Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

MULTI-AGENT PROXIMAL POLICY OPTIMIZATION FOR A DEADLOCK CAPABLE
TRANSPORT SYSTEM IN A SIMULATION-BASED LEARNING ENVIRONMENT

Marcel Miiller Lorena S. Reyes-Rubiano
Tobias Reggelin
Hartmut Zadek

Institute of Logistics and Material Handling Systems Data & Business Analytics
Otto von Guericke University Magdeburg RWTH Aachen University
Universititsplatz 2 Kackertstralie 7
Magdeburg, 39106, GERMANY Aachen, 52072, GERMANY
ABSTRACT

In this paper, we explore the potential of multi-agent reinforcement learning (MARL) for managing the
driving behavior of autonomous guided vehicles (AGVs) in production logistics environments with single-
lane tracks, where deadlocks pose a significant challenge. We build upon previous work and adopt a MARL
approach using the Proximal Policy Optimization (PPO) algorithm. We conduct a thorough hyperparameter
search and investigate the impact of varying numbers of agents on the performance of the AGVs. Our
results demonstrate the effectiveness of the MARL approach in addressing deadlocks and coordinating
AGYV behavior, as well as the scalability of the learned policy to different numbers of agents. The Bayesian
optimization process and increased iteration count contribute to improved performance and more stable
learning curves.

1 PROBLEM AND MOTIVATION

The increasing utilization of automated systems in production and logistics leads to greater complexity
in planning and controlling these systems. This complexity can make resource usage within the system
more opaque and dynamic, which, in turn, poses challenges in detecting circular dependencies in resource
demands during planning. Failure to detect these dependencies results in more frequent occurrences of
deadlocks in automated material flow systems, potentially causing the entire logistics system to halt through
chain reactions. Addressing these challenges is crucial for ensuring the resilience of logistics systems,
making it an essential topic in the context of resilient systems.

There are several types of deadlocks (Tanenbaum and Bos 2022). This paper focuses on resource
deadlocks, which occur when at least two processes wait for each other in a circular reference and cannot
proceed to the next step due to infeasible conditions (Coffman et al. 1971; Tanenbaum and Bos 2022).
Deadlocks can arise even when not all resources in a system are utilized (Coffman et al. 1971).

Simulation models can help in detecting deadlocks and developing appropriate resolution strategies.
Through numerous random experiments, even highly improbable scenarios can be discovered, which are not
readily apparent or analytically determinable in complex logistics systems (Miiller et al. 2019). Reservation
systems, one of the approaches to address deadlocks, require sufficient information about the current situation
in a logistics system to guarantee accurate scheduling of reservation slots (Lienert and Fottner 2017).

Centralized control mechanisms, such as problem-specific control rules and reservation systems, exhibit
poor scalability for larger systems. With problem-specific control rules, achieving comprehensive coverage
of all deadlock situations in large systems is challenging, as rare occurrences may not be detected in advance

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 1818

Miiller, Reyes-Rubiano, Reggelin, and Zadek

during planning. In contrast, reservation systems diverge further from reality in larger systems due to their
deterministic approach, as exceptional disturbance events become more likely.

The limitations of existing deadlock solutions in terms of scalability and adaptability to structural
changes motivate us to explore machine learning approaches. We hypothesize that trained agents, which
tackle decision problems relevant to deadlock emergence, can offer superior flexibility and scalability
(Miiller et al. 2022). This approach could potentially render the categorization of strategy approaches for
deadlock handling (prevention, avoidance, and detection and resolution) obsolete. In light of this, we pose
several research questions:

e Can a multi-agent Proximal Policy Optimization (PPO) approach effectively manage deadlocks in
a simulated logistics environment?

* How do varying hyperparameters impact the performance of the PPO algorithm in this context?

* Can the proposed approach offer scalability with varying numbers of agents?

To address these challenges, we propose a multi-agent PPO approach within a simulation-based learning
environment. By leveraging the potential of machine learning techniques and simulation environments, this
work aims to develop resilient logistics systems capable of effectively handling deadlocks, thus enhancing
the overall efficiency and adaptability of modern logistics operations.

2 LITERATURE
2.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that focuses on training agents to make
decisions by interacting with an environment to maximize cumulative rewards. Over the past few years,
RL has gained considerable attention due to its success in solving complex decision-making problems in
various domains, such as robotics, finance, and healthcare (Kober et al. 2013; Charpentier et al. 2021; Yu
et al. 2021). In RL, an agent learns a policy that maps states to actions by optimizing a reward function
through trial and error. The basic building block of RL is the Markov Decision Process (MDP), which is
a mathematical framework that represents an agent’s decision-making process in a stochastic environment
(Sutton and Barto 2018).

One significant breakthrough in RL has been the integration of deep learning techniques with RL
algorithms, known as deep reinforcement learning (DRL). DRL has shown remarkable performance in
complex tasks, such as learning to play games like Go, Atari, and Poker at a superhuman level (Mnih et al.
2013; Silver et al. 2016; Brown et al. 2020).

Proximal Policy Optimization (PPO) is a prominent DRL algorithm that has gained popularity for its
stability, sample efficiency, and capability to learn complex policies (Schulman et al. 2017). PPO addresses
the problem of large policy updates in policy gradient methods by incorporating a clipping mechanism within
the objective function. Traditional policy gradient methods can sometimes suffer from large policy updates,
which can lead to unstable learning and reduced performance. PPO mitigates this issue by introducing a
clipped objective function that penalizes excessively large policy updates. As a result, the learning process
becomes more stable and efficient, ensuring a more consistent improvement in the agent’s performance
throughout the training process. This clipping mechanism helps strike a balance between exploration and
exploitation, allowing the agent to learn an effective policy without experiencing drastic fluctuations in its
behavior.

Single-agent reinforcement learning approaches may not be sufficient when applied to problems that
involve multiple interacting agents (Miiller et al. 2022). In such scenarios, agents need to learn not only
to optimize their individual policies but also to coordinate effectively with other agents in the system.
This necessity motivates the exploration of multi-agent reinforcement learning (MARL) techniques, which
extends the principles of RL to the multi-agent setting.

1819

Miiller, Reyes-Rubiano, Reggelin, and Zadek

2.2 Multi-Agent Systems

Multi-agent systems (MAS) are a research area that focuses on understanding and designing systems
where multiple autonomous agents interact with one another to achieve specific goals (Ferber and Weiss
1999). MAS have attracted significant interest due to their potential for improving efficiency, flexibility,
and adaptability in a wide range of applications, including logistics, transportation, and manufacturing
(Burmeister et al. 1997; Balaji and Srinivasan 2010; Lee and Kim 2008). In the context of logistics,
multi-agent systems can involve various types of agents, such as Automated Guided Vehicles (AGVs),
drones, or even human workers, that collaborate to achieve efficient material flow and transportation within
a facility.

One example of a multi-agent logistics system is a setting where multiple AGVs operate concurrently
to transport goods between different locations within a facility, such as production sites, warehouses, and
distribution centers. The effective management of such systems requires real-time coordination among
AGVs, deadlock handling, and collision avoidance (Yan et al. 2017). This paper focuses on the challenges
and optimization of multi-agent logistics systems involving AGVs, but the principles and techniques
discussed can also be extended to other types of agents in logistics applications.

There has been a growing interest in applying RL to multi-agent systems, leading to the development
of various multi-agent RL. (MARL) algorithms (Busoniu et al. 2008; Zhang et al. 2021) and frameworks
(Liang et al. 2017; Samvelyan et al. 2019; Papoudakis et al. 2021; Terry et al. 2021). There are several
dimensions to how MARL algorithms can be categorized. A distinction is often made according to the
centralization of the learning process and the level of communication and coordination between the agents
(Papoudakis et al. 2021):

* Independent Learning: In independent learning, each agent learns its own policy without any
explicit communication or coordination with other agents. The agents may still observe other
agents’ actions and incorporate them into their decision-making process. Examples of independent
learning algorithms are Independent Q-Learning (IQL) (Tan 1993) and Independent Proximal Policy
Optimization (IPPO).

* Centralized Learning: In centralized learning, agents share a common policy or value function, and
learning is performed in a centralized manner. Centralized learning can potentially lead to better
coordination among agents but may suffer from scalability issues as the number of agents increases.
Examples of centralized learning algorithms include QMIX (Rashid et al. 2020), Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) (Lowe et al. 2017), and Multi-Agent PPO (MAPPO)
(Yu et al. 2022).

2.3 Deadlock Handling with Machine Learning

Deadlocks are situations in which multiple agents are stuck in a cycle of waiting for one another to
release a resource, leading to a halt in system operation (Coffman et al. 1971). In multi-agent logistics
systems, deadlocks can occur due to resource contention among AGVs, making deadlock handling a crucial
challenge (Fanti 2002). Traditional deadlock prevention and resolution techniques involve the use of
scheduling algorithms, Petri nets, or supervisory control (Ezpeleta et al. 1995; Roszkowska 2004; Lienert
and Fottner 2017). These methods often require extensive domain knowledge and can be computationally
expensive in large-scale systems.

While traditional deadlock prevention and resolution techniques have been extensively studied, the
investigation of deadlocks in the context of machine learning remains limited (Bouderba and Moussa 2019;
Bouton et al. 2019; Kujirai and Yokota 2019; Reijnen et al. 2020). A comprehensive examination of how
deadlocks affect the learning behavior of machine learning algorithms and the extent to which Al agents can
learn to handle deadlocks has yet to be fully explored. Notably, Sgrensen et al. (2020) have touched upon
this topic by implementing a reinforcement learning approach with a dueling deep Q-Network architecture
for an airport baggage system, augmented with a deadlock avoidance algorithm. Their Al agent succeeded

1820

Miiller, Reyes-Rubiano, Reggelin, and Zadek

in reducing the number of deadlocks but did not completely eliminate them. As the volume of baggage
increased, deadlocks occurred more frequently, causing episodes to restart in the learning environment.
This highlights the need for further research into how machine learning algorithms can effectively handle
deadlocks in multi-agent logistics systems.

3 METHODOLOGY
3.1 Conceptual Model

The objective of this research is to design and train a neural network capable of effectively managing
the driving behavior of AGVs in a production logistics environment, where single lane tracks present
challenges for the AGVs such as deadlocks. In this paper, we build upon our previous preliminary work
(Miiller et al. 2022), where we investigated the challenges faced by neural networks in addressing deadlock
situations. The present study extends this work by adopting a multi-agent reinforcement learning approach.
We have chosen MARL for several reasons: its ability to capture the complex interactions among multiple
autonomous agents, its potential to learn efficient and coordinated policies, and its suitability for adapting
to dynamic environments. We have modified the learning environment to be more conducive to deadlocks
and intricate driving maneuvers. By incorporating such challenges, we aim to demonstrate the effectiveness
of the MARL approach in addressing deadlock situations and efficiently coordinating AGV behavior in
complex logistics systems. The considered learning environment features a dead end in the system leading
to the sink, necessitating either AGVs to wait until the dead end is unoccupied or to reverse to provide space
for other AGVs to leave the dead end. Figure 1 shows the conceptual model of the considered logistics
system with typical possible deadlock situations in the system.

input output
buffer station A buffer
O
source A buffer :
deadlock across
@—k—-{ < — : — intersection
track 4 LR
track 3 track 1 deadlockin a
dead end
source B buffer track 2 " sink
ORSISSE== == O

input station B output
buffer buffer

Figure 1: Conceptual model of the considered logistic system with single lane tracks.

1821

Miiller, Reyes-Rubiano, Reggelin, and Zadek

The logistics system in question comprises two sources, source A and source B, which produce
product types A and B, respectively. Two processing units are available, with each dedicated to a specific
product type. The products from both processing units share a common sink. The system components are
interconnected through single lane bidirectional tracks, with buffers positioned after the sources, and before
and after the processing units. The agents within this model are the AGVs, with the number of agents
ranging from one to four. The forward direction of the AGVs is shown by the arrows on the tracks in
Figure 1. A turning maneuver is not possible, but the AGVs can drive backwards at any time. The sources
generate products intended for the respective processing units. AGVs must traverse the single lane tracks
while avoiding collisions and deadlocks. The routing algorithm employed in this context gives priority to
output buffers of processing units over input buffers of sources. The multi-agent PPO algorithm applied
to this model, incorporating the following state/observation space, action space, and reward function:

Table 1: Summary of observation space, action space, and reward function.

Observation space
General | ID of the considered AGV/agent
status of stations A and B
number of items in buffers of sources A and B
For each agent i | x and y positions of agent i
current speed of agent i
target destination of agent i
emptiness status of agent i
remaining route length to target destination of agent i
Action space
0 (hold), 1 (forwards), 2 (backwards)
Reward function
Delivering product | +1 for delivering a finished product to the sink
Picking up item | +0.1 for picking up an item from the source
Placing in unit | +0.1 for placing it in the correct processing unit
Stations not working | —0.01 for every agent per second/timestep
for every station not working
Collision | —1 for each collision (for the oncoming AGV)

Driving behavior

The reward function used for the multi-agent PPO algorithm is constructed to incentivize the behavior
that promotes smooth operation of the logistics system and discourages situations that hinder the system’s
effectiveness. The reward function operates on the principle of reinforcement learning, where the agents
(AGVs) learn by interacting with their environment and receiving feedback in the form of rewards or
penalties. When an AGV successfully delivers a finished product to the sink, it receives a reward of +1.
This motivates the AGVs to complete their primary task of transporting the finished products from the
processing units to the sink. An additional reward of +0.1 is awarded when an AGV picks up an item
from the source and another 4-0.1 when it places the item in the correct processing unit. These rewards are
designed to encourage efficient pick-up and correct placement of items, which are critical steps towards
successful delivery to the sink. To ensure the continuity of the system operation, penalties are introduced
for undesirable circumstances. If a station is not working, a penalty of —0.01 is assigned to each agent for
every second/timestep. This negative reinforcement acts as a deterrent for the AGVs, prompting them to
act in ways that prevent the stations from halting, such as avoiding collisions or deadlocks which might
result in system disruption. Finally, a strong penalty of —1 is assigned for each collision (for the oncoming
AGYV). This high negative reward acts as a powerful disincentive for actions leading to collisions, thereby
promoting safe and careful navigation of the AGVs on the single-lane tracks. Through this balance of

1822

Miiller, Reyes-Rubiano, Reggelin, and Zadek

rewards and penalties, the multi-agent PPO algorithm guides the AGVs to learn optimal behavior that
maximizes the throughput of the logistics system while avoiding disruptions. The values of the rewards
and penalties are set to reflect the relative importance of each action or situation to the overall goal of
efficient and smooth operation of the logistics system.

3.2 Technical Implementation

The simulation model was implemented with Tecnomatix Plant Simulation version 2201. Figure 2 shows a
screenshot of the simulation model during the simulation of two agents. Each agent is randomly generated
at the start of the simulation to a random position of the track with the same ID as the agent, that means
for example agent 2 is always generated on track 2.

Plant Simulation leverages its integrated programming language, SimTalk 2.0, to facilitate the imple-
mentation of functions directly within the simulation model. The core function in our simulation model,
"StepPython," is invoked by an external Python script through a Component Object Model (COM) interface.
Upon starting the simulation, "StepPython" executes the "SimulationStop" function after one second of
simulation time. The status of the simulation, specifically the event controller, is monitored by the Python
script, which resumes execution when the simulation is halted. This process corresponds to a single time
step in our reinforcement learning loop, enabling a seamless integration of the learning algorithm with the

simulation environment.
4

eventcontroller INT " StepPython SimulationStop 7 get_destination

CmimE——— @ —aEE o
| S— | —

get_length_route

input buffer A station A output buffer A

: M-b Qo< - L
-E—— WegQuellel] Wegd - - - - track4
‘source‘A buffer o

‘)'WégSt.atioﬁA '

trackd3 ~ track 1
| -
P e — o >— =
 B— Wego WegStationB
(®E—— WegQuelle2 -~ - - - - - - . - - - - - Weg2h@wegsenke - - - - - - - B
source B puffer . . sk
P T +_ B 5T+ Tl
| S | e | S|
input buffer B station B output buffer B

Figure 2: Simulation model during the simulation of two agents.

The technical implementation of the Python script, which sets up the agents and translates the simulation
model into a readable learning environment for the agents, consisted of using Ray 3.0.0 with RLIib to manage
our multi-agent reinforcement learning experiments, a custom environment adhering to the Gymnasium

1823

Miiller, Reyes-Rubiano, Reggelin, and Zadek

standards (previously OpenAl Gym) to describe our simulation model, and Weights & Biases to track
experiment statistics. The custom environment was designed to interface with the Plant Simulation model
through SimTalk 2.0 functions, and it implements the Gymnasium interface methods, such as reset and
step. The reset method initializes the simulation by resetting the step counter, the simulation model, and the
random seed for the simulation. The step method executes actions for each agent, updates the simulation,
retrieves new observations, and calculates rewards for all agents. We used the Proximal Policy Optimization
(PPO) algorithm with the same policy for every agent. This also means that the agents have learned the
same policy at the same time. The PPO algorithm was tuned using Ray’s Tune library, with a custom
configuration, stopping criteria, and callbacks for Weights & Biases integration. The tuning process included
hyperparameter search and evaluation. The custom environment’s observation space was constructed by
collecting various simulation data, such as the states of different stations, buffer levels, vehicle positions,
speeds, destinations, and route lengths. No specific preprocessing or feature engineering was applied to
the observations or rewards before using them in the learning algorithm. The training procedure varied
across different experiments, with 250 to 1,000 iterations and 1,000 time steps per episode. However, Ray
divided the episodes into smaller ones, approximately 500 time steps per episode.

3.3 Hyperparameter Search

In our experiment, we implemented an artificial neural network (ANN) using a fully connected feedforward
architecture to model the agent’s policy in a multi-agent environment with one to four agents operating
concurrently. The ANN comprised two hidden layers, each consisting of 256 neurons, with the hyperbolic
tangent (tanh) activation function employed in the hidden layers. The experiment was configured to use the
Stochastic Sampling exploration strategy and the training process utilized two worker nodes, each with one
central processing unit (CPU). Evaluation of the agent’s performance was carried out using a separate set of
episodes in parallel with the training process. Continuing from the implementation of the artificial neural
network and the training process, we further conducted a thorough search for the optimal hyperparameters
of the PPO algorithm. The primary goal was to maximize the performance of the agent in the multi-agent
environment with concurrent operation of one to four agents. We employed a Bayesian optimization for
exploring the hyperparameter space. Inspired by the article from AurelianTactics (2018), we selected a
broad range of hyperparameters for the PPO algorithm, covering various aspects such as learning rate,
clipping parameter, and regularization terms. From our point of view, this was the best starting point, since
we did not yet know anything about the learning behavior of the PPO in this environment. The number
of agents for the hyperparameter search was set at two so that collisions and deadlocks could still occur,
but compared to three or four agents, there was still more freedom of movement and avoidance. Table 2
presents the search space for each hyperparameter in both Bayesian optimization runs, as well as the initial
point for the second run and the parameters of the BayesOptSearch algorithm. The initial point for the
second run was determined by choosing the run with the highest mean reward over 100 episodes. The table
aims to provide a comprehensive overview of the hyperparameter exploration process and highlights the
differences in the search strategy between the two runs. By performing these optimization runs, we aimed
to identify a set of hyperparameters that would enable the PPO algorithm to initiate learning effectively
within the learning environment.

4 RESULTS

During the first Bayesian optimization run, a satisfactory solution was identified within the random sampling
phase. The subsequent 175 samples, generated through Bayesian optimization, yielded no substantial
improvements. As a result, our focus shifted to the outcomes of the second run, which was more finely
tuned. In this run, an iteration stopper was set at 500, and a trial plateau stopper was employed for samples
exhibiting an episode mean reward with a standard deviation below 0.2 over a span of 100 iterations to
prematurely terminate unpromising runs.

1824

Miiller, Reyes-Rubiano, Reggelin, and Zadek

Table 2: Hyperparameters for Bayesian optimization runs.

Hyperparameter Run 1 Run 2 Init. point for run 2
number of samples 225 43 -
random search samples 50 0 -
minibatch size 512 512 -
epoch range 20 20 -
clipping range [0.1, 0.3] [0.1, 0.3] 0.1749
learning rate [5e-6, 0.003] | [5e-6, 0.001] 0.000179
KL initialization range [0.3, 1] [0.3, 1] 0.7191
KL target range [0.003, 0.03] | [0.003, 0.03] 0.007212
discount factor y [0.8, 0.9997] | [0.8, 0.9997] 0.9462
GAE parameter A [0.9, 1] [0.9, 1] 0.9156
value function coefficient [0.5, 1] [0.5, 1] 0.9331
entropy coefficient [0, 0.01] [0.001, 0.01] 0.009507
BayesOptSearch Parameters
kind UCB UCB -
K 2.5 0.5 -
& 0.0 0.0 -

Figure 3 illustrates the distribution of hyperparameters in the second Bayesian optimization run. The
optimal sample yielded a mean reward of -16.918, whereas the least favorable sample resulted in a mean
reward of -26.7. A considerable number of samples continue to exhibit inaction throughout the episode to
circumvent collisions, consequently incurring penalties for non-operational stations. This behavior results
in mean reward values around -20 for the two-agent scenario. Our findings indicate that employing a smaller
learning rate and a reduced lambda value yielded improved outcomes. The clipping and Kullback-Leibler
(KL) initialization range emerged as significant hyperparameters, and a gamma value around 0.95 proved
advantageous.

In Figure 4, the mean reward of Bayesian optimization run 2 is depicted, with colors representing
the maximum reward achieved. As the second run progresses, we observe that even slight variations in
parameters enable surpassing the best solution obtained from run 1.

Although no substantial leaps in mean reward improvement are evident, the rolling average displays an
upward trend, signifying enhanced performance. This observation suggests that the Bayesian optimization
demonstrates a marked improvement during the second run compared to the first. Following the completion
of the two Bayesian optimization runs, we aimed to investigate if superior solutions could be achieved
with a higher iteration count of 2,500 instead of 500, and whether the identified hyperparameters were
applicable to varying numbers of agents. To address these questions, we conducted a series of experiments
using the optimal hyperparameter configuration from the second Bayesian optimization run. We varied the
number of agents from one to four, and for each configuration, we generated three samples to examine
the variance of the learning curves associated with the same configuration. Figure 5 presents the outcomes
of the aforementioned experiments. As the number of agents increases, a decline in the mean reward is
observed, primarily attributable to the negative reward each agent incurs for no stations with working status.
The standard deviation growths alongside the increasing agent count. An anomaly is observed when only
one agent is present, as the most substantial variance in mean reward transpires in this scenario. We attribute
this to the heightened difficulty in exploration for a single agent, making it more challenging to discover the
beneficial behavior to transport goods from the source to the stations. It also becomes clear how quickly
the agents learn to avoid collisions, while it is more difficult to generate throughput consistently.

As no collisions occur with a single agent, it is also not difficult for the agent to escape the behavior of
remaining stationary to avoid collisions. The steepest learning curve for more than one agent is observed

1825

Miiller, Reyes-Rubiano, Reggelin, and Zadek

clipping range learning rate KL init range gamma lambda mean reward

0.30

Figure 3: Hyperparameter ranges and impact on the mean reward for Bayesian optimization run 2.

in the case of two agents. With three agents, a learning effect is still discernible. When four agents are
present, the mean reward remains relatively constant, even though rewards of up to -26 have been achieved
in some episodes. These rewards, due to the high risk of collision, have not been consistently attainable
thus far.

S CONCLUSION AND OUTLOOK

This paper addresses the posed research questions demonstrating the potential of multi-agent reinforcement
learning using Proximal Policy Optimization in managing deadlock situations and efficiently coordinating
AGYV behavior in complex logistics systems. The response to our first research question has been positive
as the MARL approach, through a rigorous hyperparameter search, succeeded in developing an AGV
policy adept at navigating single-lane tracks while avoiding collisions and deadlocks. Regarding the impact
of varying hyperparameters, our second research question, our results reveal that even slight variations
can lead to substantial improvements in the AGVs’ performance. This underlines the significance of
the hyperparameter optimization process, which allowed us to identify a set of hyperparameters that
were applicable to varying numbers of agents. Our third research question investigated the scalability of
our approach. The experiments conducted with varying numbers of agents demonstrated that the same
policy could be effectively applied to different numbers of AGVs, exhibiting the scalability of the proposed
approach. While our findings present a promising outlook for the application of MARL in AGV coordination
within production logistics environments, further research is required to investigate the robustness of the
learned policies in diverse and more complex scenarios. An extension of the hyperparameter search and an
adjustment of the network structures could bring even better results. Future work could involve exploring
additional reward functions and investigating the impact of different learning algorithms on the performance
of the AGVs. The integration of more advanced techniques such as communication protocols between

1826

Miiller, Reyes-Rubiano, Reggelin, and Zadek

episode reward max

-16.5 -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0

c - []
18 l s
EI .
©) Y ® 0o o { (] - (Y &} .~ ®
20 @ % ® e o
®X ° 0 *% ® ™ e
o °® []
2 ¢
32
Q.
24 ©
-26 ° Created
Q0 20 AP 0 N 5D o
> S O Y Y S S
A) 0 7 1 0 1) 1 L o 2’ o 1
> > > > > > >
N\ o Y 1\ Y 1Y R

Figure 4: Scatter plot of mean episode reward and maximum reward of the samples of Bayesian optimization
run 2.

= env_config.num_agents: 4 env_config.num_agents: 3
= env_config.num_agents: 2 = env_config.num_agents: 1

10 W

-20

-30

timesteps_total

2M 4M 6M 8M
Figure 5: Learning curves during training process grouped by number of agents.

agents or employing a centralized critic in a decentralized setup could be investigated to further enhance
AGYV coordination and deadlock resolution in production logistics environments.

REFERENCES

AurelianTactics 2018. “PPO Hyperparameters and Ranges”. https://medium.com/aureliantactics/
ppo-hyperparameters-and-ranges-6fc2d29bccbe, accessed 21.04.2023.

Balaji, P,, and D. Srinivasan. 2010. “Multi-Agent System in Urban Traffic Signal Control”. IEEE Computational Intelligence
Magazine 5(4):43-51.

Bouderba, S. 1., and N. Moussa. 2019. “Reinforcement Learning (Q-LEARNING) Traffic Light Controller within Intersection
Traffic System”. In Proceedings of the 4th International Conference on Big Data and Internet of Things, edited by

1827

https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe
https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-6fc2d29bccbe

Miiller, Reyes-Rubiano, Reggelin, and Zadek

M. Lazaar, C. Duvallet, M. Al Achhab, O. Mahboub, and H. Silkan, 1-6. New York City, New York: Association for
Computing Machinery.

Bouton, M., A. Nakhaei, K. Fujimura, and M. J. Kochenderfer. 2019. “Cooperation-Aware Reinforcement Learning for Merging
in Dense Traffic”. In Proceedings of the 2019 IEEFE Intelligent Transportation Systems Conference, 3441-3447. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Brown, N., A. Bakhtin, A. Lerer, and Q. Gong. 2020. “Combining Deep Reinforcement Learning and Search for Imperfect-
Information Games”. Advances in Neural Information Processing Systems 33:17057-17069.

Burmeister, B., A. Haddadi, and G. Matylis. 1997. “Application of Multi-Agent Systems in Traffic and Transportation”. /IEE
Proceedings-Software 144(1):51-60.

Busoniu, L., R. Babuska, and B. De Schutter. 2008. “A Comprehensive Survey of Multiagent Reinforcement Learning”. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(2):156-172.

Charpentier, A., R. Elie, and C. Remlinger. 2021. “Reinforcement Learning in Economics and Finance”. Computational
Economics 62:425-462.

Coffman, E. G., M. Elphick, and A. Shoshani. 1971. “System Deadlocks”. ACM Computing Surveys 3(2):67-78.

Ezpeleta, J., J. M. Colom, and J. Martinez. 1995. “A Petri Net Based Deadlock Prevention Policy for Flexible Manufacturing
Systems”. IEEE Transactions on Robotics and Automation 11(2):173-184.

Fanti, M. P. 2002. “Event-based Controller to Avoid Deadlock and Collisions in Zone-Control AGVS”. International Journal
of Production Research 40(6):1453-1478.

Ferber, J., and G. Weiss. 1999. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Volume 1. Boston,
Massachusetts: Addison-Wesley.

Kober, J., J. A. Bagnell, and J. Peters. 2013. “Reinforcement Learning in Robotics: A Survey”. The International Journal of
Robotics Research 32(11):1238-1274.

Kujirai, T., and T. Yokota. 2019. “Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction”. In
Proceedings of the 16th Pacific Rim International Conference on Artificial Intelligence, edited by A. C. Nayak and A. Sharma,
Volume 11670 of Lecture Notes in Computer Science, 746—759. Cham, Switzerland: Springer Nature Switzerland AG.

Lee, J.-H., and C.-O. Kim. 2008. “Multi-Agent Systems Applications in Manufacturing Systems and Supply Chain Management:
A Review Paper”. International Journal of Production Research 46(1):233-265.

Liang, E., R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and I. Stoica. 2017. “Ray rllib: A Composable
and Scalable Reinforcement Learning Library”. arXiv preprint arXiv:1712.09381 85.

Lienert, T., and J. Fottner. 2017. “No More Deadlocks — Applying the Time Window Routing Method to Shuttle Systems”. In
Proceedings of the 31st European Conference on Modelling and Simulation, edited by Z. Z. Paprika, P. Hordk, K. Vdradi,
P. T. Zwierczyk, A. Vidovics-Dancs, and J. P. Radics, 169-175. Budapest, Hungary: European Council for Modelling and
Simulation.

Lowe, R., Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch. 2017. “Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments”. Advances in Neural Information Processing Systems 30.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. 2013. “Playing Atari with
Deep Reinforcement Learning”. arXiv preprint arXiv:1312.5602.

Miiller, M., T. Reggelin, I. Kutsenko, H. Zadek, and L. S. Reyes-Rubiano. 2022. “Towards Deadlock Handling with Machine
Learning in a Simulation-Based Learning Environment”. In Proceedings of the 2022 Winter Simulation Conference, edited
by B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C. G. Corlu, L. H. Lee, E. P. Chew, T. Roeder, and P. Lendermann,
1485-1496. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Miiller, M., S. Schmidt, and T. Reggelin. 2019. “Deadlock and Collision Handling for Automated Rail-Based Storage and
Retrieval Units”. In Proceedings of the 2019 Winter Simulation Conference, edited by N. Mustafee, K.-H. G. Bae,
S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, 1591-1601. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Papoudakis, G., F. Christianos, L. Schifer, and S. V. Albrecht. 2021. “Benchmarking Multi-Agent Deep Reinforcement Learning
Algorithms in Cooperative Tasks”. In Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, edited by J. Vanschoren and S. Yeung, Volume 1. Virtual: Curran.

Rashid, T., M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. 2020. “Monotonic Value Function Factorisation
for Deep Multi-Agent Reinforcement Learning”. The Journal of Machine Learning Research 21(1):7234-7284.

Reijnen, R., Y. Zhang, W. Nuijten, C. Senaras, and M. Goldak-Altgassen. 2020. “Combining Deep Reinforcement Learning
with Search Heuristics for Solving Multi-Agent Path Finding in Segment-based Layouts”. In Proceedings of the 2020
IEEE Symposium Series on Computational Intelligence, 2647-2654. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Roszkowska, E. 2004. “Supervisory Control for Deadlock Avoidance in Compound Processes”. IEEE Transactions on Systems,
Man, and Cybernetics-part A: Systems and Humans 34(1):52-64.

1828

Miiller, Reyes-Rubiano, Reggelin, and Zadek

Samvelyan, M., T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster,
and S. Whiteson. 2019. “The StarCraft Multi-Agent Challenge”. CoRR abs/1902.04043.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. “Proximal Policy Optimization Algorithms”. arXiv
preprint arXiv:1707.06347.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 1. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search”.
Nature 529(7587):484-489.

Sgrensen, R. A., M. Nielsen, and H. Karstoft. 2020. “Routing in Congested Baggage Handling Systems Using Deep Reinforcement
Learning”. Integrated Computer-Aided Engineering 27(2):139-152.

Sutton, R. S., and A. G. Barto. 2018. Reinforcement Learning: An Introduction. Cambridge, Massachusetts: MIT press.

Tan, M. 1993. “Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents”. In Proceedings of the Tenth
International Conference on Machine Learning, 330-337. San Francisco, CA: Morgan Kaufmann Publishers.

Tanenbaum, A. S., and H. Bos. 2022. Modern Operating Systems. 5" ed. Hoboken, New Jersey: Pearson Education, Inc.

Terry, J., B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos, C. Dieffendahl, C. Horsch, R. Perez-Vicente
et al. 2021. “Pettingzoo: Gym for Multi-Agent Reinforcement Learning”. Advances in Neural Information Processing
Systems 34:15032-15043.

Yan, X., C. Zhang, and M. Qi. 2017. “Multi-AGVs Collision-Avoidance and Deadlock-Control for Item-to-Human Automated
Warehouse”. In Proceedings of the 2017 International Conference on Industrial Engineering, Management Science and
Application. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Yu, C., J. Liu, S. Nemati, and G. Yin. 2021. “Reinforcement Learning in Healthcare: A Survey”. ACM Computing Surveys
(CSUR) 55(1):1-36.

Yu, C., A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. 2022. “The Surprising Effectiveness of PPO in Cooperative
Multi-Agent Games”. Advances in Neural Information Processing Systems 35:24611-24624.

Zhang, K., Z. Yang, and T. Basar. 2021. “Multi-Agent Reinforcement Learning: A Selective Overview of Theories and
Algorithms”. Handbook of Reinforcement Learning and Control:321-384.

AUTHOR BIOGRAPHIES

MARCEL MULLER is a research fellow at the Otto von Guericke University Magdeburg. He earned his master degree in
Industrial Engineering for Logistics at the Otto von Guericke University Magdeburg. His research interests include modeling
and simulation of logistics systems, multi agent reinforcement learning and handling of deadlocks. His email address is
marcell.mueller@ovgu.de. His website is https://www.ilm.ovgu.de/mueller.

LORENA S. REYES-RUBIANO is a full-time lecturer at the Universidad de La Sabana, Chia-Colombia. She works also as
a researcher at the RWTH Aachen University, Aachen, Germany. She has a Ph.D. degree in mathematics and statistics from
the Public University of Navarre (2019). Her research interests are urban logistics, humanitarian logistics, and multi-objective
algorithms. Her email address is lorena.reyes1 @unisabana.edu.co.

TOBIAS REGGELIN is a project manager, researcher and lecturer at the Otto von Guericke University Magdeburg and the
Fraunhofer Institute for Factory Operation and Automation IFF Magdeburg. His main research and work interests include modeling
and simulation of production and logistics systems and developing and applying logistics management games. Tobias Reggelin
received a doctoral degree in engineering from the Otto von Guericke University Magdeburg. Furthermore, he holds a master’s
degree in Engineering Management from Rose-Hulman Institute of Technology in Terre Haute, IN and a diploma degree in In-
dustrial Engineering in Logistics from the Otto von Guericke University Magdeburg. His email address is tobias.reggelin@ovgu.de.

HARTMUT ZADEK received the call to Otto von Guericke University Magdeburg and has been head of the Chair of Logistics
in the Institute of Logistics and Material Flow Engineering in the Faculty of Mechanical Engineering since January 1, 2008.
He is also a lecturer at the University of Dortmund and a lecturer at the Hamburg School of Logistics. He is a member of
the Association of German Industrial Engineers and the German Logistics Association (BVL). He has headed the Sustainable
Production Logistics working group for BVL since June 2009. He is the editor of various specialist books, author of numerous
specialist publications, sought-after speaker at specialist conferences in Germany and abroad, moderator of specialist congresses
and seminars and leader of strategy workshops. In January 2010 he was appointed to the Saxony-Anhalt Logistics Advisory
Board by the Minister for Regional Development and Transport. His email address is zadek@ovgu.de.

1829

mailto://marcel1.mueller@ovgu.de
https://www.ilm.ovgu.de/mueller
mailto://lorena.reyes1@unisabana.edu.co
mailto://tobias.reggelin@ovgu.de
mailto://zadek@ovgu.de

	PROBLEM AND MOTIVATION
	LITERATURE
	Reinforcement Learning
	Multi-Agent Systems
	Deadlock Handling with Machine Learning

	METHODOLOGY
	Conceptual Model
	Technical Implementation
	Hyperparameter Search

	RESULTS
	CONCLUSION AND OUTLOOK

