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ABSTRACT

For the purpose of computing the expected value of a stochastic optimization problem via simulation, we
propose a method for efficiently constructing importance sampling distributions using surrogate modeling.
A software implementation of the methods called SMAIS is available on github. We use this software in
experiments to demonstrate that our method can outperform Monte Carlo simulation. We also show good
parallel efficiency for up to 16 processors allowing a speed up of more than 10. Our method uses adaptive
sample sizes so it is not very sensitive to sample size parameters.

1 INTRODUCTION

Stochastic programming models can serve as indispensable tools for decision-making in uncertain envi-
ronments. The effective evaluation of the recourse function for a given candidate solution x̂ via simulation
is critical in optimizing stochastic programming problems, as seen in methodologies like stochastic dual
dynamic programming (SDDP) (Pereira and Pinto 1991) and Benders of the L-shape method (Van Slyke
and Wets 1969). It is also needed for computing upper bounds as in Knueven et al. (2023).

Consider an abstract statement of a stochastic programming problem

z∗ = min
x

Ep(ξ )[g(x,ξ )],

where constraints are implicitly incorporated into the function values, and the function g can encompass
complex structures accounting for future states. Given a candidate solution x̂, our objective is to determine
the expected function value:

ẑ = Ep(ξ )g(x̂,ξ ). (1)

Evaluating this expectation can be computationally challenging and time-consuming, often involving
nested optimization problems within an integral. Moreover, obtaining exact solutions for these integrals
is frequently intractable in practical settings. In such situations, alternative methods, such as Monte Carlo
simulation, come to play.

Monte Carlo simulation offers a practical method for approximating the recourse function when exact
solutions are elusive. It utilizes random sampling to provide estimates that converge to the true value as
the number of samples increases. A basic Monte Carlo method involves taking a set of N samples of the
random variable ξ1, . . . ,ξN and approximating the integral ẑ with: ẑMC = 1

N ∑g(x̂,ξi). However, challenges
arise when the function g exhibits high variance. In such cases, the basic Monte Carlo method can require
a large number of samples to achieve the desired level of accuracy, with each sample corresponding to a
computationally expensive optimization problem.

Rather than relying solely on the basic Monte Carlo method, an alternative approach known as importance
sampling can be employed. This method involves a change of variables and the adoption of a different
probability distribution, referred to as the importance sampling distribution and denoted as q(ξ ). This way,
the function value ẑ in (1) can be expressed as: ẑ = Eq(ξ )

g(x̂,ξ )p(ξ )
q(ξ ) . With a carefully chosen probability
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distribution function q(ξ ), we can generate samples from this distribution and construct our estimate as
follows:

ẑIMC =
1
N ∑

i

g(x̂,ξi)p(ξi)

q(ξi)
. (2)

The selection of an appropriate q(ξ ) can significantly reduce the variance of the estimator. It has been
demonstrated that the optimal importance sampling distribution takes the form:

q∗(ξ ) =
|g(x̂,ξ )|p(ξ )
Ep(ξ )|g(x̂,ξ )|

. (3)

In cases where the function g is non-negative, it is well-known that q∗(ξ ) = g(x̂,ξ )p(ξ )
ẑ , and q∗(ξ ) becomes

a zero-variance estimator, meaning that a perfect estimate can be obtained with just a single observation.
However, it is essential to note that directly obtaining the optimal q∗(ξ ) is not feasible without access to
an exact value of ẑ, which is precisely what we aim to evaluate in the first place.

In this paper, we propose a method for efficiently constructing importance sampling distributions using
surrogate modeling. We then utilize these specially designed distributions to estimate the function value
ẑ. A software implementation of the methods called SMAIS is available on GitHub (Chen and Woodruff
2024). Our approach aims to address these key considerations:

• Efficient use of Function Evaluations: Our methods are designed to minimize the wasted evaluation
of the function g(x̂,ξ ). Since these evaluations often require the use of optimization algorithms and
can be computationally expensive, minimizing their computation is crucial for efficient estimation.

• Parallelism: We aim to exploit parallelism to achieve reductions in run-time.

Our ideas are inspired by techniques in surrogate optimization, see Garud et al. (2017) for an overview.
Surrogate optimization deals with situations where function evaluations can be even more computation-
ally demanding compared to our context. Additionally, our work has connections to response surface
methodology, where function evaluations sometimes involve physical experiments, but not always.

A response surface methodology (RSM) was proposed in Bailey et al. (1999) for sensitivity analysis
of two-stage stochastic programming problems. In particular, the RSM enables efficient identification of
senstivity to changes in first-stage variables. The paper uses a quadratic response surface and reports good
results. Latin hypercube sampling is advocated as a variance reduction technique.

2 BACKGROUND

The Monte Carlo method has long been used in stochastic programming to approximate the function values
(Birge and Louveaux 2011; Homem-de Mello and Bayraksan 2014), with most of them focusing mainly
on the basic Monte Carlo method (Kleywegt et al. 2002; Shapiro 1991). The literature on importance
sampling in the area of stochastic programming starts with series of papers (Dantzig and Glynn 1990;
Infanger 1992; Dantzig and Infanger 1993) that introduced an importance sampling scheme, based on
strong assumptions. They assumed that the cost surface can be approximated using an additive, separable
model that considers marginal costs in each dimension alongside a base cost. Under these assumptions,
they constructed importance sampling distributions for each dimension and aggregated the estimates from
these dimensions to derive the final approximation.

Parpas et al. (2015) proposed a method that does not rely on the assumptions of additive models.
They directly generated samples from the optimal distribution q∗(ξ ) in Equation (3) using a Markov Chain
Monte Carlo (MCMC) algorithm. Subsequently, they employed these samples to “recover" or reconstruct
an approximation of q∗(ξ ) using a kernel density estimation (KDE) algorithm, resulting in q̂M. However,
the limitation of the MCMC-IS method (Parpas et al. 2015) is that it often requires a large number of
samples generated by the MCMC algorithm to obtain a good approximation of q∗. Furthermore, many of
the generated samples are discarded, which can be computationally wasteful.
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Apart from importance sampling, other techniques for variance reduction techniques has also been
applied in the area of stochastic programming, including Antithetic variates, Quasi-Monte Carlo method,
and Control Variates (Higle 1998; Koivu 2005; Drew and Homem-de Mello 2006).

The idea of combining surrogate model with importance sampling is previously explored in the area of
engineering design optimization, mostly focused on analyzing the failure rate (Yao et al. 2013; Peherstorfer
et al. 2016; Song et al. 2021). However, the methods developed for failure rate estimation do not directly
translate to stochastic programming, as they primarily focus on generating a distribution for the failure
region, while in stochastic programming, the entire region needs to be considered for optimization.

3 ADAPTIVE IMPORTANCE SAMPLING WITH SURROGATE MODELING

The core concept of our methodology revolves around the efficient construction of an effective importance
sampling distribution, denoted as q(ξ ). This function aims to reduce the variance of the Monte Carlo
estimator ẑIMC, which in turn allows us to efficiently approximate the function value ẑ. Once we have
established this constructed q(ξ ), we can utilize Equation (2) to obtain a reliable approximation for ẑ. The
optimal importance sampling distribution is in the form of q∗ as defined in Equation (3). However, the
construction of the exact optimal q∗ requires the knowledge of the value of Ep(ξ )|g(x̂,ξ )|, which is closely
related to what we aim to estimate in the first place. This creates a computational paradox, rendering the
direct construction of the optimal q∗ infeasible.

To circumvent this limitation, we leverage Surrogate Modeling techniques. Surrogate models are
simplified and computationally efficient approximation that mimic the behavior of the original complex
and often expensive-to-evaluate models (the function g in our context). They are commonly used in
experiments and simulations in engineering design to speed up the decision-making process and reduce the
computational burden. Approximation techniques include polynomial response surfaces (PRSMs), radial
basis functions (RBFs), kriging (KRG), artificial neural networks (ANNs), and moving least squares (MLS).
For a comprehensive exploration of Surrogate Modeling techniques, readers are encouraged to refer to
Garud et al. (2017).

To effectively construct an importance sampling distribution that approximate the optimal sampling
function q∗, we generate M training samples, {ξi}M

i=1, using stratified sampling (e.g. Latin Hypercube
Sampling) to create a surrogate model, referred to as s, and use the surrogate model s in place of the
function g for constructing an importance sampling distribution qs, such that

qs(ξ ) =
|s(ξ )|p(ξ )∫
Ω
|s(ξ )|p(ξ )

.

Notably, qs exhibits structural similarities to q∗ in Equation (3). In essence, s(ξ ) acts as a substitute for
g(x̂,ξ ) in the importance sampling distribution for a fixed candidate solution x̂. Once the surrogate model s
has been generated, we can use rejection sampling, as discussed in Frisch and Hanebeck (2022), to sample
N points {ξ1, . . . ,ξN} from the biased distribution qs. The final estimate of ẑ is obtained with (2).

Finding a proper evaluation sample size N that balances accuracy and computational efficiency can be
challenging, as it depends on the quality of the surrogate model s, which is determined by both the quantity
and quality of the initial training samples. Inadequate sampling for constructing the surrogate model s may
yield a suboptimal approximation of the function g, whereas an excessive number of samples can lead to
an inefficient use of computational resources.

Instead of adhering to a fixed number of training and evaluation samples, an adaptive, multi-fidelity
approach can be more beneficial. This means that during the surrogate model construction step, we increase
the number of samples based on the quality of the current constructed surrogate model, until we build an
acceptable one. Similarly, in the final estimation step, we may adaptively draw samples from the constructed
importance sampling distribution qs, until the estimation ẑIMC converges. The idea of adaptively sampling
for surrogate modeling has continuously drawn attention in the engineering community (Mackman et al.
2013; Xiao et al. 2018; Nentwich and Engell 2019; Xu et al. 2020), where most of them are designed for
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specific applications and does not directly apply in the stochastic programming setting. Adaptive sampling
unrelated to importance sampling has been explored in stochastic programming, by, e.g., Higle and Sen
(1991) and Bayraksan and Pierre-Louis (2012).

We provide a general framework for Adaptive Importance Sampling with Surrogate Modeling (SM-AIS)
in the following algorithm, and discuss the criteria for assessing the efficacy of the constructed surrogate
model and for determining the appropriate stopping rule in later subsections.

1. Initialization:
- Initialize the iteration index, k = 0
- Generate the initial training sample set Ξ0 = {ξi}M

i=1 (e.g., using Latin hypercube sampling).
- Evaluate yi = g(x̂,ξi) for each training sample.

2. Construct Surrogate Model:
- Construct a surrogate model sk mapping ξi to yi = g(x̂,ξi) for each sample in the training set

Ξk. The {yi} values has already been obtained in previous step(s).
3. Construct Importance Sampling Distribution qk

s :
- Construct the current importance sampling distribution as:

qk
s(ξ ) =

|sk(ξ )|p(ξ )
1
K ∑ j |sk(ξ̃ j)|p(ξ̃ j)

. (4)

Here {ξ̃ j} are some random samples drawn from the domain of the random variable ξ via
regular Monte Carlo method or Quasi Monte Carlo method. The denominator in the expression
of qk

s(ξ ) serves as an approximation of the integral
∫

Ω
|sk(ξ )|p(ξ ) that determines the proper

scaling of the importance sampling distribution. Although an accurately estimated integral of∫
Ω
|sk(ξ )|p(ξ ) is essential, this estimation, involving only the surrogate model sk, is generally

not computationally intensive compared to calculations involving g.
4. Assess Surrogate Model Quality:

- Assess the quality of the surrogate models as discussed in Section 3.1.
- If the quality of the surrogate model satisfies the predetermined stopping criteria, proceed to

Step 6: Final Estimation.
- Otherwise, continue to the next step: Refine Surrogate Model.

5. Refine Surrogate Model:
- Choose some additional training samples. Add these to the training set Ξk to form a new

training set Ξk+1. The choice of the additional training samples is discussed in Section 3.2.
- Increase the iteration index: k = k+1
- Return to step 2.

6. Final Estimation:
- Adaptively sample from qk

s using rejection sampling to collect evaluation samples {ξi} and
periodically estimate the function value ẑ with Equation (2). Continue until convergence is
achieved, as per a defined stopping criterion. stopping criteria are detailed in Section 3.3.

This method follows the principles of multi-fidelity approaches. Initially, we generate a low-fidelity
estimate of the importance sampling distribution qs to expedite the computational process. Subsequently,
for our final estimation (2), we leverage a high-fidelity assessment to ensure an unbiased approximation.
It is known that as long as the support of the original probability p is adequately covered by the support
of the importance sampling distribution qs, and the variance of the weighted function g(x̂,ξ )p(ξ )

qs(ξ )
is finite,

using Equation (2) will yield a consistent estimate (Robert, Casella, and Casella 1999). The concept of
multi-fidelity models has seen application in different areas (Narayan et al. 2014; Peherstorfer et al. 2018).
More recently, Alsup and Peherstorfer (2023) discusses the theoretical aspect of multi-fidelity importance
sampling.
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3.1 Surrogate Model Assessment

Evaluating the quality of surrogate models is crucial in their development and refinement, as it directly
impacts the accuracy and reliability of the estimates. We propose two approaches for assessing the quality
of the surrogate models. The first approach relies on quantifying the error of the surrogate model, offering a
direct measure of the model’s accuracy in replicating the true responses. The second approach is predicated
on estimating the variance of the final estimator, which indicates the consistency and stability of the
estimator.

3.1.1 Direct Error-Based Assessment

To construct an effective surrogate model, the primary goal is to ensure that its associated importance
sampling distribution in (4) aligns with the optimal sampling function in (3). Given this objective, a direct
and natural approach for surrogate model assessment involves evaluating the maximum absolute error, or
Linf norm, between the surrogate function s and the true function g for the given candidate solution x̂. More
specifically, we focus on quantifying the discrepancy between |sk(ξ )|p(ξ ) and |g(x̂,ξ )|p(ξ ), so we use
εs = supξ∈Ω

∣∣|sk(ξ )|p(ξ )−|g(x̂,ξ )|p(ξ )
∣∣, as a measure of the surrogate model’s accuracy. Our selection of

absolute error over relative error conforms to the principles of importance sampling. This choice permits a
greater tolerance for errors in areas of lesser significance, i.e. areas with lower q values, thereby focusing
our computational resources and efforts on areas with high q value, ensuring our surrogate model achieves
a high degree of precision in important regions.

To estimate the error εs, we draw a manageable set of samples, and compute the corresponding absolute
error between |s(ξ j)|p(ξ j) and |g(x̂,ξ j)|p(ξ j) for each sampled ξ j. The composition of these samples
is twofold: a portion (of cardinality Mq) is drawn in accordance with the surrogate model’s importance
sampling distribution qs, ensuring that the surrogate model’s approximations are precise in areas it identifies
as crucial. The remainder of the samples (of cardinality Mr) is drawn from a uniform distribution across the
domain of the random variable ξ , which helps verify the model’s overall performance and guards against
over-fitting to the training samples.

The decision to refine the surrogate model s further is guided by a stopping criterion centered on whether
the maximum absolute error across the assessment samples exceeds a predefined threshold. This threshold
may be expressed either as a fixed absolute number or, as we have found effective in our experiments, in
the form of cβ ×max |g(x̂,ξ j)|p(ξ j), where cβ represents a predetermined scaling factor. Implementing a
threshold in this manner simplifies the adjustment of the threshold value, aligning with our goal to develop
an importance sampling distribution that emphasizes accuracy in critical regions characterized by high qs
values.

3.1.2 Variance-Based Assessment

An alternative method for evaluating the surrogate model focuses on examining the variance of the final
estimator, ẑIMC. This strategy is based on the understanding that a high-quality surrogate model will yield a
final estimator with lower variance. Consequently, assessing this variance serves as an indirect but effective
way to gauge the surrogate model s accuracy and to inform its further refinement. Specifically, with the
surrogate model s and the associated importance sampling distribution qs, the convergence rate of the final
estimator ẑIMC in Eq. (2) is expressed as O

(
σs√

N

)
, where the variance σ2

s is determined by

σ
2
s = Eqs

(
g(x̂,ξ )p(ξ )

qs(ξ )

)2

−
(

Eqs

g(x̂,ξ )p(ξ )
qs(ξ )

)2

. (5)

Hence we can develop a stopping criterion for the refinement of the surrogate model s, predicated on
the variance σ2

s descending below a specified threshold.
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To this end, we draw modest collection of samples {ξ̃i}Me
i=1 from qs (of cardinality Mq). The variance

σ2
s is then estimated either by direct computation:

σ̃
2
s =

1
Mq −1 ∑

i

(
g(x̂, ξ̃i)p(ξ̃i)

q(ξ̃i)
− z̃

)2

, (6)

where z̃ = 1
Mq

∑i
g(x̂,ξ̃i)p(ξ̃i)

q(ξ̃i)
.

It should be emphasized that this approach may be more prone to over-fitting the training samples,
making it appropriate only when a substantial initial training sample set is utilized, where there is sufficient
coverage of regions considered potentially significant. In practical applications, combining variance-based
evaluation with direct error-based assessment by properly setting thresholds on both the error and the
variance can yield the most effective results.

3.2 Additional Training Sample Selection

The selection of additional training samples is inherently informed by the assessments of the surrogate
model’s quality. To maximize computational efficiency, our approach emphasizes the reuse of samples that
have already contributed to the evaluation of the surrogate model. It’s important to highlight that adding
extra samples inevitably incur some computational cost for retraining the surrogate model s. However, we
avoid the need for repeated evaluations of the function value g, which can be costly, for these new samples,
since these evaluations are already completed during the assessment phase.

Reusing all samples from the assessment phase brings unnecessary retraining costs for the surrogate
model s and risks overfitting in well-performing areas. To allocate our computational resources efficiently
and achieve significant accuracy improvements, we have explored two primary approaches for selecting
additional training samples. The first involves selecting a fixed number or proportion of samples, identified
during the assessment phase, that demonstrate the largest errors. The second method focuses on samples
whose errors surpass a specific threshold in the form of cβ ×max |g(x̂,ξi)|p(ξi), as mentioned in Section 3.1.1.
Through practical application, we have observed that prioritizing samples with errors above a predetermined
threshold, thereby excluding those with minimal errors, results in a more balanced surrogate model.

3.3 Adaptive Sampling for Final Estimation

In the final estimation step, we employ a dynamic process for sampling from the importance sampling
distribution qs, and periodically estimate the function value based on the collected samples. The estimator
is given in (2).

Note that this approach allows for the simultaneous construction of confidence intervals for the true
function value ẑ around the estimate ẑIMC using Central Limit Theorem. These intervals are expressed as
[ẑIMC − t1−α/2σ̃s, ẑIMC + t1−α/2σ̃s], where t1−α/2 refers to the student-t distribution.

At the same time, it also facilitates the estimation of the total number of samples required to meet a
specified error tolerance. Since the estimator ẑIMC is a sample average estimator, according to the central
limit theorem, it converges to a normal distribution with mean ẑ and variance σ2

s /N, at a rate of O
(

σs√
N

)
.

Here σ2
s is the associated variance as defined in (5).

This way, To determine the sample size Ns,ε necessary for achieving an error tolerance ε , we use the

formula Ns,ε =

⌈(
Z1−α/2·σs

ε

)2
⌉
, where Z1−α/2 is the z-score associated with a predefined confidence level.

That is, with a sample size of Ns,ε and probability of 1−α , the error in the final estimator ẑIMC will be
less than ε .

While we do not have direct access to the variance σs, we may derive an initial estimation of the
variance, σ̃s, from an early subset of samples drawn from the importance sampling distribution qs. This
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preliminary variance estimation gives us a projection of the approximate number of samples, Ñs,ε , to achieve
our target precision.

As the adaptive sampling process progresses, each additional sample drawn incrementally refines our
estimates of σ̃s and Ñs,ε . Simultaneously, it updates the confidence intervals for the true function value, ẑ.

3.4 Parallelization of the Algorithm

The main algorithm lends itself well to parallelization, which can significantly reduce overall execution
time. Here is an outline of the components of the algorithm that are amenable to parallel execution:

• Initialization: The generation of the initial training sample set Ξ0 = {ξi}M
i=1 and the evaluation of

their function values g(x̂,ξi) can be easily parallelized, as the generation of each sample and the
evaluation of the function value are independent of other samples.

• Construct Surrogate Model: The potential for parallelizing this surrogate model training process
largely depends on the type of surrogate model used and its parallelization capabilities. For instance,
neural networks and certain implementations of Kriging can be trained in parallel by leveraging
multiple processing units to handle batches of data or to compute model parameters concurrently.

• Construct Importance Sampling Distribution qk
s: Constructing the importance sampling dis-

tribution qk
s requires the evaluation of the value |sk(ξ̃ j)| ∗ p(ξ̃ j) over a reasonably large set of

samples, which can be processed in parallel as each calculation is independent. In our paralleliza-
tion experiments, we allocated the computation of |sk(ξ̃ j)|× p(ξ̃ j) among all accessible processors,
subsequently gathering the outcomes to obtain the proper scaling of the importance sampling
distribution qk

s .
• Assess Surrogate Model Quality: The surrogate model’s quality assessment involves the use of

rejection sampling from qk
s , a technique well-suited for parallel execution. In our experiments, each

worker is tasked with examining Ba samples per batch, determining whether each sample should
be accepted or rejected. This workflow is maintained across all workers until a collective total of
Mq samples has been drawn from qk

s .
• Final Estimation: The final estimation phase adopts a similar approach to the quality assessment step,

employing parallelized rejection sampling from the importance sampling distribution, complemented
by function evaluations. In our implementation, each worker is assigned the task of evaluating
Be samples within a batch to decide their acceptance. For those samples that are accepted, the
subsequent step involves calculating the weighted function value g(x̂,ξi)p(ξi)

qs(ξi)
.

4 EXPERIMENTAL RESULTS

The candidate solutions used in our experiments are generated randomly by solving a sample average
approximation of the original stochastic programming problems with a limited number of scenarios. We
did not observe significant differences in estimation accuracy among the various candidate solutions. Each
candidate solution x̂ was used to evaluate the performance of our proposed adaptive importance sampling
with surrogate models (SM-AIS) method in comparison with two other approaches.

The first comparative method is the regular Monte Carlo (MC) method, wherein sampling is conducted
according to the original probability distribution denoted as p. We adopted rejection sampling with Sobol
sequences to work with distribution p, allowing us to handle various types of distribution functions.

The second method is the Markov Chain Monte Carlo Importance Sampling (MCMC-IS) Method, as
proposed by Parpas et al. (2015). This method involves generating samples from the optimal distribution
q∗(ξ ) using MCMC and then approximating this distribution with kernel density estimation (KDE). We use
normal distribution as our proposal distribution, experimenting with both constant variance and adaptive
Metropolis techniques (Haario et al. 2001). Preliminary parameter tuning was conducted for the fixed
variance approach, and the best-performing setup, was selected for method comparison.
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In the experimental results reported below, we focus on direct error-based assessment, as it has proven
effective for our tested problem. We adopt the kriging method because it leverage both the sampled data and
the inherent correlation patterns between the samples. Hence, it’s able to approximate nonlinear functions
effectively. Other surrogate models are also available in SMAIS.

4.1 Problem Examples

We conducted experiments over four different example problems.
The NewsVendor problem involves finding the optimal order quantity to maximize profit or minimize

costs while considering the balance between lost sales and excess inventory. In our experiment we used
the two-stage stochastic program example provided in Lubin et al. (2023), where the uncertain demand
follows a triangular distribution.

CVaR, or Conditional Value at Risk, is a risk measure used in finance and statistics to quantify the
potential loss in the worst-case scenarios of an investment or portfolio. In our experiment we solve a
(1−α)-level CVaR problem as in Lam and Qian (2018): minx

{
x+ 1

a E [max(ξ − x,0)]
}
, where a = 0.1

and ξ is a drawn from a standard normal distribution.
A scalable version of the farmer example in Birge and Louveaux (2011) is implemented in Knueven

et al. (2023). For our experiments we used the original three crops, and introduced a new feature, denoted
as “yield-cv," which represents the coefficient of variation of the crop yields.

The multi-knapsack problem originates from the stochastic programming problem discussed in Vaagen
and Wallace (2008) and also explored in King and Wallace (2012). It can be regarded as a multidimensional
newsvendor issue that includes substitution effects. In our analysis, we focus on the scenario involving the
sale of six products, each subject to a uniform substitution rate of 10%.

4.2 Parameter Values

In the interest of reproducibility, Tabe 1 shows the parameter values used in experiments except when
otherwise noted.

Table 1: Parameter values used in experiments.

Symbol Name in SMAIS NewsVendor CVaR Farmer Knapsack

M initial_sample_size 20 80 40 80
Mq assess_size 20 20 40 40
Mr additional_sample_size 20 20 40 40
K sp_integral_size 2000 2000 10,000 1,000,000
cβ adaptive_error_threshold_factor 0.1 0.1 0.1 0.1
N evaluation_N 500 500 500 500

4.3 Experimental Results Summary Tables

For the CVaR problem, the effectiveness was assessed by measuring the deviation of the estimator for
the generated function value from the benchmark and the width of the generated confidence intervals for
ẑ, across various predetermined cutoff times. The benchmark value achieved by the conventional Monte
Carlo method upon convergence. The methods were implemented in serial, without parallelization. We
will discuss potential performance improvements for the SM-AIS method through parallelization in a later
section. Due to the necessity for an initial runtime to establish its importance sampling distribution, the
MCMC Importance Sampling method does not provide estimations at early cutoff times. When the relative
error is less than 0.1%, we consider it as negligibly small.
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Table 2: Summary table for CVaR, with the benchmark function value ẑ ≈ 2.1155 obtained using numerical
integration. The MCMC-IS method run with 2500 samples for hastings method. The surrogate model
construction for the SM-AIS method meets the stopping criteria within 6 iterations.

Cut-off Time (Seconds)
MC MCMC-IS SM-AIS

Error CI Width Error CI Width Error CI Width

100 0.22 0.99 - - 0.013 0.092
200 0.081 0.27 0.015 0.11 negligible 0.024
400 0.050 0.20 0.015 0.05 negligible 0.015

Table 2 demonstrates the varied effectiveness of sampling methods in addressing the CVaR problem. Due
to the significant disparity between the important region for CVaR estimation and the original distribution
p, the regular MC method can be extremely inefficient, and an effective importance sampling distribution
is necessary for fast estimation of the function value.

While the MCMC-IS method’s slower development of the importance sampling distribution might
seem a drawback, it still surpasses the basic MC method due to the usage of the importance function. The
SM-AIS method stands out for its rapid creation of an efficient importance sampling distribution, leading
to minimal errors and significantly tighter confidence intervals.

For the rest of the example problems, the efficiency of the MCMC-IS method is constrained by the
limited utility of the importance sampling distribution in relatively simple scenarios. The generation of the
importance sampling distribution via the MCMC-IS approach is time-consuming and does not offer sufficient
evaluation efficiency improvements for certain problems. This challenge is particularly evident for some
multi-dimensional optimization problem, where optimally adjusting the MCMC-IS method’s parameters
proves difficult due to the Kernel Density Package available for use in our Python implementation. Hence
for the rest of the examples, we primarily report the time complexity advantage of our approach over the
regular MC method

Table 3: Summary table for NewsVendor, with the benchmark function value ẑ ≈ 558.6 obtained using
regular MC with 20k samples. The surrogate model construction for the SM-AIS method meets the stopping
criteria within 2 iterations.

Cut-off Time (Seconds)
MC SM-AIS

Error CI Width Error CI Width

20 2.7 16.7 0.3 0.4
100 1.3 8.2 negligible 0.1
200 0.6 5.7 negligible < 0.1
400 0.8 4.0 negligible <0.1

As shown in Tables 3 and 4, in the NewsVendor problem and the farmer problem, the regular Monte
Carlo (MC) method achieves efficient convergence, yet the Adaptive Importance Sampling with Surrogate
Models (SM-AIS) method shows faster convergence and significantly narrower confidence intervals.

For multi-dimensional problems like the multi-knapsack problem, constructing the importance sampling
distribution in Step 3 requires a substantial number of samples, denoted by K, to accurately estimate the
integral in the denominator. However, since the integral calculation solely involves evaluations of the
surrogate model s, the process remains relatively cost-effective, despite the requirement for extensive
sampling. Table 5 suggests that our method effectively reduces the variance of the final estimator, resulting
in a more precise confidence interval. In Section 4.4, we demonstrate how incorporating parallel computing
strategies can markedly decrease the computational time necessitated by high-dimensional integration.
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Table 4: Summary table for Farmer, with the actual function value ẑ ≈ 151,600 obtained with 65k samples.
The surrogate model construction for the SM-AIS method meets the stopping criteria within 2 iterations.

Cut-off Time (Seconds)
MC SM-AIS

Error CI Width Error CI Width

40 2126 4,125 87 418
200 575 1995 negligible 164
400 347 1397 negligible 117
800 104 1018 negligible 83

Table 5: Summary table for Multi-Knapsack, with the actual function value ẑ ≈ 24,860 obtained with 20k
samples. The surrogate model construction for the SM-AIS method meets the stopping criteria within 2
iterations.

Cut-off Time (Seconds)
MC SM-AIS

Error CI Width Error CI Width

500 220 1,198 117 433
1000 53 862 41 121
1500 37 713 negligible 95

4.4 Parallel Speed Up

The SM-AIS method offers the advantage of straightforward parallelization, leading to considerable perfor-
mance enhancements. To demonstrate, we present a comparison between the parallelized and non-parallelized
implementations of the SM-AIS method when applied to the multi-knapsack problem. For this purpose,
we employ a fixed set of parameters and evaluate the run-time performance of the SM-AIS method across
a variety of process counts.

Our implementation of parallelization was focused on three critical phases of SM-AIS: In Step 3,
parallel processing was employed to evaluate the denominator when constructing the importance sampling
distribution qk

s ; Step 4 leveraged parallelism for performing rejection sampling for evaluating the surrogate
model’s quality through error-based assessment; and in Step 6, parallel processes were utilized once more
for drawing samples from qk

s for the final estimation. Further discussion of the parallel implementation can
be found in Section 3.4. In our experiments, the batch sizes were set to Ba = 200 for the quality assessment
phase and Be = 100 for the final estimation phase.

Figure 1: The speed up factor for SM-AIS with increasing parallel processes for multi-knapsack example.
The red line indicates the actual speed up of the algorithm as the number of processes increases, while the
gray dashed line represents the ideal linear speed up.
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Figure 1 shows the scaling efficiency by comparing the speed-up factor with the number of processors,
illustrating the effectiveness of parallelization in reducing runtime. With up to 16 processors, it achieves
a speed-up factor greater than 10.

5 CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

To conduct simulations for computing the expected value of a stochastic optimization problem, we propose
a method for efficiently constructing importance sampling distributions using surrogate modeling. The
method is shown to offer a significant improvement over Monte Carlo sampling even when augmented by
importance sampling because the surrogate model allows for much faster evaluation than is required to
solve an optimization problem. Our methods strive to reduce the need for evaluation of the function g(x̂,ξ )
because these evaluations often require the use of optimization algorithms and can be computationally
expensive. We demonstrate good parallel efficiency up to 16 processors.

Our software implementation supports multiple surrogate model types. It remains as future research to
invent new surrogate models for this application. A related area that could be explored in future research is
to incorporate prior knowledge in constructing the surrogate. The parallel efficiency is starting to degrade
at 16 processors, so improvements in that area would be a good avenue for exploration. An implementation
of the method is available on github to researchers who want consider improvements or who want to test
it against new methods.
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