
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

OPTIMIZING CYBER-RESILIENCE IN CRITICAL INFRASTRUCTURE NETWORKS

Ranjan Pal1, Rohan Xavier Sequeira2, Sander Zeijlmaker1, and Michael Siegel1

1MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
2Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA

ABSTRACT

With the expanding cyber-risk terrain spanning business processes in digitally driven enterprises with
critical infrastructure, it is inevitable in time that system process continuity (SPC) will be affected (e.g., via
ransomware) for certain inter-dependent processes of such an enterprise, and hamper business continuity. We
are interested in the question: how should managers of such enterprises optimize cyber-resilience (i.e., the
ability to maintain SPC via absorbing and adapting to an adverse cyber-incident) for any complex networked
critical infrastructure (CI) (sub-)system with multiple process functionality components (PFCs)? We prove
via an algorithmic graph-theoretic approach that optimizing or approximately optimizing cyber-resilience
within a pre-specified enterprise cyber-protection budget in any CI with networked and inter-dependent PFCs
is NP-hard. Consequently, we propose a computationally tractable graph-based Monte-Carlo simulation
framework to ‘optimize’ (boost) cyber-resilience within any PFC network by allocating a constrained
cyber-protection budget among PFCs in accordance with their Katz centralities in the PFC network.

1 INTRODUCTION

The modern operational technology (OT) driven enterprise market is crucial to businesses spanning a wide
range of (public and private) sectors that include energy, finance, retail, chemical, power, manufacturing,
transportation, bio-technology, and other end-user verticals. Here, OT encompasses cyber-physical systems
(CPSs) that control and monitor physical equipment and processes serving such businesses. It is quite
fair to say that such businesses are supported atop IoT-driven critical infrastructure (CI) responsible for
necessarily providing high quality of service (QoS) to (mission critical) societal applications and often in
real-time. It is projected by the World Economic Forum (WEF) that the OT driven enterprise market will
see a (non-)linear growth increase with the increase in the global Industrial Internet of Things market that
currently stands at approximately 85.5 billion USD in 2023 to almost USD 169 billion by 2028.

The physical machinery underlying an enterprise CI supporting business processes in these sectors, that
traditionally used to be dumb, are often embedded today with software-programmable IoT devices such
as sensors, smart phones, actuators, programmable logic controllers (PLCs), programmable automation
controllers (PACs), and other intelligent electronic devices (IEDs). Furthermore, these devices are legacy
in nature; they can communicate with each other over a wireless network (e.g., WiFi, 5G) and/or the
Internet through proprietary network protocols, and are often managed atop by a social (logical) network
of enterprise employees who oversee both IT and OT systems.

This resulting human-managed, smart, and networked cyber-physical infrastructure with (IT) software
and IoT driven operational technology controls is supporting increasingly new forms of enterprise business
process applications built upon software stacks. The steady growth of such modern cyber-physical infras-
tructures supporting business process communication between and across C-suites, middle management,
and bottom levels is primarily due to (a) rising cost of labor, (b) pressure on businesses to satisfy the
two-fold constraint of meeting receding deadlines under increasing demand, (c) organizational push to
improving quality control via real-time data driven decision making, and (d) mitigating human error in
increasingly automated business processes. In summary, any communication network within cyber-physical
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Figure 1: Illustration of cyber-attack anticipation and CI cyber-resilience dynamics post the attack event.

CIs (CIs from here on in the paper) comes with the immense promise to generate significant economic
and societal benefit through improved efficiency, productivity, and reliability by supporting a plethora of
(critical) day-to-day modern business processes.

A CPS-driven enterprise network (EN) can necessarily sustain process continuity for OT system processes
both, for itself and for other reliant system processes dependent on this EN (e.g., as in a supply chain
environment internal/external to an enterprise) only if relevant (sub-)systems spanning the EN are cyber-
resilient in the face of system-disrupting cyber-breach incidents (cyber-attacks) with financial consequences
for the enterprise. As an example, according to a World Economic Forum report (Martel et al. 2019),
a six-hour winter blackout in mainland France due to a non cyber-resilient EN (sub-)system within an
electricity grid could result in financial damages of around 1.5 billion Euro (or USD 1.7 billion) to the
mainland society. Hence, cyber-resilience of EN (sub-)systems is a critical and necessary condition for
sustaining system process continuity (SPC) of individual enterprises and enterprise supply chain ecosystems
spanned by them. Here, a ‘(sub-)system’ refers to any (sub-)network at the physical/logical abstractions
(process levels) of an EN.

In this paper, in accordance with NIST and the US National Academy of Science, we define "cyber-
resilience" as the ability of any EN (sub-)system to successfully absorb and adapt to such cyber-breach
incidents (Kott and Linkov 2019) by providing at least a minimum acceptable level of a performance
measure that sustains enterprise SPC. Alternatively, in accordance with the NIST jargon, cyber-resilience
is the ability of cyber-incident response in any EN (sub-)system to any cyber-incident.

In other words, this definition showcases two things: (i) cyber-attacks are inevitable for an enterprise
built upon a digital and Internet networked backbone (see Anderson (2020) for reasons sourced in factors
such as security technology, security economics, adversarial evolution, and humans in the loop), and (ii) it
is often a priority of an enterprise management to always sustain SPC within any EN (sub-)system, even
if at degraded levels of system performance.

Real World Examples of Critical Infrastructure Cyber (Non-)Resilience - As a practical example
of non cyber-resilient system behavior in the energy sector, the Kyivoblenergo regional electric distribution
company in Ukraine faced a cyber-attack in the year 2015 that eventually lead to regional power blackouts
for some hours ((hence exhibiting cyber non-resilience due to a lack of business continuity)) that not
only disrupt consumer lifestyle and the local energy transmission business, but all other businesses (e.g.,
manufacturing, healthcare) that were (critically) dependent on power. This is an example of cyber non-
resilience (representing the orange and red curves in Figure 1) on part of the electric distribution company
due to the management’s lack of maintaining business (i.e., power supply) continuity for multiple hours. As
another practical example of non cyber-resilient system behavior in the healthcare sector, the UK’s National
Health Service (NHS) was attacked in mid-2017 by cyber-criminals using the WannaCry ransomware that
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locked medical records from medical staff access, and the adversary demanded a USD 300 payment in
Bitcoin that would double after three days. The attack disrupted health services in hospitals across Britain
(showcasing the inability of NHS to absorb and adapt to a cyber-attack) as multiple patient appointments
(around 19000) had to be canceled and emergency ambulances diverted to non-emergency locations. This
is an example of cyber non-resilience (representing the orange and red curves in Figure 1) on part of NHS
and certain hospitals in Britain due to the managements’ lack of maintaining system process continuity
(i.e., holding patient appointments, medical sessions etc.,) for days.

1.1 Research Motivation and Goal

We have the following research motivation and goals for this paper.
Motivation - Enterprise managers of CIs would want to always be in the blue and green zones of

Figure 1 after the occurrence of an adverse cyber event. Failing to do so will result in service disruption
of processes relying upon these OT systems (e.g., internal OT driven IT supply chains), in addition to the
obvious disruption of OT system processes. The ability to provide the basic minimum quality of service
(QoS) to service clients 24/7 is the first and foremost priority of every CI-driven service enterprise business,
but is not guaranteed when the services are run atop OT systems whose security management quality is
widely known to be moderate at best, as reported by the WEF (Martel et al. 2019). According to the
standard NIST framework, this reflects the ability of any digital system infrastructure to absorb and adapt to
the cyber-attack. We denote this ability as our notion of cyber-resilience in our paper. Subsequently, we are
motivated to optimize this ability for a general CI system exhibiting (a) a physical communication network
among its CPS elements, and overlaid above by (b) logically networked and interdependent relationships
between system functionality components - each component driven by CPS elements mentioned in (a).

Goal - Our goal in this paper is to design a methodology that enables an enterprise management to
optimize our proposed notion of cyber-resilience for any logical network of system functionality components
as a function of a given enterprise allotted cyber-protection budget for CI system security.

1.2 Research Contributions

There is a lack of (formally-backed) research principles on how C-suites and CI system managers should
optimize cyber-resilience for their business processes served atop complex and networked CPS environments
having interdependent relationship between processes. To the best of our knowledge, there exists no
systematic framework that specifically addresses cyber-resilience optimization in settings where system
processes are interdependent and networked. In reality, most (if not all) real world OT driven ICSs are
characterized by interdependent processes (Khan and Madnick 2021). Hence, in this research we take a
first pass at proposing a general formal framework to optimize cyber-resilience in any such aforementioned
complex networked critical infrastructure.

We formulate an algorithmic graph-theoretic framework (see Sections 3 and 4) aimed to enable
a networked CI system management computationally achieving a desired level of cyber-resilience within
a pre-specified enterprise cyber-protection budget for networked and interdependent process functionality
components PFCs in any networked (sub-)system induced by the CI. The framework necessitates solving
a constrained optimization problem that should ideally output a set of networked PFCs among which the
pre-determined cyber-protection budget needs to be allocated. This allocation will achieve a desired optimal
level of cyber-resilience (expressed as a formal condition), given failure thresholds of individual PFCs to
be deemed dysfunctional. Evidently, there could be multiple output sets of PFCs characterizing a feasible
solution and we are interested to find the set (if unique) consisting of the most critical PFCs. We term
this set solution as an optimal cyber-resilience ensuring policy (OCEP). We show that the optimization
problem under consideration to derive an OCEP is computationally intractable, i.e., NP-hard. Moreover,
the budget-constrained optimization problem targeting achieving a mathematical approximation of OCEP
on which the cyber-protection budget should be allocated for obtaining desired cyber-resilience levels is
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also NP-hard. In other words, given arbitrary instances of an enterprise PFC cyber-protection budget, a
CI (sub-)system network structure, and a pre-specified desired dysfunctionality conditions for PFCs, it is
very difficult even for a computer (leave alone humans) to always determine a budget-constrained OCEP
or even a budget-constrained approximate OCEP.

Consequently, we propose (in Section 5) a graph-based heuristic framework (validated via Monte
Carlo simulations) that strategically allocates a cyber-protection budget among the enterprise PFCs in
accordance to the Katz eigenvector centralities of PFCs in a network. Our proposed graph heuristic
framework is computationally tractable in nature. Monte Carlo simulations of such a framework on
practical CI topologies illustrate that our proposed Katz eigenvector centrality based heuristics result in
boosted PFC network cyber-resilience when compared to a non-strategic budget allocation approach. This
is because crown jewel PFCs are made strategically more resilient. Subsequently, we are the first to
design a computationally tractable graph heuristic to resolve the hardness challenge of the aforementioned
cyber-resilience optimization problem and formally boost CI system cyber-resilience. In all of our Monte
Carlo simulations, we adopt randomized and scaled PFC network topologies motivated by the PFC network
structure in the real-world electricity microgrid in Boston, Massachusetts, USA (Khan and Madnick 2021).

2 RELATED WORK

We briefly state the related work in relation to two relevant themes: quantifying cyber-resilience in CI
networks and optimizing cyber-resilience on the same.

Quantifying Cyber-Resilience - Most well-known system cyber-resilience metrics introduced in the
research literature are engineering focused, and either model cyber-resilience as (a) a rebound of the system
from cyber-shock to reach the usual state of equilibrium level of performance at which the system usually
performs, or (b) a synonym for robustness allowing the system to function at degraded but acceptable
levels of performance post a rebound from a cyber-shock (Francis and Bekera 2014; Linkov et al. 2013;
Clark and Zonouz 2017; Woods 2015; Hosseini et al. 2016; Arghandeh et al. 2016; Gholami et al. 2018;
Venkataramanan et al. 2019; Venkataramanan et al. 2019; Zuloaga et al. 2019; DiMase et al. 2015; Sterbenz
et al. 2011; Chaves et al. 2017; Haque et al. 2018). Despite a highly application-dependent overloading in
the definition of cyber-resilience across these works, the common aspect among these metrics is that they
are derived using mathematical frameworks that all account for the cyber-vulnerability dynamics of each
(sub-)system component or a network (Haque et al. 2018), alongside some accounting for an adversarial
input to model the cyber-vulnerability dynamics.

However, a common drawback to all these metrics is the fact that none of them account for the extent
of liabilities between CI networked PFCs - a salient complex system property, irrespective of whether the
cyber-resilience measure is network dependent or not. More specifically, the degree of liability between
(sub-)system components creates negative service degradation externalities that (non-linearly) percolate
throughout an CI network when individual PFCs experience a cyber-shock. These percolating externalities,
that directly influence the ability of components to absorb and adapt, go unaccounted for in the calculation of
existing cyber-resilience metrics. In a prior work Pal et al. (2024), we alleviate the aforementioned pitfall by
proposing a formal amalgamated methodology that accounts for the percolation of the negative externalities
throughout a liability-driven CI network in determining a quantitative measure of cyber-resilience.

Optimizing Cyber-Resilience - Optimizing cyber-resilience over a quantified metric in complex
networked engineering systems has been relatively less explored in the literature. This is because there
have been relatively few efforts to quantify systems resilience in CI systems, let alone networked CI
systems. Haque et al. (2018) and Haque et al. (2021) use the Technique for Order Preference to Ideal
Solution (TOPSIS) methodology from operations research to identify the critical components of networked
CI systems in ranking order. The ranking order can then be used by system managers to proportionally
invest a cyber-security protection budget across the ranked nodes to boost or optimize cyber-resilience.
However, unlike in our work, Haque et al. (2018) and Haque et al. (2021) do not extend their methodology
to design algorithms to boost cyber-resilience. In addition, unlike us, there exists no research to the best
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of our knowledge that formally classifies the computational complexity of the cyber-resilience optimization
problem in CI systems with networked and interdependent components. Fang et al. (2016), Zio and
Piccinelli (2010) and Barker et al. (2013) optimize systems resilience in critical infrastructure system
networks with interdependent components. However they assume that network edges are brittle, i.e., they
either function at full capacity or does not. In contrast system components are often non-brittle to function
at partial capacities if adversely impacted by a cyber-attack event. In addition, these works do not classify
the computational complexity of the cyber-resilience optimization problem in systems with networked and
interdependent components.

3 SYSTEM MODEL

Every enterprise would ideally want to make the most out of investments it makes in a particular venture
(e.g., cyber-resilience in our case). In this section, we set up the system model to analyze whether an
operational technology driven CI enterprise management can achieve cyber-resilience in an optimal fashion
given a budget constraint, and performance thresholds (below which, PFC dysfunctionality is assumed) of
individual CI PFCs. Our formal model (and notations) for budget-constrained cyber-resilience optimization
is adapted from an orthogonal setting of financial resilience proposed in Klages-Mundt and Minca (2022).

3.1 Formalizing Notations

We define a networked and inter-dependent CI PFC (C,D,β ,θ ,p) network as follows:

• n nodes, each representing a PFC inside a CI PFC network.
• m operational CI functionalities spread over the n PFCs, with each functionality possibly handled

by more than one PFC.
• p = m×1 vector of per-unit system management costs for operating each of the m CI functionalities.
• D = n×m matrix with Dik ≥ 0 the matrix (the rows spanning the multiple CI PFCs) of the fraction of

system management efforts for ICS functionality k (spanning the columns of the matrix) exhausted
by PFC i (adding to 1).

• C = n×n matrix with Ci j ≥ 0 the fraction of operational (i.e., functional) dependency of CI PFC
j upon CI PFC i and 0 along the diagonals.

• Ĉ = n× n diagonal matrix with Ĉii = 1−∑ j C ji the fraction of the operational (i.e., functional)
space of CI PFC i that is not functionally dependent on any another PFC j ̸= i in the CI (PFC i
self-generates resources to service the functional space Ĉii).

• θ = n×1 vector of failure thresholds for each CI PFC i - a lower bound of degraded PFC performance
below (ideally much below normal/best performance) which the PFC is deemed dysfunctional.

• β = n×n diagonal matrix of (optional) additional system management costs (e.g., costs spent on
maintenance agencies) incurred by the CI to when the respective CI PFC becomes dysfunctional.

We assume w.l.o.g. that matrix C is column sub-stochastic without which Ĉ−1 is not well-defined.
Consequently, note that that the matrix I −C is invertible since the spectral radius ρ(C)< 1.

3.2 Formalizing ICS Component Performance

Subject to the above notations, the PFCs’ inter-component dependency-induced performance level values
are given by the following matrix: V =CV+Dp−β1{v<θ}, where 1S is the 1-0 valued vector indicating the
entries of set S. This ‘cost-benefit’ equation directly follows from the meaning of theC, p, and D notations with
respect to achieving a threshold level of performance θ across the PFCs. These values can also be represented
via the following equation in vector form for the ease of analysis: v = ĈV = Ĉ(I−C)−1(Dp−β1{v<θθθ}). It
follows from Elliott et al. (2014) (an adaptation from component performance in financial networks) that (i)
Ĉ(I−C)−1 is column-stochastic, and (ii) there always exists a solution for v via the application of Tarski’s
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fixed point theorem (Tarski 1955) on the complete lattice of solutions for v. In this paper, we assume
a scalar real quantity (for model tractability benefits) for individual component, i.e., PFC, performance -
however, the insights obtained post analysis is applicable to settings with heterogeneous units spanning
real and discrete measures.

3.3 Formalizing Cyber-Protection Portfolio to Achieve PFC Performance Thresholds

One of the salient system manager roles within a CI is to invest in PFC cyber-protection to ensure that
ideally all PFCs always perform above a threshold level of performance - even post a cyber-attack event. To
capture this concept, we add a vector of component-wise (i.e., for each PFC) cyber-protection investments
γ ≥ 0, which affect the dysfunctional status of PFCs post a cyber-attack event. This vector is representative
of a cyber-protection investment portfolio across CI PFCs. Consequently, given an investment portfolio
γ , component i becomes dysfunctional if Vi + γi < [Ĉ−1θ ]i. This leads to post-investment component
performance values

ṽ = Ĉ(I −C)−1(Dp−β IV+γ<Ĉ−1θ
).

In other words, the formalism states that it is not always possible under cyber-protection budget constraints
for every PFC to be functional post the adverse CI system impact due to a cyber-attack. However,
cyber-protection investments made via this mechanism lowers the dysfunctional threshold of components.

4 CAN WE ACHIEVE OPTIMAL BUDGET CONSTRAINED CYBER-RESILIENCE?

In this section, we analyze whether an operational technology driven CI enterprise management can achieve
cyber-resilience in an optimal fashion given a budget constraint, and performance thresholds (below which,
PFC dysfunctionality is assumed) of individual CI PFCs. It is evident from the ‘defense in depth’ paradigm
in cyber-security that certain ‘crown jewels’ (PFCs) will be given strategic cyber-protection investment
importance because them being adversely affected can negatively impact a large part of a CI in the
event of a cyber-attack, when compared to the other ‘jewels’. Here the term ‘optimal’ in the context of
cyber-resilience implies allocating a given cyber-protection budget among a set of CI PFCs (nodes) in the
interdependent CI PFC network that generates the maximum impact in terms of the positive allocation
externalities on PFC network wide cyber-resilience. We structure this section in two parts: the first part
formalizes the budget-constrained optimization problem; and the second part formally investigates, and
provides managerial implications, on how hard it is to compute the solution to this problem in practically
reasonable amount of time. The second part is extremely relevant in the context of CI system managers
knowing timely enough on which PFCs (crown jewels) to invest a constrained cyber-protection budget.

4.1 The Optimization Problem

We formulate our budget-constrained cyber-resilience optimization problem over a cyber-protection invest-
ment portfolio γ as follows:

max
γ≥0

w(S)

s.t. 1T
γ ≤ b

where 1 is the all-ones vector.
Here, f (S) - a cyber-protection investment impact function that is a set function outputting the |U |-sized

vector of influence exerted by the investment in cyber-protection on PFC set S ⊆U on each node in U (i.e.,
fu(S) = influence exerted on PFC node u ∈U). We assume f ( /0) = 0. w(S) - a scalar weighted sum function
that outputs an importance weighting of PFC set S. In the simplest setting, each PFC is weighted by 1,
i.e., each PFC given equal importance. An example of this scalar weight function is w(S) = ∑i∈S aivi - the
weighted sum of performance levels of each CI PFC in S, where ai > 0, and ai = 1 for all i representing the
simplest (and often idealistic) setting. In practice, ai ̸= 1 for all i. θ̃θθ is the vector of additional performance
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levels for each PFC u ∈U , induced by corresponding cyber-protection investments, that is needed to make
sure that each PFC performs at or above a given threshold level of performance. b is the organizational
cyber-protection budget to be allocated among PFC set S. γu is the individual cyber-protection investment
spent on PFC u ∈U .

The objective function reflects the weighted impact of the number of functional PFCs in the interdependent
CI network, and our goal is to maximize this impact that is directly proportional to the number of functional
PFCs after the NIST ensorsed absorb and adapt phase of a cyber-attack event. Here, investment portfolio
γ upper bounded by organizational cyber-protection budget b, reverses the dysfunctionality of a seed set of
protection-invested PFCs S0 ⊆ T for which γu|u∈S0 ≥ θ̃u. Furthermore, one could iteratively construct sets
Si ⊆ T of PFCs whose dysfunctionality is reversed by propagating the positive externality effects arising
from Si−1 via the following expression:

fu(Si−1)+ γu ≥ θ̃u.

It is evident that the CI network is fully cyber-resilient if the latter expression holds for all components
in the CI. Note that, w.l.o.g., we (in)equate an investment metric, γ , with an additional performance level
metric, θ̃ , for the sake of analytical tractability with the realistic assumption that investments directly
translate to performance improvements.

Relevance of Optimization Problem to Cyber-Resilience Management - The cyber-resilience opti-
mization problem can be interpreted as the following: given an impending PFC dysfunctionality cascade
following a cyber-attack event on an CPS driven CI network, how do we find an optimal cyber-protection
investment portfolio, i.e., a budget-constrained cyber-resilience ensuring policy (CEP) γ , to limit the number
of PFC dysfunctionalities. The CEP, apart from maximizing w(S) - a positive impact measure of the total
number of functional and cyber-protected PFCs post the adapt and absorb phase of a cyber-attack, will
obey the relation, fu(Si−1)+γu ≥ θ̃u, for all u. This will consequently minimize the number of dysfunctional
PFCs within an ICS post a cyber-attack event.

To achieve this goal, let T be the set of CI PFCs that would become dysfunctional without cyber-
protection investment. Now magnify the view to only look at effects on the PFC nodes in T , while
preserving the entire network structure. In particular, define the following: (i) IT = diagonal matrix with
Iuu = 1 for u ∈ T and 0 otherwise, and (ii) Ψ(T ) maps to a system on the non-zero diagonal coordinates
of IT . Essentially, Ψ(T ) is the |T |× |U | matrix obtained by dropping zero rows of IT . We can apply the
above map to transform the system to look at

v̄ := ΨĈ(I −C)−1(Dp−β1v<θ ).

This mathematical transformation removes CI PFCs that don’t become dysfunctional without cyber-
protection, while preserving the networked connections. The idea is that among the PFCs that would
be dysfunctional without cyber-protection, some of them will escape dysfunctionality through cyber-
protection invested in them, in addition to the positive externalities from other cyber-protected PFCs. Their
performance value would then go above the threshold value below which dysfunctionality results. In a
reverse causal relation of dysfunctionality, other CI PFCs would be indirectly saved from dysfunctionality
(via positive externality effects from protection-invested PFCs) because their performance would increase.

4.2 How Hard is it to Compute a CEP?

Ensuring optimal cyber-resilience within an interdependent CI PFC network necessitates computing a CEP
that will be used by a CI C-suite to optimally distribute a cyber-protection budget among CI PFCs. After
all, CI managers will automate the CEP evaluation process. However, it need not always be the case (thanks
to theoretical computer science) that for any given PFC network and cyber-protection budget constraints, a
CEP automation algorithm can output one. We have the following result stating the computational hardness
of computing a CEP for our budget-constrained cyber-resilience optimization problem, given arbitrary
instance of a CI network topology and an organizational cyber-protection budget.
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Theorem 1 Let (C,D,β ,θθθ ,p) be an interdependent industrial control system PFC network with n PFCs,
and deterministic dysfunctionality performance thresholds θ across the PFCs. Let 0 ≤ ℓ < α ≤ 1. Suppose
αn PFCs become dysfunctional (directly or indirectly) in the event of a cyber-attack. Then it is NP-hard to
determine whether there exists a CEP γi ≥ 0, ∀i, with, ∥γγγ∥1 ≤ b in the form of a cyber-protection investment
portfolio, such that at most ℓn PFCs become dysfunctional post the investment. In other words, optimal
cyber-resilience in interdependent CI PFC networks is NP-hard. The optimal approximate (CEP) solution
to the budget constrained optimization problem is also NP-hard. That is, an approximately optimal CEP is
inapproximable to within a constant factor in polynomial time for some worst case instance (C,D,β ,θθθ ,p).
Proof Sketch - The proof of the theorem follows from a modified adaptation of the computational hardness
proof of the financial resilience optimization problem in (Klages-Mundt and Minca 2022) for financial
networks. The proof involves first reducing the Independent Set problem (Kleinberg and Tardos 2006) in
theoretical computer science to an instance of the cyber-resilience optimization problem in interdependent
OT PFC networks. The reduction involves a reduction gadget that involves constructing a directed bipartite
graph with uniform weights (corresponding to performance thresholds and cyber-protection investment
interventions) on the nodes. The next step involves reducing this gadget to a cyber-resilience optimization
problem instance. This is done by solving for θ̃u in ṽ = (I+C)(Dp−β1U1

⋃
U2) = 0, where U1 and U2 are

the bipartite node sets. The solution exists as a bipartite graph is a two layer directed acyclic graph (DAG)
where the ‘cross-holdings’ are the fraction of PFC (node) functionality liabilities in the first layer that are
held by the PFC nodes in the second layer.

Practical Implications of the Theorem - The theorem states that it is difficult even for a computer to
always guarantee that an outputted CEP for arbitrary problem input instances optimally (i.e., maximizing
w(S)) or even sub-optimally (within a fraction of the optimal) allocates cyber-protection investments across
CI PFCs to ensure that post cyber-protection investment, a maximum of l · n CI PFCs are dysfunctional
when compared to αn (with α > l) PFCs prior to the investment.

This is not a negative result as many might perceive it to be. It simply says that for certain restrictive
input instances of n, b, and α that cannot be known apriori, achieving a CEP will take the lifetime of the
universe for a computer to output a CEP as an answer to the budget-constrained optimization problem.
Usually, in most of the practice space of problem input instances, the CEP is obtained fast enough by a
computer to the benefit of PFC network managers.As an example, when the cyber-protection budget is
zero CEP computation is provably not NP-hard. However, the challenge is that there is no way to know
apriori which are the miniscule number of problem instances for which CEP computation becomes hard
even for a computer. Alternatively, ICS managers - instead of focusing on having the best cyber-resilience
management solution to the optimization problem, should invest in effective heuristics that can solve the
cyber-resilience problem in interdependent PFC networks‘sub-optimally’. One might argue that there have
been related efforts on classifying the computational difficulty of optimal resource (in our case cyber-
protection investments) allocation in networked settings appearing in Kempe et al. (2003), Günneç et al.
(2020), Demaine et al. (2014) that directly transfer to our problem setting. However, these works do not
consider the percolation of externalities within the network, hence every problem instance in Kempe et al.
(2003), Günneç et al. (2020), Demaine et al. (2014) cannot be mapped to an instance of our problem.

5 GRAPH HEURISTIC SIMULATIONS TO OPTIMIZE CI NETWORK CYBER-RESILIENCE

We showed that optimizing cyber-resilience, even if approximately so, in CI with networked and interde-
pendent PFCs is a computationally difficult problem. Hence, we have to resort to computationally tractable
heuristics to achieve ‘optimal’ cyber-resilience in such networks. In this section, we perform large scale
Monte Carlo simulations (10K sample path runs per setting configuration) of αn(En,γn) (1 - αn(En,γn))
- the cyber-resilience metric proposed by us in Pal et al. (2024) under the influence of a strategic graph-
based cyber-protection budget allocation heuristic, for random graph settings where each graph represents
interconnected and interdependent components of an enterprise infrastructure.
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Figure 2: A real world CPS CI (located in Boston, USA) to generate random simulation topologies.

Our simulation setting on graph topologies is exactly the same as in Pal et al. (2024). The random
graphs are adapted from the underlying real-world CPS network of the thermal plant CI based in Boston,
Massachusetts, USA. In other words, we abstract out a graph from the real world thermal plant architecture
(see Figure 2) and randomize the structure to generate multiple graphs of different shapes and sizes that
might represent other similar real world thermal plants. As essential structural elements, we sample the
in-degrees and out-degrees of graph nodes (PFCs), each, from both a heavy-tailed distribution (Pareto) and
a light-tailed (Normal) distribution for the sake of ensuring completeness to generating random non-tree
graph topologies. The power parameter of the Pareto distribution (for the plots shown in the paper) are
taken WLOG to be from a Pareto distribution having a shape parameter of 1 and a scale parameter of 10 to
capture practical heavy-tailed topologies. Likewise, in the case of light-tailed topologies, the graph in and
out degrees are sampled WLOG from a plot-representative Normal distribution with mean and standard
deviation of 20 and 4, respectively. In addition, we simulate αn(En,γn) and the number of simulation clock
time steps until the total number dysfunctional nodes stabilize to below a certain threshold for two contagion
settings: one where each PFC is resilient (does not become dysfunctional w.p. 1) post cyber-attack, and
one where each PFC is brittle and fails immediately w.p. 1 upon a cyber-attack.

Our proposed heuristic allocates an enterprise cyber-resilience budget strategically among PFCs accord-
ing to the Katz centrality measure (Landherr et al. 2010; Zhan et al. 2017) of the PFCs in their network -
crown jewels in the PFC network getting greater share of the budget. Note that the Katz centrality measure
is a specific type of eigenvector centrality measure that accounts for both, the indirect PFC contacts in an
interdependent PFC network (as usual of a traditional eigenvector centrality measure) and the local influence
of cyber-protection as characterized by the non-eigenvector based degree centrality measure. We study
how (much) strategic cyber-protection investments improve PFC network cyber-resilience when compared
to a non-strategic approach where a given amount of cyber-protection investment is not topology-driven.

Observations and Analysis - We observe from Figure 3 that cyber-resilience in non-brittle networks is
significantly higher from their brittle counterparts when PFC network topologies exhibit a Normal degree
distribution, i.e., a light-tailed distribution. An opposite trend holds when PFC network topologies exhibit
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Percentage of Initial Infected Nodes (IINs) - Katz Centrality
2% 10% 2% 10%

(a) GD (BM) (b) GD (BM) (c) GD (Non-BM) (d) GD (Non-BM)

(e) PD BM (f) PD (BM) (g) PD (Non-BM) (h) PD (Non-BM)

(i) GD (BM) (j) GD (BM) (k) GD (Non-BM) (l) GD (Non-BM)

(m) PD BM (n) PD (BM) (o) PD (Non-BM) (p) PD (Non-BM)

Figure 3: Cyber-resilience coefficient (RC) and total time to recovery ratio (TTRR) with and without
heuristic intervention by varying (i) # of PFC nodes in brittle (BM) and non-brittle (non-BM) modes, (ii)
PFC degree distribution, and (iii) % of IINs for Gaussian (GD) and Pareto (PD) PFC degree distributions.

a Pareto, i.e., heavy-tailed degree distribution. That is cyber-resilience in brittle networks is quite similar
(and high) to that in non-brittle networks. The reason for this latter trend is the fact that differences in
degree centrality among PFC nodes is more pronounced in networks with a heavy-tailed distribution than
that in networks with light-tailed distributions. Hence graph heuristic driven proportionate cyber-protection
allocations in networks with heavy-tailed distributions better PFC network cyber-resilience in both brittle
and non-brittle networks. Such a pronounced effect is not visible for light-tailed degree distributional
networks where the heuristic over-invests and under-invests over the PFC node space compared to the
externalities they generate. In other words, our proposed cyber-protection investment allocation heuristic
among the PFC network nodes precisely targets those nodes whose dysfunctionality can lead to a cascading
dysfunctionality effect within the PFC network post a cyber-incident. When it comes to the median time
units to adapt and absorb a cyber-incident, light-tailed degree distributional networks exhibit an oscillating
performance with increase in the size of the PFC network. We observe that the performance increases with
increasing node size, and then again decreases for further increased node sizes, and so on. The reason for this
oscillating trend is that for certain arbitrary node sizes (varying across simulation instances) a non-strategic
externality oblivious graph heuristic sufficiently ’mis-matches’ the investment amount compared to the
externality the PFC node generates, and this pattern repeats as we increase the size of the PFC network. On
the contrary, for PFC networks with heavy-tailed degree distributions, the performance is improving with
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increased node sizes. The reason for this is the fact that differences in Katz centrality among PFC nodes
is more pronounced in networks with a heavy-tailed distribution than that in networks with light-tailed
distributions, and the former network type escapes this oscillating performance effect.

6 SUMMARY

In this paper, we were interested in the question: how should managers formally optimize cyber-resilience
of CPS-driven critical infrastructure having networked and multiple inter-dependent process functionality
components (PFCs)? We proved via an algorithmic graph-theoretic framework that this task is NP-hard.
Consequently, we proposed a computationally tractable and practical graph heuristic framework to ‘optimize’
(boost) cyber-resilience within any PFC network by strategically allocating a cyber-protection budget among
PFCs in accordance with their Katz centralities in the PFC network. Alternatively, we proportionately
allocate an enterprise cyber-protection budget preferring the CI crown jewel PFCs. We validated the
efficacy of our strategic graph heuristic framework with extensive Monte Carlo simulations on real-world
adapted CI topologies based upon a real-world electricity microgrid PFC network in Boston, USA.

ACKNOWLEDGEMENTS

This study has been supported by funding from Cybersecurity at MIT Sloan (CAMS) and the Agentur
fÅNur Innovation in der Cybersicherheit GmbH (Cyberagentur). The Agentur fÅNur Innovation in der
Cybersicherheit GmbH did not interfere in the research process and its results.

REFERENCES
Anderson, R. 2020. Security Engineering: A Guide to Building Dependable Distributed Systems. Hoboken, NJ: John Wiley &

Sons.
Arghandeh, R., A. Von Meier, L. Mehrmanesh, and L. Mili. 2016. “On the Definition of Cyber-Physical Resilience in Power

Systems”. Renewable and Sustainable Energy Reviews 58:1060–1069.
Barker, K., J. E. Ramirez-Marquez, and C. M. Rocco. 2013. “Resilience-Based Network Component Importance Measures”.

Reliability Engineering & System Safety 117:89–97.
Chaves, A., M. Rice, S. Dunlap, and J. Pecarina. 2017. “Improving the Cyber Resilience of Industrial Control Systems”.

International Journal of Critical Infrastructure Protection 17:30–48.
Clark, A. and S. Zonouz. 2017. “Cyber-Physical Resilience: Definition and Assessment Metric”. IEEE Transactions on Smart

Grid 10(2):1671–1684.
Demaine, E. D., M. Hajiaghayi, H. Mahini, D. L. Malec, S. Raghavan, A. Sawant et al. 2014, April 7–11. “How to Influence

People with Partial Incentives”. In Proceedings of the 23rd international conference on World wide web, 937–948. Seoul,
Republic of Korea.

DiMase, D., Z. A. Collier, K. Heffner, and I. Linkov. 2015. “Systems Engineering Framework for Cyber Physical Security and
Resilience”. Environment Systems and Decisions 35(2):291–300.

Elliott, M., B. Golub, and M. O. Jackson. 2014. “Financial Networks and Contagion”. American Economic Review 104(10):3115–
3153.

Fang, Y.-P., N. Pedroni, and E. Zio. 2016. “Resilience-Based Component Importance Measures for Critical Infrastructure
Network Systems”. IEEE Transactions on Reliability 65(2):502–512.

Francis, R. and B. Bekera. 2014. “A Metric and Frameworks for Resilience Analysis of Engineered and Infrastructure Systems”.
Reliability Engineering & System Safety 121:90–103.

Gholami, A., T. Shekari, M. H. Amirioun, F. Aminifar, M. H. Amini and A. Sargolzaei. 2018. “Toward a Consensus on the
Definition and Taxonomy of Power System Resilience”. IEEE Access 6:32035–32053.

Günneç, D., S. Raghavan, and R. Zhang. 2020. “Least-Cost Influence Maximization on Social Networks”. INFORMS Journal
on Computing 32(2):289–302.

Haque, M. A., G. K. De Teyou, S. Shetty, and B. Krishnappa. 2018. “Cyber Resilience Framework for Industrial Control
Systems: Concepts, Metrics, and Insights”. In International Conference on Intelligence and Security Informatics (ISI),
25–30. Miami, FL, USA. October 9–11.

Haque, M. A., S. Shetty, K. Gold, and B. Krishnappa. 2021. “Realizing Cyber-Physical Systems Resilience Frameworks and
Security Practices”. In Security in Cyber-Physical Systems: Foundations and Applications, edited by S. Ali, L. Khan, and
Y. Jararweh, 1–37. Cham, Switzerland: Springer.

784



Pal, Sequeira, Zeijlemaker, and Siegel

Hosseini, S., K. Barker, and J. E. Ramirez-Marquez. 2016. “A Review of Definitions and Measures of System Resilience”.
Reliability Engineering & System Safety 145:47–61.

Kempe, D., J. Kleinberg, and É. Tardos. 2003. “Maximizing the Spread of Influence Through a Social Network”. In Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 137–146. Washington,
D.C., USA: ACM. Held August 24–27, 2003.

Khan, S. and S. E. Madnick. 2021. “Cybersafety: A System-theoretic Approach to Identify Cyber-vulnerabilities & Mitigation
Requirements in Industrial Control Systems”. IEEE Transactions on Dependable and Secure Computing 19(5):3312–3328.

Klages-Mundt, A. and A. Minca. 2022. “Optimal Intervention in Economic Networks using Influence Maximization Methods”.
European Journal of Operational Research 300(3):1136–1148.

Kleinberg, J. and E. Tardos. 2006. Algorithm Design. Delhi, India: Pearson Education India.
Kott, A. and I. Linkov. 2019. Cyber Resilience of Systems and Networks. 1st ed. Cham, Switzerland: Springer.
Landherr, A., B. Friedl, and J. Heidemann. 2010. “A Critical Review of Centrality Measures in Social Networks”. Wirtschaftsin-

formatik 52:367–382.
Linkov, I., D. A. Eisenberg, K. Plourde, T. P. Seager, J. Allen and A. Kott. 2013. “Resilience Metrics for Cyber Systems”.

Environment Systems and Decisions 33(4):471–476.
Martel, E., R. Kariger, and P. Graf. 2019. “Cyber Resilience in the Electricity Ecosystem: Principles and Guidance for Boards”.

Report, World Economic Forum, Geneva, Switzerland.
Pal, R., R. X. Sequeira, and M. Siegel. 2024. “A Mathematical Theory to Quantify Cyber-Resilience in IT/OT Networks”. In

2024 Winter Simulation Conference (WSC), 624–635 https://doi.org/https://dl.acm.org/doi/10.5555/3643142.3643194.
Sterbenz, J. P., E. K. Cetinkaya, M. A. Hameed, A. Jabbar and J. P. Rohrer. 2011. “Modelling and Analysis of Network Resilience”.

In Proceedings of the 2011 Third International Conference on Communication Systems and Networks (COMSNETS), 1–10.
Bangalore, India: IEEE. Held January 4–8, 2011.

Tarski, A. 1955. “A Lattice-Theoretical Fixpoint Theorem and its Applications.”. Pacific Journal of Mathematics 5(2):285–309.
Venkataramanan, V., A. Hahn, and A. Srivastava. 2019. “CP-SAM: Cyber-Physical Security Assessment Metric for Monitoring

Microgrid Resiliency”. IEEE Transactions on Smart Grid 11(2):1055–1065.
Venkataramanan, V., A. K. Srivastava, A. Hahn, and S. Zonouz. 2019. “Measuring and Enhancing Microgrid Resiliency Against

Cyber Threats”. IEEE Transactions on Industry Applications 55(6):6303–6312.
Woods, D. D. 2015. “Four Concepts for Resilience and the Implications for the Future of Resilience Engineering”. Reliability

Engineering & System Safety 141:5–9.
Zhan, J., S. Gurung, and S. P. K. Parsa. 2017. “Identification of Top-K Nodes in Large Networks using Katz Centrality”.

Journal of Big Data 4(1):1–19.
Zio, E. and R. Piccinelli. 2010. “Randomized Flow Model and Centrality Measure for Electrical Power Transmission Network

Analysis”. Reliability Engineering & System Safety 95(4):379–385.
Zuloaga, S., P. Khatavkar, L. Mays, and V. Vittal. 2019. “Resilience of Cyber-Enabled Electrical Energy and Water Distribution

Systems considering Infrastructural Robustness under Conditions of Limited Water and/or Energy Availability”. IEEE
Transactions on Engineering Management 66(4):554–566.

AUTHOR BIOGRAPHIES
RANJAN PAL is a Research Scientist with the MIT Sloan School of Management, and an invited working group mem-
ber of the World Economic Forum. His primary research interest lies in developing interdisciplinary cyber risk/resilience
management solutions. He serves as an Associate Editor of the ACM Transactions on MIS. His email address is ranjanp@mit.edu.

ROHAN XAVIER SEQUEIRA is a PhD student and Annenberg Fellow in the department of electrical and computer
engineering (ECE) at the University of Southern California. His research interest lies is cyber-risk management, privacy, and
distributed systems. His email address is rsequeir@usc.edu. Rohan got his MS in ECE from the University of Michigan Ann Arbor.

SANDER ZEIJLEMAKER is a Research Affiliate with the MIT Sloan School of Management, USA. His primary research
interest lies in developing cyber risk governance solutions based upon system dynamics. He is the President of the Security,
Stability, and Resilience Special Interest Group of the System Dynamics Society. His email is szeijl@mit.edu.

MICHAEL SIEGEL is a Principal Research Scientist with the MIT Sloan School of Management. His primary research
interest lies in cyber-security management of information systems. He is the founding co-Director of the Cybersecurity at MIT
Sloan (CAMS) center within the MIT Sloan School of Management. His email is msiegel@mit.edu.

785

https://doi.org/https://dl.acm.org/doi/10.5555/3643142.3643194
mailto://ranjanp@mit.edu
mailto://rsequeir@usc.edu
mailto://szeijl@mit.edu
mailto://msiegel@mit.edu

	INTRODUCTION
	Research Motivation and Goal
	Research Contributions

	RELATED WORK
	SYSTEM MODEL
	Formalizing Notations
	Formalizing ICS Component Performance
	Formalizing Cyber-Protection Portfolio to Achieve PFC Performance Thresholds

	CAN WE ACHIEVE OPTIMAL BUDGET CONSTRAINED CYBER-RESILIENCE?
	The Optimization Problem
	How Hard is it to Compute a CEP?

	GRAPH HEURISTIC SIMULATIONS TO OPTIMIZE CI NETWORK CYBER-RESILIENCE
	SUMMARY

