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ABSTRACT 

An emerging paradigm in semiconductor manufacturing is the “autonomous fab.” Companies such as 
Seagate aim to make decision-making autonomous and aligned at all levels, from supply chain planning to 
tool scheduling, to cope with ever-increasing complexity and labor supply constraints. One identified gap 
is between committed deliveries in Enterprise Resource Planning (ERP) systems, and day-to-day execution, 
where daily production targets and wafer starts are often poorly aligned with shipment targets. Our novel 
production planning system creates optimized production targets to manage on-time delivery (OTD), line 
linearity, dynamic bottlenecks and starvation. It also provides proactive, quantified actions for improving 
fab KPIs. The system thus surpasses existing descriptive and predictive analytics solutions (answering 
“what happened?” and “what will happen?”), providing a prescriptive solution which “makes it happen.” 

1 EXISTING METHODS FOR PRODUCTION PLANNING 

To achieve OTD, many fabs set lot priority levels using their required average cycle times. This method 
does not consider the dynamic constraints that apply to each lot, such as recipe enablement or timelinks, 
nor fab conditions such as WIP levels, which together lead to inaccurate predictions. Further, the impact of 
priority changes on OTD, linearity and the cycle time of other lots is unclear, as is the ideal number of “hot 
lots”; if every lot is “hot,” then effectively none are. Beyond this, fabs may add heuristics such as putting 
lots with downstream bottlenecks on hold, and prioritizing WIP to pull it into starved toolsets. These rules 
also do not assess the impact on the overall line, and can therefore harm predictability and throughput. 
 Other methods include adjusting lot priorities via (1) line balance algorithms, often based on target 
cycle times (Leachman et al. 2002; Tsuchiyama and Smith 2022), and (2) discrete-event simulations (Scholl 
et al. 2016) which have limited ability to search large problem spaces. Recently, Machine Learning methods 
have improved the cycle time estimates that might be used in priority changes (Borodin et al. 2023). The 
above methods do not accurately consider the dynamic constraints of the fab, and do not holistically 
optimize the flow of WIP, considering the impact on every lot, product and tool. 

2 SEAGATE USE CASE 

Seagate Technology constitutes over 40% of the global Hard Disk Drive (HDD) market, with its Northern 
Ireland facility producing 25% of global demand for read-write heads, the critical component in an HDD. 

Potential improvements in cycle time, line predictability and line balance were identified by replacing 
the existing system that relies on traditional prioritization methods.  This would allow Seagate to commit 
to delivering higher volumes, better plan new product lines, and further their vision of an autonomous fab 
by making intelligent planning decisions which adapt to fab conditions. It would also prioritize recipe 
enablement and tool recovery, alleviating the need to run manual analyses. 
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3 IMPLEMENTATION 

The solution plans the production targets required to achieve the desired trade-off of OTD and throughput 
whilst preventing bottlenecks and starvation. These targets specify the number of lots of each product and 
step to process on each toolset until delivery, broken down into periods of a few hours. All targets are 
calculated holistically using mathematical optimization, which is ideally suited to solving highly 
constrained problems with large problem spaces and sparse feasible solutions. It enables explicit modeling 
of fab constraints, such as recipe enablement and timelinks, ensuring dynamic fab constraints and 
conditions are represented. Endogenous and exogenous uncertainties are addressed by measures including 
advanced methods for optimization under uncertainty, buffering of lots at key toolsets, and frequent 
replanning. The model can also be introspected to identify key binding constraints, which allows us to 
identify, quantify and prioritize actions such as recipe qualification changes. 

The system is controlled via trade-offs of business objectives such as cycle time and throughput. By 
varying the target granularity and optimization horizon, the solution is able to support fabs with very 
different scales and product mixes. The system fits into Flexciton’s hierarchy of control, enabling 
autonomous and aligned decision-making at all levels of the fab, with each level interfacing via production 
targets, to which lower-level optimization models include objective terms to penalize shortfall, along with 
other objectives e.g. batching efficiency. 

4 RESULTS 

Preliminary results have shown improved throughput and linearity KPIs. The system can autonomously 
react to excursions (where a large number of lots are scrapped, and tools taken offline), avoiding starvation 
without manual intervention. The system additionally provides quantified and prioritized actions to be 
discussed in daily production meetings. 

5 FUTURE WORK 

The system can be extended to address WIP-aware maintenance planning, which can prevent unnecessary 
queue time, and wafer starts planning, which will close the gap between ERP commits and daily execution, 
whilst also preventing bottlenecks caused by starting wafers with conflicting paths in the line. The system 
may also be used to load balance multiple cleanrooms at one facility, and may be applied across multiple 
facilities, including assembly and test facilities, to improve supply chain predictability and visibility. 
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