in RPS and the planned lead time as well as the safety stock in MRP. Note 

that different lot sizes and additional orders based in forecast updates lead to utilization values different 

from the 90 %, 95 % and 98 %, therefore, we refer to these three scenarios as low, medium, and high shop 

load. 

3.2 Reorder Point System (RPS) Integration 

When applying the standard RPS (as we do in this paper), always the current period t is relevant, and no 

demand forecast is applied for issuing the production orders. This means the inventory position IPt,g for 

period t and item g is computed using equation (1).  

(1) 

In the context of a production system simulation, this means at time period t of the simulation run, the 

values for on stock inventory St,g, open deliveries Ot,g, and backorders Bt,g for item g are computed. Looking 

on the production system structure represented by the BOM, compare to Figure 1, they must be mapped to 
the correct entities in the simulation model. Even though, the current study does not include components to 

be planned, they are included in the following description, as our simulation model is also capably of 

, , , ,t g t g t g t gIP S O B= + −
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simulating complex multi-stage production systems. In our production system context, end items and 

components are produced on machines and raw materials must be purchased. The variable St,g represents 

number of units physically on stock at period t, independent if the item is a sales item, a component, or a 

raw material. The Ot,g quantity represents all open production orders at period t for item g, i.e., including 

sales items and components, which are not finished. For the backorders Bt,g, a difference between sales 

items and components must be made. For sales items, all customer orders with a due date <t, that are not 

yet fulfilled, are summed up for Bt,g. For components, all production orders for sales items that have not yet 

received the respective raw materials are summed up for Bt,g. A new production order with start date t and 

planned end date t + PLTg (planned lead time for item g) is created and passed to the material release 

component, when IPt,g < RPg; whereby RPg is the reorder point for item g. For the RPS, the planned end 

date does not affect the planning result, but it is necessary for the subsequent KPI computation within the 

generic simulation framework.  

3.3 Material Requirements Planning (MRP) Integration 

Standard MRP is the second production planning approach, which is implemented in the production 

scheduling component. A major difference between RPS and MRP is the application of a planning horizon 

for MRP, within which the demand forecasts are used as input for creating production orders. All demand 

forecasts (gross requirements) which are within this pre-defined planning horizon, are part of the standard 

MRP steps. These steps are firstly, to apply the gross requirements for performing the netting, secondly 

apply the pre-set lot sizing policy, thirdly to do time phasing (i.e., backward scheduling in our model), and 

fourthly to calculate gross requirements for needed components and raw materials within the BOM 

explosion step. These steps are applied for the given items within the BOM beginning with the end items 

with low level code (LLC) of 0 until the last LLC with MRP planned components is reached, see also (Hopp 

and Spearman 2011) for details.  

MRP is called at period t during the simulation runtime, all MRP planning steps are applied until t+ M, 

with M being the planning horizon. The minimum length of the MRP planning horizon M is related to the 

sum of all planned lead times PLTg for end items and the respective components as well as the applied lot 

sizing policy. We set M=20 which is sufficiently high to support the evaluated rolling horizon planning 

effects. An explanatory example of MRP planning starting at t=11 for item 10 and covering M=10 planning 

periods is shown in Table 1. At t=11, MRP planning is called in the simulation model performing the steps 

netting, lot sizing, time phasing, and BOM explosion. Computed gross requirements of end items are equal 

to demand forecasts at time t. Projected On Hand is the difference between the Gross Requirements, 

Scheduled Receipts, and On Stock. When Projected On Hand falls below the safety stock (which is zero in 

this example), a Net Requirement is observed, which must be covered by Planned Order Receipts. These 

Planned Order Receipts are computed based on the lot sizing policy. In the example, the lot sizing policy 

fixed order quantity (FOQ) with 800 units is used. After the Planned Order Receipts are computed, the 

associated Planned Order Releases are set based on the planned lead time for item 10 (PLT11). In this case 

the PLT11=1, this means the computed Planned Order Release quantity is released to the production one 

period before the respective due date. At first glance, the standard MRP logic seems to be very simple. It 

gets difficult when the interaction of the three planning parameters safety stock, lot sizing policy and 

planned lead time are investigated in the context of a production system. The conducted simulation 

experiment was run parallel as distributed experiments on 20 multi-core desktop computers with 16 GByte 

RAM. Using only one of these computers the runtime is approximately 30 days. To investigate a more 

complex production system in a reasonable timeframe, e.g. 7 to 14 days, in Seiringer et al. (2022a) a 

Simulation Budget Management (SBM) approach for full factorial design is applied. This approach is 

skipping the remaining replications of an iteration if the average costs of the current iteration are higher 

compared to already finished iterations. To avoid a full factorial design, in Seiringer et al. (2022b) a 
simulation heuristic applying simulation annealing (SA) is evaluated. Here the best solution (minimum 

costs) is searched by adaptively changing the MRP parameter space during simulation. Both methods can 

help to reduce simulation runtime and to identify minimum overall costs. Selecting appropriate MRP 
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parameter ranges still depends on the parameter space and production system complexity. Both must be fit 

to the target of the simulation experiment. Therefore, the ranges of the tested MRP planning parameters 

were selected to get a simulation study covering a broad parameter range, but remain solvable in reasonable 

time. 

Table 1: Example MRP planning at simulation runtime t=11. 

MRP Period for Item = 10 11.0- 

11.99 

12.0- 

12.99 

13.0- 

13.99 

14.0- 

14.99 

15.0- 

15.99 

16.0- 

16.99 

17.0- 

17.99 

18.0- 

18.99 

19.0- 

19.99 

20.0- 

20.99 

21.0- 

21.99 

Gross Requirements 942 744 748 745 928 773 783 975 814 807 800 

Scheduled Receipts 800 0 0 0 0 0 0 0 0 0 0 

Project On Hand 702 -42 -748 -745 -928 -773 -783 -975 -814 -807 -800 

Net Requirements 0 42 748 745 928 773 783 975 814 807 800 

Planned Order Receipts 0 800 0 800 1600 800 800 800 800 800 800 

Planned Order Releases 800 0 800 1600 800 800 800 800 800 800 0 

On Stock 844 0 0 0 0 0 0 0 0 0 0 

3.4 Forecast Evolution Integration 

To enable the evaluation of different forecast uncertainties and biased forecasts, i.e., overbooking and 

underbooking, the customer demands are generated based on the idea of the additive MMFE (martingale 

model of forecast evolution) model; compare to Heath and Jackson (1994) and Norouzi and Uzsoy (2014) 

for MMFE details. Equation (2) shows the demand forecast applied, whereby Dg,i,j is the demand forecast 

of item g for due date i which is provided j periods before delivery. g,i,j is the random update term applied, 

and H is the forecast horizon. For periods above the forecast horizon, the customers provide a constant 

forecast and within H, each period one forecast update is performed. In the current simulation model, H=10 

is applied, i.e., customers start to update their forecasts 10 periods before delivery and consequently 10 

updates are performed. The random update term is defined in equation (3). 

(2) 

𝜀𝑔,𝑖,𝑗  ~  𝑁(𝜇𝜀 , 𝜎𝜀); 𝜇𝜀 =  𝛽𝑥𝑔; 𝜎𝜀 =  𝛼𝑥𝑔  (3) 

This modelling of g,i,j in Equation (3) implies that  specifies the level of unsystematic forecast 

uncertainty and  specifies the forecast bias. Note that for the forecast updates g,i,j, a truncated normal 

distribution is applied to avoid negative demand forecast values, i.e., g,i,j > (– Dg,i,j) and g,i,j < Dg,i,j + 2. 

In the numerical study, several  and  values are tested to evaluate their influence. The expected order 

amount E[Dg,i,0] is set to 800 pcs/period for both items in this study. For biased forecasts, this implies that 

the long-term forecast xg is lower than 800 pcs for underbooking and higher than 800 pcs for overbooking. 

Note that the truncation of g,i,j leads for biased settings to slight deviations in the expected order amount, 

which can be neglected regarding the focus of this study. For further details on the respective biased MMFE 

modeling please refer to Altendorfer and Felberbauer (2023).  

3.5 Experiment Plan 

The production system introduced in Figure 1 is simulated at low, medium, and high shop loads (see Section 

3.1 for details) to identify the effect of shop congestion on the optimal planning methods and the respective 

parameters. The demand for the simulated production system is generated based on the forecasting behavior 
introduced in equations (2) and (3). For the demand information horizon of H=10 with long term forecast 

xg=800, nine unbiased forecast uncertainty scenarios with  = {0, 0.025, 0.05, …, 0.2} and  = 0 are tested 
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to evaluate the respective influence. To test overbooking,  = {-0.01, -0.02, …, -0.05} for  = {0.05, 0.1}, 

and to test underbooking,  = {0.01, 0.02, …, 0.05} for  = {0.05, 0.1}, are simulated in the numerical 

study. For the evaluated planning systems, their planning parameters are varied to perform a fair 

performance comparison. The respective parameter ranges have been identified in preliminary simulation 

runs. For RPS, the planning parameters varied are lot size LS and reorder point RP. For MRP, these are 

safety stock SS, lot sizing policy (with the respective parameter) and planned lead time PLT. For MRP the 

lot size policies of fixed order quantity (FOQ) with LS (lot size) as parameter and fixed order Period (FOP) 

with NP (number of periods) as parameter are evaluated. For both, MRP and RPS, the same planning 

parameters are applied for item 10 and 20. In detail, the MRP parameters have the following ranges: SS={0, 

200, 400, 600, 800, 1200, 1600}, for FOQ LS={200, 400, 600, 800, 1200, 1600, 2400, 3200}, for FOP 

NP={1, 2, 3, 4, 5}, and LT={2, 4, 6, 8}. For RPS, the same lot sizes LS as for FOQ in MRP are used and 

RP={2000, 2400, …, 4800} are applied. For MRP planning, the used safety stock parameter SS also 

corresponds to the initial stocking quantity, and for the RPS the RP parameter value is the initial stocking 

quantity. In total 36,192 (22,272 FOQ, 13,920 FOQ) different iterations for MRP and 5,568 for RPS are 

evaluated with the simulation model. Each one is replicated 10 times per iteration, to account for the sto-

chastic influence during simulation, resulting in 417,600 individual replications. The representation of con-

fidence intervals has been omitted, however, all mayor difference in costs are signification with confidence 

level of lower than 0.05. Confidence levels of representation are not included for clarity purposes. 

4 NUMERICAL RESULTS 

In this section, the stated research questions are answered using the results of the conducted simulation 

study. As stated in the introduction, we investigate in which situations standard MRP with its rolling horizon 

planning capability benefits from uncertain demand forecasts and what conditions lead to a better 

performance of RPS. The discussed cost results represent the overall costs per period computed by the sum 

of finished goods inventory (FGI), Work in Progress (WIP) and tardiness per unit. For FGI a costing factor 

of 1 is applied, for WIP 0.5 and for tardiness of 19. The relation of WIP and tardiness costs represents a 

target service level of 95 %. Inventory costs are twice of WIP as it is more costly to store end items. 

4.1 Effects of Unsystematic Forecast Uncertainty 

To answer RQ1 and discuss the effect of forecast uncertainty on MRP and RPS, Figure 2a shows the 

minimum costs with respect to  which are reached for MRP with FOQ, MRP with FOP, and RPS when 

the planning parameters are optimized for the medium shop load scenario.  

In general, Figure 2a shows that a higher forecast uncertainty, which also implies higher final order 

amount uncertainty, leads to high costs for both methods MRP and RPS. Further, the results show that both 

lot sizing policies, i.e., FOP and FOQ perform very similar in situations without forecast bias. For very low 

 values, which imply a very low uncertainty for the final order amount, the application of demand forecast 

in MRP leads to higher costs. The reason is that applying forecast updates in MRP leads in some situations 

to additional orders, however, the number of updates implies only low final order amount disturbances and 

can better be handled with RPS. The detailed analysis of safety stock SS for MRP shows that both FOP and 

FOQ react with a higher safety stock on a higher forecast uncertainty (see Figure 2b). Note that for all 

uncertainty settings the PLT=2 was optimal in MRP. Related to RPS, higher  values, which lead to higher 

fluctuations in final order amounts, imply higher optimal RP values (see Figure 2b), which is in line with 

inventory control literature where the optimal reorder point should be the maximum of demand during the 

replenishment time. An interesting finding is, that higher forecast uncertainty (and final order amount 

fluctuations) lead for MRP and RPS to higher production lot sizes. Specifically, the finding that FOQ and 

RPS have the same optimal lot size for an unbiased forecast value between 0.025 and 0.175 is interesting 

(see Figure 2c). In general, a higher lot size, leads to an overall higher inventory level and to a lower 

utilization. The higher inventory level helps to avoid a stock out situation and the lower utilization enables 
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shorter lead times and a more flexible production process. Additionally, the finding confirms the intuitive 

expectation, that the MRP FOQ lot size and the reorder point lot size are very similar. 

Figure 2: Results unbiased forecast error: comparison a) cost, b) safety stock vs. reorder point, c) lot size. 

4.2 Overbooking and Underbooking Comparison 

To answer RQ2 and RQ3 and evaluate the effect of overbooking and underbooking on the optimal planning 

method, Figure 3 shows the minimum costs for MRP (with FOP and FOQ) and RPS for medium shop load 

and =0.05 as well as =0.1 with respect to the tested systematic forecast bias value β.  

Since the modeling assumptions concerning forecast bias lead to higher long-term forecasts for 

overbooking and lower long-term forecast for underbooking, the demand forecast update uncertainty 𝜎𝜀 is

influenced accordingly, i.e., higher  implies higher uncertainty for overbooking and lower uncertainty for 

underbooking, compare to Equation (3). Related to RQ2, the results show that overbooking with high 

forecast uncertainty and forecast bias leads to the highest cost. For underbooking, i.e., the forecasts are too 

low, RPS works better when forecast uncertainty  is low (see Figure 3a) but RPS performs worse in all 

other situations (see Figure 3b–d). In the situation underbooking and low  (see Figure 3a) FOQ works 

better than FOP for moderate to high systematic forecast bias. In all scenarios with high , MRP-FOP and 

MRP-FOQ perform very similar. In the underbooking situation for low  and high forecast bias, we see 

that MRP-FOQ performance is superior to MRP-FOP performance. The study shows for scenarios with 

overbooking, always MRP outperforms RPS. Contrary to MRP, RPS ignores the forecast information, but 

its performance is strongly dependent on the demand uncertainty. This implies in the underbooking case 

for higher  values (these lead to lower long term forecasts) the final order amount fluctuation is lower. 

Therefore, RPS leads to lower costs for higher  values and the opposite holds for overbooking. 

c)

b)a)
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4.3 Detailed Analysis of Underbooking Behavior with Low Forecast Uncertainty 

Table 2 shows the overall costs and the optimal planning parameters for MRP and RPS method for α=0.05 

for three different utilization values (i.e., low, medium, and high). The Δ sign indicates the delta of costs in 

percentage calculating ∆= 100 ∗ (𝑐𝑜𝑠𝑡𝑅𝑃𝑆 − 𝑐𝑜𝑠𝑡𝑀𝑅𝑃)/𝑐𝑜𝑠𝑡𝑀𝑅𝑃 . The study shows that for low forecast

uncertainty and a low utilization level, RPS performs better than the MRP method. In most other scenarios 

MRP outperforms RPS (see Table 3 in Section 4.4). The summarizing Table 2 shows that in situations with 

high-capacity buffer (i.e., low utilization level) and low demand variations, RPS is more efficient than 

MRP. In this situation MRP cannot benefit from using the demand forecast information, especially as it is 

biased and too low values are forecasted, i.e., a higher backorder risk occurs. 

Figure 3: Overall costs for: underbooking a) =0.05, b) =0.1, and overbooking c) =0.05, d) =0.1. 

The lot size for RPS is quite stable for the RPS system whereas the reorder point increases with respect 

to the planned utilization level. Analyzing the parameter optimization results, we see that the optimal lead 

time for MRP is almost constant for all scenarios. Note that this finding is limited by the very streamlined 

production system with one BOM-level. For MRP the results show that in 11 out of 18 scenarios FOP is 

superior to FOQ. In general, the investigation shows that for low and medium utilization levels in the 

underbooking scenario with low forecast uncertainty RPS is superior compared to MRP. For high utilization 

values results do not confirm this finding. 

4.4 Overall Cost Comparison 

To discuss the sensitivity of the results, Table 3 presents the overall costs of MRP and RPS with respect to 

different levels of the forecast uncertainty α, different levels of forecast bias β, and three different utilization 

c)

b)a)

d)
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levels. The Δ sign represents as defined in Section 4.3 the cost delta in % comparing MRP and RPS costs. 

The first two columns (MRP/RPS/Δ) stand for the underbooking scenario (𝛽 > 0) whereas the third and 

fourth column show the results of the overbooking (𝛽 < 0) scenario. 

The results show that for most investigated scenarios RPS is only superior in the underbooking 

scenarios (𝛽 > 0), when forecast uncertainty α is low and utilization levels are low or moderate. This is 

also in line with the findings discussed in Section 4.3. In all other situations, MRP and the use of forecast 

information leads to better overall costs than using RPS as planning method. For these scenarios, the 

integration of forecast information leads to a superior setting compared to the RPS system where production 

orders are issued based on the historical order amounts and the predefined static reorder point. When 

comparing the results of column one and three (low ) with column two and four (high ), results show 

that higher forecast uncertainty leads to higher costs and, specifically for low and medium utilization, to a 

higher cost reduction potential when MRP is applied. A managerial insight is that even uncertain and biased 

forecasts can often to be exploited by MRP, specifically on high uncertainty of final order amounts. 

Table 2: Optimal costs and optimal planning parameters for underbooking and 𝛼=0.05 

RPS MRP 
Cost Δ % 

RPS/MRP 

low util costs RP LS costs best method LS/FOP PLT SS 


 

0 3034 2000 800 3451 FOQ 800 2 0 -12.1 

0.01 2953 2000 800 3575 FOQ 800 2 0 -17.4 

0.02 2878 2000 800 3664 FOP 2 2 100 -21.5 

0.03 2887 2000 800 3463 FOQ 800 2 0 -16.6 

0.04 2863 2000 800 3402 FOQ 800 2 100 -15.8 

0.05 2842 2000 800 3059 FOQ 800 2 0 -7.1 

RPS MRP 
Cost Δ % 

RPS/MRP 

med util costs RP LS costs best method LS/FOP PLT SS 


 

0 3512 2400 800 3526 FOQ 800 2 0 -0.4 

0.01 3393 2000 800 3541 FOP 2 2 100 -4.2 

0.02 3201 2000 800 3623 FOP 2 2 100 -11.6 

0.03 3200 2000 800 3589 FOQ 800 2 100 -10.8 

0.04 3130 2000 800 3469 FOQ 800 2 200 -9.8 

0.05 3065 2000 800 3079 FOQ 800 2 100 -0.5 

RPS MRP 
Cost Δ % 

RPS/MRP 

high util costs RP LS costs best method LS/FOP PLT SS 


 

0 3885 2400 1200 3522 FOP 2 2 100 10.3 

0.01 3824 2400 800 3514 FOP 2 2 100 8.8 

0.02 3647 2400 800 3580 FOP 2 2 100 1.9 

0.03 3530 2400 800 3618 FOQ 1200 2 0 -2.4 

0.04 3482 2400 800 3606 FOQ 1200 2 100 -3.4 

0.05 3447 2400 800 3203 FOQ 800 2 100 7.6 

5 CONCLUSION 

This article describes a performance comparison of standard MRP and RPS planning methods by the means 

of simulation. A simulation model to study a multi-item single stage production system is developed and 

the differences in the performance of MRP and RPS are measured analyzing overall costs which are the 

sum of inventory and tardiness costs. For different levels of the forecast uncertainty, different levels of 

systematic forecast bias (i.e., overbooking and underbooking), and three different utilization levels, the 

optimal planning parameters for MRP and RPS are identified by a simulation study. A full factorial 

experiment design is used to find the superior planning parameter setting and discuss the optimal overall 

costs. The study shows that for most scenarios MRP outperforms RPS, i.e., the integration of forecast 

information leads to a planning advantage even if it is biased. Only in the underbooking scenarios when 
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forecast uncertainty is low, RPS leads to better results than MRP. In these mentioned scenarios, the 

integration of uncertain and biased forecast information provides too less value for MRP, and the low 

uncertainty of final order amounts leads to advantages of the RPS method as in these situations low reorder 

points are sufficient. For the scenarios without forecast bias we see that the higher the forecast uncertainty, 

the higher are the overall costs and the higher the inventory level that is needed. For comparing overbooking 

and underbooking, the results confirm that in general overbooking is more beneficial for MRP and the 

implied higher risk of shortages in underbooking partially favors RPS. For overbooking, the cost advantages 

comparing MRP with RPS reach from 8 % to 30 %. For unbiased scenarios we find that RPS only performs 

better if the uncertainty of final order amounts is very low, in all other unbiased scenarios MRP outperforms 

RPS. Overall, the results show that there is no significant difference between the two tested MRP lot sizing 

policies FOP and FOQ for the scenarios without forecast bias. The parameter optimization results bring us 

to the finding that the best reorder point is always higher than the identified safety stock in MRP. Another 

interesting finding is that higher forecast uncertainty also leads to higher lot sizes. The higher lot sizes cause 

lower production system utilization and, therefore, increase flexibility for the demand uncertainty which 

has a positive effect on the production system performance. In further research activities, forecast evolution 

could be extended with shifting demand feature and for this also optimal parameter setting for MRP and 

RPS should be tested. The investigation of a forecast correction method in the scenario with biased forecast 

information and its costs performance for more complex production systems also need further investigation. 

Table 3: Comprehensive overall cost comparison. 

low util =0.05  =0.1 low util  =0.05  =0.1 

MRP RPS Δ % MRP RPS Δ MRP RPS Δ MRP RPS Δ 

 0 3451 3034 -12.1 3765 4082 8.4  0 3451 3034 -12.1 3765 4082 8.4 

0.01 3575 2953 -17.4 3719 3785 1.8 -0.01 2650 3100 17.0 3823 4453 16.5 

0.02 3664 2878 -21.5 3661 3652 -0.2 -0.02 2793 3259 16.7 3917 4739 21.0 

0.03 3463 2887 -16.6 3679 3600 -2.1 -0.03 2902 3516 21.1 4019 4972 23.7 

0.04 3402 2863 -15.8 3696 3532 -4.4 -0.04 3016 3674 21.8 4360 5653 29.7 

0.05 3059 2842 -7.1 3675 3378 -8.1 -0.05 3145 4033 28.2 5181 6692 29.2 

med util  =0.05  =0.1 med util  =0.05  =0.1 

MRP RPS Δ MRP RPS Δ MRP RPS Δ MRP RPS Δ 

 0 3526 3512 -0.4 3928 4665 18.8  0 3526 3512 -0.4 3928 4665 18.8 

0.01 3541 3393 -4.2 3804 4419 16.2 -0.01 3041 3576 17.6 4075 4897 20.2 

0.02 3623 3201 -11.6 3721 4273 14.8 -0.02 3068 3672 19.7 4370 5403 23.6 

0.03 3589 3200 -10.8 3721 4155 11.7 -0.03 3087 4083 32.2 4595 5703 24.1 

0.04 3469 3130 -9.8 3707 4084 10.2 -0.04 3203 4286 33.8 5288 6496 22.8 

0.05 3079 3065 -0.5 3677 3840 4.4 -0.05 3669 4636 26.3 7097 8145 14.8 

high util  =0.05  =0.1 high util  =0.05  =0.1 

MRP RPS Δ MRP RPS Δ MRP RPS Δ MRP RPS Δ 

 0 3522 3885 10.3 4463 5163 15.7  0 3522 3885 10.3 4463 5163 15.7 

0.01 3514 3824 8.8 4144 4695 13.3 -0.01 3552 3961 11.5 4760 5491 15.4 

0.02 3581 3647 1.9 3937 4553 15.6 -0.02 3621 4093 13.0 5344 6023 12.7 

0.03 3618 3530 -2.4 3859 4460 15.6 -0.03 3710 4309 16.1 5700 6337 11.2 

0.04 3606 3482 -3.4 3744 4325 15.5 -0.04 3887 4550 17.1 6683 7458 11.6 

0.05 3203 3447 7.6 3690 4189 13.5 -0.05 4277 5078 18.7 8509 9478 11.4 
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