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ABSTRACT

The Gaussian process (GP) regression model is a widely employed supervised learning approach. In
this paper, we estimate the GP model through variational inference, particularly employing the recently
introduced energetic variational inference method. Under the GP model assumptions, we derive posterior
distributions for its parameters. The energetic variational inference approach bridges the Bayesian sampling
and optimization and enables approximation of the posterior distributions and identification of the posterior
mode. By incorporating a Gaussian prior on the mean component of the GP model, we also apply shrinkage
estimation to the parameters, facilitating variable selection of the mean function. The proposed GP method
outperforms some existing software packages on three benchmark examples.

1 INTRODUCTION

Uncertainty Quantification (Ghanem et al. 2017) is a highly interdisciplinary research domain involving
mathematics, statistics, optimization, advanced computing technology, and various science and engineering
disciplines. It provides a computational framework for quantifying input and response uncertainties and
making model-based predictions and their inferences for complex science or engineering systems/processes.
One key topic in uncertainty quantification is to analyze computer experimental data and build a surrogate
model for the computer simulation model. Gaussian process (GP) regression model, sometimes known as
“kriging”, has been widely used for this purpose since the seminal paper by Sacks et al. (1989).

This paper examines GP models within a Bayesian framework, adopting the model assumptions specified
by Santner et al. (2003), which include a meaningful mean function and an anisotropic covariance function
for enhanced prediction flexibility. Unlike traditional Bayesian GP models that rely on Markov Chain
Monte Carlo (MCMC) sampling, we introduce a variational inference method, specifically a particle-based
energetic variational inference approach (EVI) from Wang, Chen, Liu, and Kang (2021), termed EVI-
GP. This method, which can compute maximum a posteriori (MAP) estimates or approximate posterior
distributions, offers an efficient alternative for parameter estimation and inference. Additionally, employing
an l2-regularization due to the conjugate prior of the regression coefficients facilitates sparsity in the GP
mean function, optimizing model interpretation and accuracy.

The rest of the paper is organized as follows. In Section 2, we review the Gaussian process model,
including its assumption and prior distributions, and derive the posterior and posterior predictive distributions.
In Section 3, the preliminary background on variational inference and the particle energetic variational
inference methods are briefly reviewed. The EVI-GP method is also summarized at the end of this section.
Section 4 shows two main simulation examples in which different versions of EVI-GP are compared with
other existing methods. The paper concludes in Section 5.
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2 GAUSSIAN PROCESS REGRESSION: BAYESIAN APPROACH

2.1 Gaussian Process Assumption

Denote {xxxi,yi}n
i=1 as the n pairs of input and output data from a certain computer experiment, and xxxi ∈Ω⊆Rd

are the ith experimental input values and yi ∈R is the corresponding output. In this paper, we only consider
the case of univariate response, but the proposed EVI-GP can be applied to the multi-response GP model
which involves the cross-covariance between responses (Cressie 2015).

Gaussian process regression is built on the following model assumption of the response,

yi = ggg(xxxi)
⊤

βββ +Z(xxxi)+ εi, i = 1, . . . ,n, (1)

where ggg(xxx) is a p-dim vector of user-specified basis functions and βββ is the p-dim vector of linear coefficients
corresponding the basis functions. Usually, ggg(xxx) contains the polynomial basis functions of xxx up to a certain
order. The random noise εi’s are independently and identically distributed following N(0,σ2). They are
also independent of the other stochastic components of (1). We assume the GP prior on the stochastic
function Z(xxx), which is denoted as Z(·) ∼ GP(0,τ2K), i.e., E[Z(xxx)] = 0 and the covariance function
cov[Z(xxx1),Z(xxx2)] = τ2K(xxx1,xxx2;ωωω). We use the common stationary assumption of Z(xxx), and thus the
variance τ2 is a constant. The function K(·, ·;ωωω) : Ω×Ω 7→R+ is the correlation of the stochastic process
with hyperparameters ωωω . For it to be valid, K(·, ·;ωωω)must be a symmetric positive definite kernel function. A
commonly used kernel function is the Gaussian kernel defined as K(xxx1,xxx2;ωωω) = exp

[
−∑

d
j=1 ω j(x1 j − x2 j)

2
]
,

with ωωω ∈ Rd and ωωω is a non-negative vector. The EVI-GP method can be applied in the same way for
other kernel functions and non-stationary GP assumptions. The response Y (xxx) follows a Gaussian Process
with mean function E[Y (xxx)] = ggg(xxx)⊤βββ for any xxx ∈ Ω and covariance function

cov[Y (xxx1),Y (xxx2)] = τ
2K(xxx1,xxx2;ωωω)+σ

2
δ (xxx1,xxx2) = τ

2 [K(xxx1,xxx2;ωωω)+ηδ (xxx1,xxx2)] , ∀xxx1,xxx2 ∈ Ω,

where δ (xxx1,xxx2) = 1 if xxx1 = xxx2 and 0 otherwise, and η = σ2/τ2. So η is interpreted as the noise-to-signal
ratio if σ2 > 0 or a nugget effect if σ2 = 0 to avoid ill-conditioning of the covariance matrix (Peng and
Wu 2014). The unknown parameter values of the GP model are θθθ = (βββ ,ωωω,τ2,η). We are going to show
how to obtain the estimation and inference of the parameters using the Bayesian framework.

2.2 GP under Bayesian Framework

We assume the following prior distributions for the parameters θθθ = (βββ ,ωωω,τ2,η),

βββ ∼ MV Np(0,ν2RRR),

τ
2 ∼ Inverse-χ2(d fτ2),

ωi
i.i.d.∼ Gamma(aω ,bω), for i = 1, . . . ,d

η ∼ Gamma(aη ,bη).
(2)

These distribution families are commonly used in the literature such as Gramacy and Lian (2012) and Hu,
Gramacy, and Lian (2013). However, the choice of parameters of the prior distributions should require
fine-tuning using testing data or cross-validation procedures. In some literature, parameters ωωω , τ2, and η

are considered to be hyperparameters. The conditional posterior distribution of βββ given data and (ωωω,τ2,η)
is a multivariate normal distribution, which is shown later.

Next, we derive the posterior distributions and some conditional posterior distributions. Based on the
data, the sampling distribution is

yyyn|θθθ ∼ MV Nn
(
GGGβββ ,τ2(KKKn +ηIIIn)

)
,

where yyyn is the vector of yi’s and GGG is a matrix of row vectors ggg(xxxi)
⊤’s. The matrix KKKn is the n×n kernel

matrix with entries Kn[i, j] = K(xxxi,xxx j) and is a symmetric and positive definite matrix, and IIIn is an n×n
identity matrix. The density function of yyyn|θθθ is

p(yyyn|θθθ) ∝ (τ2)−
n
2 det(KKKn +ηIIIn)

−1/2 exp
(
− 1

2τ2 (yyyn −GGGβββ )⊤(KKKn +ηIIIn)
−1(yyyn −GGGβββ )

)
.
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Following Bayes’ Theorem, the joint posterior distribution of all parameters is

p(θθθ |yyyn) ∝ p(θθθ)p(yyyn|θθθ) ∝ p(βββ )

(
d

∏
j=1

p(ωi)

)
p(τ2)p(η)p(yyyn|θθθ).

The conditional posterior distribution of βββ can be easily obtained through conjugacy. It is also
straightforward to obtain the posterior distribution p(ωωω,τ2,η |yyyn). The results are summarized in Proposition
1. The posterior distribution of τ2 can be significantly simplified if a non-informative prior is used for
βββ , as described in Proposition 2. Due to limited space, all proofs can be found in the appendix of Kang,
Cheng, Wang, and Liu (2024).
Proposition 1 Using the prior distribution of θθθ = (βββ ,ωωω,τ2,η) in (2), the conditional posterior distribution
of βββ is βββ |yyyn,ωωω,τ2,η ∼ MV Np

(
β̂ββ n,ΣΣΣβββ |n

)
, where

ΣΣΣβββ |n =

[
1
τ2 GGG⊤(KKKn +ηIIIn)

−1GGG+
1

ν2 RRR−1
]−1

, β̂ββ n = τ
−2

ΣΣΣβββ |n

[
GGG⊤(KKKn +ηIIIn)

−1
]

yyyn.

The marginal posterior distribution of (ωωω,τ2,η) is

p(ωωω,τ2,η |yyyn) ∝det(ΣΣΣβββ |n)
1/2 exp

[
−1

2
β̂ββ
⊤
n ΣΣΣ

−1
βββ |nβ̂ββ n −

1
2τ2 yyy⊤n (KKKn +ηIIIn)

−1yyyn

]
× (τ2)−n/2 det(KKKn +ηIIIn)

−1/2 p(τ2)p(ωωω)p(η). (3)

Proposition 2 If using a non-informative prior distribution for βββ , i.e., p(βββ ) ∝ 1, and the same prior
distributions for (ωωω,τ2,η) in (2), the conditional posterior distribution of βββ is still MV Np

(
β̂ββ n,ΣΣΣβββ |n

)
, but

the covariance and mean are

ΣΣΣβββ |n = τ
2
[
GGG⊤(KKKn +ηIIIn)

−1GGG
]−1

, β̂ββ n =
[
GGG⊤(KKKn +ηIIIn)

−1GGG
]−1 [

GGG⊤(KKKn +ηIIIn)
−1
]

yyyn.

The conditional posterior distribution for τ2 is

τ
2|ωωω,η ,yyyn ∼ Scaled Inverse-χ2(d fτ2 +n− p, τ̂2),

where τ̂2 = (1+ s2
n)/(d fτ2 +n− p), s2

n = τ−2β̂ββ
⊤
n ΣΣΣ

−1
βββ |nβ̂ββ n + yyy⊤n (KKKn +ηIIIn)

−1yyyn. The marginal posterior of
(ωωω,η) is

p(ωωω,η |yyyn) ∝ (τ̂2)−
1
2 (d f

τ2+n−p) det(GGG⊤(KKKn +ηIIIn)
−1GGG)−1/2 det(KKKn +ηIIIn)

−1/2 p(ωωω)p(η). (4)

If we use non-informative prior distributions for all the parameters, i.e., p(βββ ) ∝ 1 and p(ωi)
i.i.d.∼

Uniform[aω ,bω ] for i = 1, . . . ,d, p(τ2) ∝ τ−2, and p(η) ∝ Uniform[aη ,bη ], the Bayesian framework is
equivalent to the empirical Bayesian or maximum likelihood estimation method. The GP regression model
estimated via this frequentist approach is common in both methodology research and application (Santner
et al. 2003; Fang et al. 2005; Gramacy 2020). In this paper, we consider the empirical Bayesian estimation
as a special case of the Bayesian GP model. The choice between the two different types of prior distributions
for βββ , informative or non-informative, is subject to the dimension of the input variables, the assumption
on basis functions ggg(xxx), the goal of GP modeling (accurate prediction v.s. interpretation), and sometimes
the application of the computer experiment. Both types have their unique advantages and shortcomings.
The non-informative prior distribution for βββ reduces the computation involved in the posterior sampling
for τ2, but we would lose the l2 regularization effect on βββ brought by the informative prior βββ .
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One issue with the informative prior distribution is to choose its parameters, i.e., the constant variance
ν2 and the correlation matrix RRR. Here we recommend using a cross-validation procedure to select ν2.
If the mean function ggg(xxx)⊤βββ is a polynomial function of the input variables, we specify the matrix RRR
to be a diagonal matrix RRR = diag{1,r, . . . ,r,r2, . . . ,r2, . . .}, where r ∈ (0,1) is a user-specified parameter.
The power index of r is the same as the order of the corresponding polynomial term. For example, if
ggg(xxx)⊤βββ with xxx ∈ R2 is a full quadratic model and contains the terms ggg(xxx) = [1,x1,x2,x2

1,x
2
2,x1x2]

⊤, the
corresponding prior correlation matrix should be specified as RRR = diag{1,r,r,r2,r2,r2}. In this way, the
prior variance of the effect decreases exponentially as the order of effect increases, following the effect
hierarchy principle (Hamada and Wu 1992; Wu and Hamada 2021). It states that lower-order effects are
more important than higher-order effects, and the effects of the same order are equally important. The
hierarchy ordering principle can reduce the size of the model and avoid including higher-order and less
significant model terms. Such prior distribution was firstly proposed by Joseph (2006), and later used in
Kang and Joseph (2009), Ai et al. (2009), Kang et al. (2018), Kang and Huang (2019),Kang et al. (2021),
and Kang et al. (2023).
Proposition 3 Given the parameters (ωωω,τ2,η), the posterior predictive distribution of y(xxx) at any query
point xxx is the following normal distribution.

y(xxx)|yyyn,ωωω,τ2,η ∼ N(µ̂(xxx),σ2
n (xxx)),

where

µ̂(xxx) = ggg(xxx)⊤β̂ββ n +K(xxx,Xn)(KKKn +ηIIIn)
−1(yyyn −GGGβ̂ββ n),

σ
2
n (xxx) = τ

2
{

1−K(xxx,Xn)(KKKn +ηIIIn)
−1K(Xn,xxx)+ ccc(xxx)⊤

[
GGG⊤(KKKn +ηIIIn)

−1GGG
]−1

ccc(xxx)
}
,

where ccc(xxx) = ggg(xxx)−GGG⊤(KKKn+ηIIIn)
−1K(Xn,xxx), K(xxx,Xn) = K(Xn,xxx)⊤ = [K(xxx,xxx1), . . . ,K(xxx,xxxn)]. For non-

informative prior, the posterior predictive distribution y(xxx)|yyyn,ωωω,η is the same except that τ2 is replaced
by τ̂2.

A detailed proof can be found in Santner et al. (2003) and Rasmussen and Williams (2006). Thanks to
the Gaussian process assumption and the conditional conjugate prior distributions for βββ and τ2, Proposition
1, 2, and 3 give the explicit and easy to generate conditional posterior distribution of βββ (and τ2) and posterior
predictive distribution. Therefore, how to generate samples from p(ωωω,τ2,η |yyyn) in (3) or p(ωωω,η |yyyn) in
(4) is the bottleneck of the computation for GP models. Since p(ωωω,τ2,η |yyyn) and p(ωωω,η |yyyn) are not
from any known distribution families, Metropolis-Hastings (MH) algorithm (Robert et al. 1999; Gelman
et al. 2014), Hamiltonian Monte Carlo (HMC) (Neal 1996), or Metropolis-adjusted Langevin algorithm
(MALA) can be used for sampling (Roberts and Rosenthal 1998). In this paper, we introduce readers to
an alternative computational tool, namely, a variational inference approach to approximate the posterior
distribution p(ωωω,τ2,η |yyyn) or p(ωωω,η |yyyn). More specifically, we plan to use energetic variational inference,
a particle method, to generate posterior samples.

3 ENERGETIC VARIATIONAL INFERENCE GAUSSIAN PROCESS

Variational inference-based GP models have been explored in prior works such as Tran et al. (2016), Cheng
and Boots (2017), and Wynne and Wild (2022). Despite sharing the variational inference idea, the proposed
Energetic Variational Inference (EVI) GP differs significantly from these existing methods regarding the
specific variational techniques employed. Tran et al. (2016) utilized auto-encoding, while Cheng and Boots
(2017) and Wynne and Wild (2022) employed the mean-field variational inference (Blei et al. 2017).

The EVI approach presented in this paper is a newly introduced particle-based method. It offers
simplicity in implementation across diverse applications without the need for training any neural networks.
Notably, EVI establishes a connection between the MAP procedure and posterior sampling through a
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user-specified number of particles. In contrast to the complexity of auto-encoding variational methods, the
particle-based approach is much simpler, devoid of any neural network intricacies. Moreover, in comparison
to mean-field methods, both particle-based and MAP-based approaches (auto-encoding falls into the MAP-
based category) can exhibit enhanced accuracy, as they do not impose any parametric assumptions on a
feasible family of distributions in the optimization to solve the variational problem.

3.1 Energetic Variational Inference

Due to limited space, we can only briefly review the EVI framework and explain it intuitively. Readers
can refer to Wang et al. (2021) and Kang et al. (2024) for a more comprehensive review of the energetic
variational approach. What is more, Wang et al. (2021) also suggested many different variants of algorithms
under the EVI framework.

We first introduce the EVI using the continuous formulation. Let φφφ t be the dynamic flow map
φφφ t :Rd →Rd at time t that continuously transforms the d-dimensional distribution from an initial distribution
toward the target one and we require the map φφφ t to be smooth and one-to-one. The functional F (φφφ t)
is a user-specified divergence or other machine learning objective functional. Taking the analogy of a
thermodynamics system, F (φφφ t) is the Helmholtz free energy. Following the First and Second Law of
thermodynamics and set the kinetic energy to zero, we have

d
dt

F (φφφ t) =−△(φφφ t , φ̇φφ t), (5)

where △(φφφ t , φ̇φφ t) is a user-specified functional representing the rate of energy dissipation, and φ̇φφ t is the
derivative of φφφ t with time t. So φ̇φφ t can be interpreted as the “velocity” of the transformation. Each variational
formulation gives a natural path of decreasing the objective functional F (φφφ t) toward an equilibrium. The
dissipation functional should satisfy △(φφφ t , φ̇φφ t) ≥ 0 so that F (φφφ t) decreases with time. A simple yet
effective specification of △(φφφ t , φ̇φφ t) is a quadratic functional in terms of φ̇φφ t ,

△(φφφ t , φ̇φφ t) =
∫

Ωt

ρ[φφφ t ]
∥φ̇φφ t∥2

2dxxx, and it has the variation (functional derivative)
δ△(φφφ t , φ̇φφ t)

δ φ̇φφ t
= 2ρ[φφφ t ]

φ̇φφ t

where ρ[φφφ t ]
denotes the pdf of the current distribution which is the initial distribution transformed by φφφ t ,

Ωt is the current support, ∥aaa∥2 = aaa⊤aaa for ∀aaa ∈ Rd , and δ is the variation operator.
With the specified energy-dissipation law (5), the energy variational approach derives the dynamics

of the systems through two variational procedures, the Least Action Principle (LAP) and the Maximum
Dissipation Principle (MDP), which leads to

δ
1
2△

δ φ̇φφ t
=−δF

δφφφ t
, and ρ[φφφ t ]

φ̇φφ t =−δF

δφφφ t
,

using the quadratic ∆(φφφ t , φ̇φφ t).
In general, this continuous formulation (5) is difficult to solve since the manifold of φφφ t is of infinite

dimension. Naturally, there are different approaches to approximate an infinite-dimensional manifold by
a finite-dimensional manifold. One such approach, as used in Wang et al. (2021), is to use particles (or
samples) to approximate the ρ[φφφ t ]

in (5) with kernel regularization, before any variational steps. It leads to
a discrete version of the energy-dissipation law, i.e.,

d
dt

Fh({xxxi(t)}N
i=1) =−△h({xxxi(t)}N

i=1,{ẋxxi(t)}N
i=1). (6)

Here {xxx(t)}N
i=1 is the locations of N particles at time t and ẋxxi(t) is the derivative of xxxi with t, and thus

is the velocity of the ith particle as it moves toward the target distribution. The subscript h of F and △
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denotes the bandwidth parameter of the kernel function used in the kernelization operation. Applying the
variational steps to (6), we obtain the dynamics of decreasing F at the particle level,

δ
1
2△h

δ ẋxxi(t)
=−δFh

δxxxi
, for i = 1, . . . ,N. (7)

This leads to an ODE system of {xxxi(t)}N
i=1 and can be solved by different numerical schemes, such as first

order explicit and implicit Euler approaches shown in Wang et al. (2021). The solution is the particles
approximating the target distribution.

In this paper, we use the KL-divergence as the energy functional as demonstrated in Wang et al. (2021),

DKL(ρ||ρ∗) =
∫

Ω

ρ(xxx) log
(

ρ(xxx)
ρ∗(xxx)

)
dxxx,

where ρ∗(xxx) is the density function of the target distribution with support region Ω and ρ(xxx) is to approximate
ρ∗(xxx). For EVI-GP, ρ∗ is the posterior distribution of p(ωωω,τ2,η |yyyn) or p(ωωω,η |yyyn).

Using the KL-divergence, the divergence functional at time t is

F (φφφ t) =
∫ (

ρ[φφφ t ]
(xxx) logρ[φφφ t ]

(xxx)+ρ[φφφ t ]
(xxx)V (xxx)

)
dxxx,

where V (xxx) = logρ∗(xxx), which is known up to a scaling constant. The discrete version of the energy
becomes

Fh
(
{xxxi}N

i=1
)
=

1
N

N

∑
i=1

(
ln

[
1
N

N

∑
j=1

Kh(xxxi,xxx j)

]
+V (xxxi)

)
,

and the discrete dissipation is

−2∆h
(
{xxxi}N

i=1
)
=− 1

N

N

∑
i=1

|ẋxxi(t))|2.

Applying variational step to (6), we obtain (7) which is equivalent to the following nonlinear ODE system:

ẋxxi(t) =−

(
∑

N
j=1 ∇xxxiKh(xxxi,xxx j)

∑
N
j=1 Kh(xxxi,xxx j)

+
N

∑
k=1

∇xxxiKh(xxxk,xxxi)

∑
N
j=1 Kh(xxxk,xxx j)

+∇xxxiV (xxxi)

)
, (8)

for i = 1, . . . ,N. The iterative update of N particles {xxxi}N
i=1 involves solving the nonlinear ODE system (8)

via optimization problem (9) at the m-th iteration step

{xxxm+1
i }N

i=1 = argmin{xxxi}N
i=1

Jm({xxxi}N
i=1), (9)

where

Jm({xxxi}N
i=1) :=

1
2τ

N

∑
i=1

||xxxi − xxxm
i ||2/N +Fh({xxxi}N

i=1).

Here we use xxxm
i and xxxm+1

i to denote the i-th particle value in the m-th and m+1-th iteration, respectively.
Wang et al. (2021) emphasized the advantages of using the Implicit-Euler solver for enhanced numerical
stability in this process. We summarize the algorithm of using the implicit Euler scheme to solve the ODE
system (8) into Algorithm 1. Here MaxIter is the maximum number of iterations of the outer loop. The
minimization of Jm in the inner loop is solved by L-BFGS in our implementation.
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Algorithm 1 EVI with Implicit Euler Scheme (EVI-Im)

Input: The target distribution ρ∗(xxx) and a set of initial particles {xxx0
i }N

i=1 drawn from a prior ρ0(xxx).
Output: A set of particles {xxx∗i }N

i=1 approximating ρ∗.
for m = 0 to MaxIter do

Solve {xxxm+1
i }N

i=1 = argmin{xxxi}N
i=1

Jm({xxxi}N
i=1).

Update {xxxm
i }N

i=1 by {xxxm+1
i }N

i=1.
end for

3.2 EVI-GP

We propose two adaptations of the EVI-Im algorithm for GP model estimation and prediction. The first
approach, named EVI-post for short, involves generating N particles using Algorithm 1 to approximate
the posterior p(ωωω,τ2,η |yyyn) when an informative normal prior distribution is adopted for βββ , or p(ωωω,τ2|yyyn)
when a non-informative prior distribution is used for βββ . These N particles serve as posterior samples.
Conditional on their values, we can generate samples for βββ based on its conditional posterior distribution
(Proposition 1) or generate samples for both βββ and τ2 according to their conditional posterior distribution
(Proposition 2). Following Proposition 3, we can generally predict y(xxx) and confidence intervals conditional
on the posterior samples.

In the second approach, we employ EVI-Im solely as an optimization tool for Maximum A Posteriori
(MAP), entailing the minimization of V (xxx) =− logρ∗(xxx). So we call it EVI-MAP for short. This can be
done by simply setting the free energy as F (xxx) =V (xxx) and N = 1. As a result, the optimization problem
(9) at the ith iteration becomes

xxxm+1 = argmin
xxx

1
2τ

||xxx− xxxm||2 − logV (xxx),

which is the celebrated proximal point algorithm (Rockafellar 1976). Therefore, EVI is a method that
connects the posterior sampling and MAP under the same general framework. Based on the MAP, we
can obtain the posterior mode for βββ (or βββ and τ2) and the mode of the prediction and the corresponding
inference based on the posterior mode.

4 NUMERICAL EXAMPLES

In this section, we demonstrate the performances of EVI-GP and compare it with three commonly used
GP packages in R, which are gpfit (MacDonald et al. 2015), mlegp (Dancik and Dorman 2008), laGP
(Gramacy and Apley 2015; Gramacy 2016). Due to limited space, we only show the comparison via
two examples. The first one is a 1-dim toy example and the second one is the Borehole example chosen
from the online library built by Surjanovic and Bingham (). Readers can refer Kang et al. (2024) for
another example of the OTL-circuit simulation. The codes for EVI-GP and all the examples are available
on GitHub with the link https://github.com/XavierOwen/EVIGP. The EVI-GP is implemented in Python.
The proximal point optimization in Algorithm 1 is solved by the LBFGS function of Pytorch library
(Paszke et al. 2019). Some arguments of the EVI-GP codes are set the same for all examples, which are
explained in Kang et al. (2024). These parameter settings are done through many trials and they lead to
satisfactory performance in most examples we have studied.

In each example, we use the same pair of training and testing datasets for all the methods under
comparison. The designs for both datasets are generated via maximinLHS procedure from the lhs
package in R (Carnell 2022). We run 100 simulations. In each simulation, we compute the standardized
Root Mean Square Prediction Error (RMSPE) on the test data set, which is defined as follows

standardized RMSPE =

(√
1

ntest
∑

i
(ŷi − yi)2

)/
standard deviation of test(yyy),
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where ŷi is the predicted value at the test point xxxi and yi is the corresponding true value. Box plots of the
100 standardized RMSPEs of all methods are shown for comparison.
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(a) GP with constant mean, EVI-MAP.

0.1 0.2 0.3 0.4 0.50.100

0.200

0.300

0.400

0.500

0.600

    

0.00
0.24
0.48
0.72
0.96
1.20
1.44
1.68
1.92
2.16

1e 5

(b) GP with constant mean, EVI-post.
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(c) GP with linear mean, EVI-MAP.
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(d) GP with linear mean, EVI-post.

Figure 1: One-Dim Toy Example: in Figure 1a–1d the contours are plotted according to p(ω,η |yyyn)
evaluated on mesh points without the normalizing constant, the largest red points are the modes of the
posterior distribution of (ω,η) returned by EVI-MAP approach, and the black dots in Figure 1b and 1d
are the particles returned by EVI-post approach.

4.1 One-Dim Toy Example

In the one-dim example, the data are generated from the test function y(x) = xsin(x)+ε for x ∈ [0,10] and
σ2 = 0.52. The size of the training and test data sets are n = 11 and m = 100, respectively.

The parameters of the prior distributions of the EVI-GP are aω = aη = 1, bω = bη = 0.5, and d fτ2 = 0
which is equivalent to p(τ2)∝ 1/τ2. We consider two possible mean functions for the GP model, the constant
mean µ(x) = β0 and the linear mean µ(x) = β0+β1x. There is no need for parameter regularization for these
simple mean functions, and thus we use non-informative prior for βββ . We use the EVI-post to approximate
p(ω,η |yyyn) and set the number of particles N = 100, kernel bandwidth h = 0.02 and stepsize τ = 1 in
the EVI procedure. The initial particles are sampled from the uniform distribution in [0,0.1]× [0.1,0.4].
Figure 1 and 2 show the posterior modes and particles returned by EVI-MAP and EVI-post, as well as the
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(a) GP Model with constant mean by EVI-MAP.
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(b) GP Model with constant mean fitted by EVI-post.
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(c) GP Model with linear mean fitted by EVI-MAP.
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(d) GP Model with linear mean fitted by EVI-post.

Figure 2: The Gaussian process prediction by four different approaches. Black dots are training data, the
red dashed curve is the true test function without noise y(x) = xsin(x), the blue curve is the predicted
curve, and the light blue area shows the 95% predictive confidence interval.

prediction and predictive confidence interval returned by both methods. From Figure 1, we can see that
the particles generated from EVI-post well approximate the target distribution p(ω,η |yyyn) represented by
the contours. The posterior modes are accurately identified by EVI-MAP.

We compare the EVI-GP with three R packages. For the gpfit package, we set the nugget threshold
to be [0,25], corresponding to η in our method, and the correlation is the Gaussian kernel function. For
the mlegp package, we set the argument constMean to be 0 for the constant mean model and 1 for the
linear mean model. The settings of the optimization-related arguments in mlegp are carefully chosen for
the best performance possible. They are elaborated in Kang et al. (2024). Figure 3 compares the box plots
of the RMSPEs from 100 simulations. The prediction accuracy of both versions of the EVI-GP performs
almost equally well and significantly outperforms the three R packages.

constant, EVI-M
AP

constant, EVI-post

constant, gpfit

constant, laGP

constant, m
legp

linear, EVI-M
AP

linear, EVI-post

linear, m
legp

0.15

0.20

RM
SP

E

Figure 3: Box plots of the standardized RMSPEs of the toy example with different mean models (constant
or linear) and different methods (EVI-MAP, EVI-post, gpfit, laGP, mlegp). The labels of the two EVI-GP
methods are underlined.

4.2 Borehole Function

In this subsection, we test the EVI-GP with the famous Borehole function. The definition of the Borehole
function and detailed variable definition is included in Kang et al. (2024).
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Figure 4: The 95% posterior confidence interval of βββ for the full quadratic mean model.
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Figure 5: Box plots of standardized RMSPE’s of the Borehole Example with different mean models
(constant, linear, quadratic, and reduced model) and different methods (EVI-MAP, mlegp). The labels of
the EVI-GP methods are underlined.

We use a training dataset of size 200 and 100 testing datasets of size 100. The noise variance is
σ2 = 0.022. For both EVI-post and EVI-MAP, we set h = 0.001 and τ = 0.1. For the EVI-post approach,
we use N = 100 particles, and the initial particles of (ωωω,η) are sampled uniformly in [0,0.1]7. The two
versions of EVI-GP perform very similarly, so we only return the result of EVI-MAP. The initial mean
model of the GP is assumed as a quadratic function of the input variables, including the 2-way interactions.
Regarding the variance of the prior distribution of βββ , ν = 4.55 was the result of 5-fold cross-validation
when the biggest mean model was used. After variable selection, the 5-fold cross-validation is conducted
again to find the optimal ν to fit the finalized GP model. Coincidentally, the optimal ν is also 4.55. The
initial mean model of the GP is assumed as a quadratic function of the input variables, including the 2-way
interactions. Based on the 95% posterior confidence interval in Figure 4 of the βββ , we select intercept,
x1,x4, and x1x4 as the significant terms to be kept for the final model. Similarly, we compare the EVI-GP
with the mlegp package, and the standardized RMSPEs of the 100 simulations are shown in Figure 5.
Again, EVI-GP significantly outperforms the R package. More importantly, variable selection proves to
be essential for the Borehole example, as the final GP model with the reduced mean model (labeled by
“quadratic, after selection”) returns the smallest standardized RMSPE.

5 CONCLUSION

In this paper, we review the conventional Gaussian process regression model under the Bayesian framework.
More importantly, we propose a new variational inference approach, called Energetic Variational Inference,
as an alternative to traditional MCMC approaches to estimate and make inferences for the GP regression
model. Through comparing with some commonly used R packages, the new EVI-GP performs better
in terms of prediction accuracy. Although not completely revealed in this paper, the true potential of
variational inference lies in transforming the MCMC sampling problem into an optimization problem. As
a result, it can be used to solve a more complicated Bayesian framework. For instance, we can adapt the
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GP regression and classification by adding fairness constraints on the parameters such that it can meet the
ethical requirements in many social and economic contexts. In this case, variational inference can easily
solve the constrained optimization whereas it is very challenging to do MCMC sampling with fairness
constraints. We are pursuing in this direction in the future work.
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