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ABSTRACT

Machine learning is becoming an important technique in modern simulation systems due to the strong
capability on capturing the random, complex, and dynamic features of the physical world. Based on these
advantages, it has been employed as a powerful tool that enables the intelligent simulation of large-scale
logistics systems in a highly efficient manner. Inspired by these applications, this work presents a new
paradigm, where machine learning is utilized to generate data-driven decision strategies to accurately
emulate the practical operations in logistics systems, and improve the simulation accuracy. Compared with
existing approaches, the proposed method is also characterized by the high flexibility and transparency.
Consequently, it can adapt to a large variety of logistics system architectures, and catch adequate details
of system dynamics. Experiments have been conducted based on the simulation of large-scale real-world
logistics systems, where the proposed method demonstrates superior accuracy on both strategy learning
and simulation.

1 INTRODUCTION

Logistics plays a crucial role in modern society by facilitating the connections between suppliers and
consumers, thereby supporting business and industrial activities, and contributing to economic growth (Liu
et al. 2023; Hao et al. 2022). To meet diverse customer demands for delivery efficiency and transportation
volumes, large logistics corporations often maintain extensive hierarchical networks. Within these networks,
numerous rapid decisions regarding optimal resource allocation and utilization must be made to ensure the
efficient, cost-effective, and reliable movement of goods (Liu et al. 2023; Liu et al. 2023). However, due
to the high complexity and dynamic nature of logistics systems and their external environments, predicting
the outcomes of these decisions is challenging. Local operations can have global repercussions within the
entire logistics system (Liu et al. 2023; Rabe et al. 2018) or even lead to unintended consequences (Rushton
et al. 2006; Liu et al. 2020).

To tackle the challenge aforementioned, simulation, particularly discrete event simulation (DES), is
employed as a powerful tool to replicate real-world behavior through digital representation (Liebler et al.
2013; Urzua et al. 2019; Pedrielli et al. 2016). It offers timely feedback on the effects of proposed
operations, thereby avoiding the need for costly and sometimes impossible on-site experiments (Lang et al.
2022; Tripathy et al. 2021a; van Steenbergen et al. 2021; Gerrits and Schuur 2021; Paul and Doreswamy
2021). Its capability to capture system intricacies at any desired level enables it to effectively model the
stochastic nature of physical systems. This makes simulation a robust tool for exploring "what-if" scenarios,
especially when compared to pure mathematical formulations that frequently lack sufficient detail and fail
to capture the dynamic outcomes of operations (Tripathy et al. 2021b; Herrera et al. 2021; Tordecilla et al.
2020; Ramírez-Villamil et al. 2020; Ghorpade and Corlu 2020; Nag and Pal 2022; Onggo et al. 2022). For
this reason, simulation has been widely adopted as a component of optimization frameworks to evaluate the
efficacy of optimization strategies in vehicle routing (Peyman et al. 2021; Ramírez-Villamil et al. 2020),
facility location selection (Tordecilla et al. 2020; Onggo et al. 2022), replenishment (Nag and Pal 2022),
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etc., while accommodating the potential uncertainties from multiple sources, such as travel time (Peyman
et al. 2021; Onggo et al. 2022; Ramírez-Villamil et al. 2020) and customer demand (Tordecilla et al.
2020; Ghorpade and Corlu 2020; Nag and Pal 2022). In recent years, machine learning has attracted great
popularity in the simulation of logistics systems (Liu et al. 2023; Liu et al. 2020), to investigate the
correlations between external factors and critical parameters in simulation, thereby facilitating input data
modeling (Liu et al. 2020; Barra Montevechi et al. 2021; Reed and Löfstrand 2022; Cen et al. 2020),
surrogate modeling (Cen and Haas 2022; Feng et al. 2018; Zhao et al. 2021), and other task-specific
applications (Montevechi et al. 2022; Wozniak et al. 2022) in simulation systems, as depicted in Figure 1(a),
(b), and (c).

Figure 1: Conventionally, machine learning has been utilized in DES for (a) input parameter modeling,
(b) surrogate modeling, and (c) output analysis. In this work, a new paradigm (d) is proposed that utilizes
machine learning to emulate the strategies for operational decisions.

In this work, we introduce a novel paradigm of integrating machine learning into logistics simulation.
Unlike existing approaches that focus on modeling inputs or outputs of simulation programs, our proposed
method is specifically tailored to model internal decision strategies within simulations. This allows for the
accurate emulation of practical actions taken at various stages of parcel handling, accounting for complex
influencing factors such as resource availability, urgency of delivery requirements, and even operator habits
across different shifts, as illustrated in Figure 1(d).

In fact, this is similar to embedding agent-based simulation in a DES framework as each decision
maker can be regarded as an agent. In existing literature, this is usually implemented using rule-based
strategies (Zhang et al. 2020; Aerts et al. 2018; Kandemir et al. 2022). For instance, when modeling the
product picking operations in the warehouse, pickers are programmed to take the shortest path and pick
the products in the central point of the pick face only in (Lang et al. 2022). However, the operations in real
world can be impacted by multiple factors such as environmental issues and personal preference, while the
hard-coded logic can hardly evolve along with them. In order to tackle these challenges, this work intends
to model the decision strategies for logistics operations through investigating the underlying philosophies
from historical records. To reach this goal, machine learning is utilized to establish data-driven decision
strategies, thereby catalyzing the intelligent simulation of logistics systems.

633



Hao, Liu, Wang, Huang, Zhao, and Zhuang

Compared with conventional approaches, the proposed method also features high flexibility and trans-
parency. While the established machine learning models can emulate the behavior of decision makers and
generate corresponding operational actions, they can be conveniently organized to adapt to a wide variety
of simulation system architectures, regardless the limitation of any specific network topology. Although
the surrogate models can also draw data-driven insights from historical records, they are limited by the
black-box nature of machine learning models, and cannot reflect the details of decision making. Even
though explainable machine learning techniques have been studied to address this issue by interpreting the
output of machine learning models (Ribeiro et al. 2016; Lundberg and Lee 2017), there still exists inevitable
gaps for matching all necessary entities in the physical world. In contrast, the proposed method can gain
both global view on the performance of entire system and the details of how each task is processed. This
can also help understand the internal mechanisms that the operational decisions are impacted by external
factors.

To validate the proposed method, we utilize a DES simulation model designed to replicate the packing,
sorting, transportation, and delivery processes of parcels within real-world logistics systems. While this
model has demonstrated high accuracy in evaluating network throughput from a strategic standpoint, it
struggles to accurately mimic tactical decisions. To be specific, parcels typically traverse the logistics
network from origin to destination in a sequential manner. Precisely modeling each shipment segment,
also known as a hop, is crucial for predicting resource utilization and identifying potential bottlenecks.
Although hard-coded rules can capture the predominant patterns of parcel flow, a significant portion of
parcels deviate from these patterns in reality. To address this challenge, we employ a specific machine
learning model called the Field-weighted Embedding-based Neural Network (DeepFwFm) (Deng et al.
2021). This model is utilized to predict the next hop of a parcel based on features extracted from the parcel
itself, the origin-destination (O-D) path, and the current hop.

Under this setup, experiments have been conducted using the historical record in several consecutive
days, where the proposed method demonstrates superior prediction accuracy compared with a set of classic
baselines, while effectively reducing the mean average percentage error (MAPE) of simulation by 4.83%
than rule-based method. In summary, the contributions of this work can be highlighted as follows:

• This work introduces a novel paradigm that leverages machine learning as a data-driven decision
engine to replace hard-coded rules in simulation. By emulating internal decision-making mechanisms
using data-driven strategies, this approach enhances accuracy, flexibility, and transparency.

• A specific Discrete Event Simulation (DES) model, simulating parcel processing in logistics systems,
is implemented to validate the proposed method. Machine learning is embedded as a decision module
to predict the next hop of each parcel based on volatile context features.

• Experiments have been conducted using historical records of parcel processing in real-world logistics
systems. Results demonstrate that the proposed method outperforms a set of classic baselines, leading
to a substantial reduction in simulation Mean Absolute Percentage Error (MAPE).

The remainder of this paper is organized as follows. The related works for applications of machine
learning in simulation are reviewed in Section 2. The background of the considered simulation framework
is introduced in Section 3. The technical details of the proposed method are presented in Section 4. The
experimental results are discussed in Section 5. Finally, we conclude in Section 6.

2 RELATED WORKS

In modern simulation systems, the major applications of machine learning are devoted to input data modeling,
surrogate modeling, and customized solutions in specific simulation scenarios, as depicted in Figure 1(a),
(b), and (c).

As input data modeling is the interface of simulation programs to obtain knowledge about the external
world, the accuracy of simulation critically relies on the quality of input data modeling. In order to capture
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the key characteristics of real-world data, machine learning techniques have been utilized to establish
connections between the input data and potential impacting factors, thereby appropriately estimating their
distributions (Liu et al. 2020; Barra Montevechi et al. 2021; Reed and Löfstrand 2022; Cen et al. 2020). For
instance, the sorting time is estimated based on the spatial-temporal features of parcel volume distribution
in (Liu et al. 2020) to catch the impact of further dynamics. Similarly, distributional random forest is
utilized in (Reed and Löfstrand 2022) to model the multi-variant nature of event outcomes instead of simple
approximations using expected values. In (Barra Montevechi et al. 2021) and (Cen et al. 2020), the potential
of generative models, such as adversarial generative networks (GANs) and variational autoencoder (VAE),
are explored to emulate the complex distributions, and generate high-quality synthetic data for simulations.

While simulation is an important tool to validate the impact of decisions, the simulation program usually
need to be rapidly executed to support the evolutionary optimization of decision strategies, which is known
as simulation-based optimization. As it is usually expensive to execute the simulation program repeatedly
especially for the simulation of large-scale systems, surrogate modeling uses machine learning model as
a substitute evaluation function to map the simulation input directly to the corresponding outcomes (Cen
and Haas 2022; Feng et al. 2018; Zhao et al. 2021). A precursor in this direction (Feng et al. 2018)
establishes a neural network to emulate the outputs of DES given the candidate configurations of building
construction. Reinforcement learning and co-evolutionary algorithms are further incorporated in (Zhao
et al. 2021) to train the surrogate model, thereby adapting to new operational conditions. Graph neural
network is utilized in (Cen and Haas 2022) to represent structural characteristics of the physical system,
and consequently achieve a superior simulation accuracy.

Apart from the aforementioned applications, machine learning is also used to construct customized
solutions to address the problems in specific scenarios of simulations. In (Montevechi et al. 2022), GAN
has been employed to validate the outputs of simulation programs through discriminating it from real world
data using the discriminator. An innovative application has been proposed in (Wozniak et al. 2022) to detect
the errors induced by scaling up the code for network simulation through parallelism. It transforms the
simulation traces into image formats, and leverages computer vision techniques to examine the correctness
of implementation.

3 SIMULATION FRAMEWORK

Based on the real-world logistics system, we consider the simulation of an end-to-end logistics network as
depicted in Figure 2. It consists of a set of facility nodes, including warehouses, distribution centers, terminal
stations, and the transportation routes connecting them (Liu et al. 2020). Through the simulation program,
we aim to emulate the end-to-end processing of each parcel, evaluate the performance of operations, and
finally achieve feedback on the efficacy of actions.

As the logistics network is a sophisticatedly designed hierarchical architecture, a parcel being shipped
will go through a series of standard operations before delivered. Taking retailing logistics as an example.
Once an order is placed, the corresponding items will be picked and packed in the warehouse, and a
shipping bill will be created correspondingly in the system. Subsequently, it will be forwarded by a series
of distribution centers to the local region of the receiver. Finally, it will arrive at the terminal station, and
be delivered to the receiver by the courier. The shipping bill can also be created from a personal shipment
order, in which the courier needs to collect the parcel from the sender, and let it go through the same
procedure as retailing parcels.

In order to emulate the working conditions of the real-world logistics system and obtain the key
performance indicators (KPIs), the workload of the system needs to be simulated based on the practical
scenarios. To reach this goal, a set of shipping bills will be generated for each day, with the distribution
of their volumes, weights, origins, destinations and total numbers appropriately controlled, to match the
reality. Given the generated workload, the parameters related to the processing in each component of
the logistics network, such as sorting time and transportation time, are also estimated to approximate the
response of the system (Liu et al. 2020). Based on the aforementioned configurations on input parameters,
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Figure 2: An end-to-end logistics network is considered in the simulation framework, which consists of
warehouses, distribution centers, terminal stations, and the routes connecting them.

we would like to evaluate the time efficiency and recognize bottlenecks in resources both globally in the
entire logistics network and locally in each component.

Given the aforementioned configurations, this work studied the method to emulate the decision strategies
in logistics operations for approximating the characteristics of the real-world. While the specific approaches
for processing the parcels need to be determined by decision makers, their assignments on logistics operations
directly affect the processing efficiency and utilization of resources. Hence, the quality of simulation critically
depends on the accuracy for modeling the behaviors of decision makers. However, this only has been
investigated in a few existing literature due to practical difficulties despite its importance (Kandemir et al.
2022; Wu et al. 2008; Lang et al. 2022). In specific, the strategies for item picking have been modeled
in (Lang et al. 2022) using empirical assumptions and rules. The behavior of decision makers is usually
complicated, which can be impacted by a wide variety of external factors and personal preference. Hence,
it can hardly be modeled by trivial rules and mathematical formulations. For instance, the specific routing
of a parcel needs to be determined after the origin and destination are known to assign the sequence of
distribution centers in the corresponding O-D path. This can be implemented straightforwardly by directly
taking the shortest path. However, the practical parcel routing usually needs to consider various other
factors such as the capacity of routes and distribution centers, and the availability of other resources. Given
a set of distribution centers D , suppose that a parcel is at distribution center di ∈ D , and next hop in the
shortest path is d j ∈ D . However, the capacity of d j can be exceeded due to the large workload during
promotions (e.g., Black Friday), and the parcel will suffer from severe sorting delay if assigned to d j.
In this scenario, the decision maker must consider re-arranging next hop, which cannot be appropriated
approximated by trivial rule-based simulation strategies.

In order to address the aforementioned issues, this work proposes to investigate the correlations between
operational decisions and potential impacting factors through historical records using machine learning.
This can help develop data-driven insights to understand the philosophies behind the manual decisions,
thereby generating more realistic decisions in the simulation program given corresponding context. In
specific, we take the routing of parcels as an example to illustrate the utilization of data-driven decision
strategies for logistics system simulation. To reach this goal, we extract representative features to capture
the characteristics of the parcels, distribution centers, and transportation routes. A machine learning model
is subsequently established, which takes these features as input and generate the prediction on next hop
as output. In order to learn the behavior of decision makers, we train the machine learning model using
historical data before deploying it in the simulation program. Finally, the machine learning model is used
to predict next hop of each parcel given the specific context once it is created, until it is delivered.
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4 PROPOSED METHOD

Based on the simulation framework described in Section 3, this section is dedicated to the construction of
the machine learning model for next-hop prediction. A straightforward approach to implement this can be
directly mapping the features representing the current state of the parcel to the most probable next hop,
which can be cast into a multi-class classification problem, with each candidate next hop defined as a class.
However, this can induce variations on the output dimensions since the number of candidate next hops for
different distribution centers are not guaranteed to be consistent. It means that we need to establish an
individual model for each distribution center, which can hardly be reused. In order to tackle this difficulty,
we adopt the common practice in the recommendation system community, where the information of the
user and candidate item are fed into the machine learning model simultaneously to generate a click-through
rate (CTR). Inspired by that, we propose to feed the features corresponding to both the current hop and
candidate next hop into the machine learning model simultaneously, and generate the probability that the
solution is selected by the decision maker. This approach offers significant flexibility, such that it can
evaluate if a route can be selected as long as the pair of current/next hop distribution centers are given,
regardless the topology of any specific logistics network. Hence, the machine learning model proposed in
this work can be presented by

y = f (x), (1)

where the the feature vector x contains the features extracted from the current state of the parcel and the
context of candidate next hop, and y is the probability that the route can be selected by a decision maker.

4.1 Feature Selection

In order to include enough key foundations that can facilitate decision making, we adopt 4 types of
information in the input feature vector x as follows.

• Parcel Information For each parcel, we consider its basic attributes including weight, volume,
and the number and types of items, as they can impact the efficiency of sorting and transportation.
Furthermore, we also consider the origin, destination, and time efficiency-related features as they
are important basis for decision makers to determine their routing.

• Current Hop Information For the distribution center corresponding to the current hop, we consider
the regional features as it represents the topological information. We also consider the workload
information of the distribution center as the decision maker may tend to assign the parcels to more
down-stream distribution centers if its workload is high.

• Candidate Next Hop Information Similar to the current hop, we consider the regional and
workload-based information of candidate next hop as well, as they will impact the expected time
efficiency.

• Candidate Route Information Given the current hop and candidate next hop, the candidate route
is automatically fixed. For the route, we consider the availability of resources such as the number of
vehicles, time-efficiency-related information such as transportation time, and the recent workload.

For each distribution center and route, their indices are included in the feature set as well, to investigate
high-order correlations with decision making. According to the above categorization, the feature vector x
can be divided into 4 groups, such that

x = [xP,xDC,xDN ,xR], (2)

where xP, xDC, xDN , and xR are the segments corresponding to the parcel, current hop, candidate next hop,
and candidate route, respectively. Among these groups of features, xP and xDC represent the current state
of the parcel, and xDN and xR represent the information of candidate next hop. The considered features
can be classified into numerical ones (e.g., the weight of parcel) and categorical ones (e.g., indices of
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distribution centers). While the numerical ones are directly taken as the input of the machine learning
model, the categorical ones are one-hot encoded before being used. In practice, these factors can be jointly
considered to determine the routing of parcels.

4.2 Model Construction

In order to investigate the underlying patterns of input features, recognize their correlations with the decisions,
and make full use of their prediction power, this work adopts the recent advance of recommendation system,
i.e., the DeepFwFm model (Deng et al. 2021), for the construction of f (·). The DeepFwFm model comprises
two components including a deep neural network (DNN) component and an FwFm component. Before
entering these components, the sparse one-hot formats of the categorical features need to pass through
a embedding network to obtain the compressed format. As the decision maker will jointly consider the
impact of multiple factors to the efficiency of logistics operations when selecting the routing of parcels, their
contributions to the final decision is usually highly complicated. Taking advantage of the highly nonlinear
architecture, the DNN component takes all numerical features and the embedded formats of the categorical
features to explore their manifold correlations with final decisions. In contrast to the DNN component, the
FwFm component only absorbs the embedded formats of categorical features to learn their representations
based on their interactions. While a numerical feature usually has an explicit physical meaning, a majority of
categorical features are indices, whose values cannot be directly compared. However, their contributions to
the final decision can be reflected in their historical interactions. For instance, the frequency that distribution
centers di and d j have been selected as adjacent hops of a parcel can provide useful insights on the decision
strategy. In our proposed model, this is investigated using the FwFm component. Finally, the outputs of
these two components are summed to construct the output of the DeepFwFm model.

For a feature vector x, let the set of numerical and categorical features be denoted by Θ and Φ,
respectively. Thus, the value of numerical feature θ ∈ Θ is denoted by sθ , and the embedding vector of
categorical feature φ ∈ Φ is denoted by eφ . Furthermore, we denote the DNN and FwFm components by
fDeep(·) and fFwFm(·), respectively. Among these components, the input of fDeep(·) is the concatenation
of two vectors s and e, where s = [s1, . . . ,sθ , . . . ,sΘ], such that each dimension corresponds to a numerical
feature, and e = [e1, . . . ,eφ , . . . ,eΦ], such that each segment corresponds to a categorical feature. fFwFm
can be mathematically represented as

fFwFm(e) = w0+
Φ

∑
φ=1

⟨eφ ,vφ ⟩+
Φ

∑
φ=1

Φ

∑
φ ′=φ+1

⟨eφ ,eφ ′⟩Rφ ,φ ′ , (3)

where w0, vφ and Rφ ,φ ′ are learnable model parameters. Finally, the output of the DeepFwFm model is
computed by

f (x) = fDeep(s,e)+ fFwFm(e). (4)

4.3 Training and Inference

In order to train the model, we sample a set of processing records denoted by N , where each record
corresponds to a combination of parcel and its current distribution center. Among these records, each
record is combined with its next-hop distribution center to create a positive sample. It is also combined
with other available distribution centers to create negative samples. Thus, the positive and negative samples
can reflect the choice of decision makers under specific contexts, thereby enabling the learning of decision
strategies. The sets of positive and negative samples are denoted by Np and Nn, respectively. Based on
these samples, the DeepFwFm model is trained through minimizing the cross-entropy loss (Mao et al.
2023) using Adam (Kingma and Ba 2015) optimizer. Note that the embedding network for compressing
categorical features is treated as a component of the machine learning model, whose parameters are learned
simultaneously with the weights of the DeepFwFm model.
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Figure 3: When a parcel arrives at a distribution center di, it first generates a set of candidate next hops.
For each candidate distribution center, a feature vector is created according to Equation (2), and fed into
the DeepFwFm model to compute the probability that it will be selected by a decision maker.

After the DeepFwFm model is fully trained, it is integrated into the simulation program to emulate
the behavior of decision maker on determining the routing of parcels. In the simulation system, a set
of parcels will be generated along with their basic attributes such as volume, weight, type, origin and
destination. For each parcel, the simulation system sequentially determines the next-hop routing in its
O-D path. As depicted in Figure 3, when a parcel p arrives at a distribution center di, it first generates
a set of candidate next hops by gathering the distribution centers have appeared to be the next hop of
the current one in history, denoted by Dcand . For each candidate distribution center d j ∈ Dcand , a feature
vector [xP(p),xDC(di),xDN(d j),xR(di,d j)] is created according to Equation (2), which is subsequently fed
into the DeepFwFm model to compute the probability that it will be selected by a decision maker. Among
all the candidate distribution centers, the one with the largest probability is chosen as next hop of parcel
p. Subsequently, the state of parcel p is updated by setting the selected next hop as the current hop, and
predict next hop using the DeepFwFm model until it arrives the destination.

5 EXPERIMENTAL RESULTS

In this section, experiments are conducted to evaluate the efficacy of the proposed method. We consider
a logistics network with 1100 routes and 1061 distribution centers, and sample the records of 1,450,189
parcels in several consecutive days. For each of them, a set of positive samples and negative samples are
created as mentioned in Subsection 4.3. For training data, we down-sample the negative data samples to
mitigate the imbalance issue between positive and negative data. The details of constructed datasets are
shown in Table 1. After the DeepFwFm model is fully trained, it is applied in the simulation program for
next-hop selection. Based on the above setup, the experiments in this work are divided into the following
two parts.

• In the first part, the proposed method is compare with three other machine learning techniques, i.e.,
catBoost (Prokhorenkova et al. 2018), DeepFM (Deng et al. 2021), and FwFm (Pan et al. 2018)),
for prediction accuracy. Through this set of experiments, we intend to demonstrate the capability
of the proposed method to emulate the behavior of decision makers.

• In the second part, the outputs of machine learning models are compared with conventional rule-
based simulation strategy for estimating the workload in each route, where the rule-based simulation
strategy determines the O-D routing of each parcel by selecting the series of hops with minimum
processing time. As route-wise workload is critical to evaluate the performance of logistics system,
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we intend to demonstrate the capability of the proposed method on improving simulation accuracy.
Totally 53.4 million parcels are created for the simulation.

The machine learning models are implemented using Python language, and deployed on a cloud server with
4 2.3GHz CPUs, 20G RAM and 3 NVIDIA TESLA P40 GPUs. The simulation program is implemented
using Java, and runs on another cloud server with 8 2.4GHz CPUs and 50G RAM. When integrating the
outputs of machine learning models for decisions in simulation, the machine learning models interact with
the simulation program through http protocol.

Table 1: Dataset construction.

Dataset Num. Parcels Num. Positive Sample Num. Negative Sample
Training 1256041 1282024 4446775
Testing 194148 196666 1049871

The accuracy for prediction and simulation are presented in Table 2. As next-hop prediction is essentially
a binary classification task, the accuracy is evaluated using area under curve (AUC). The target of the
simulation program is to evaluate the workload of each route, i.e., the number of parcels processed by each
route. Hence, we compare the simulation accuracy using MAPE. We also note that the rule-based simulation
strategy determines the complete O-D path of each path at the beginning, and cannot generate the prediction
for all considered parcel-hop combinations. Hence, the prediction accuracy of rule-based simulation is not
presented. We can observe from Table 2 that DeepFwFm, DeepFm, and FwFm can achieve an AUC above
0.92, while catBoost leads to an inferior AUC of 0.8560. This attributes to the fact that catBoost fails
to investigate the interactions between features, and cannot effectively utilize the underlying patterns of
categorical features. Within the methods considering the interactions between features, DeepFwFm slightly
outperforms DeepFm and FwFm, due to the appropriate trade-off between deep- and interaction-based
knowledge. We can also observe from the table that the methods with higher prediction AUCs also result
in lower simulation MAPEs for route-wise workload estimation. Furthermore, all machine learning-based
methods outperform rule-based simulation on the MAPE for workload estimation, where the MAPE achieved
by DeepFwFm is 28.89%-24.06%=4.83% lower than rule-based simulation.

Table 2: The prediction and simulation accuracy of the machine learning techniques and rule-based
simulation.

Methods DeepFwFm DeepFm FwFm catBoost Rule-Based Simulation
Prediction AUC 0.9289 0.9279 0.9287 0.8560 -

Simulation MAPE 24.06% 24.47% 24.64% 26.82% 28.89%

In order to gain more details, we assign the routes considered in the simulation into bins based
on the difficulty level for workload estimation using rule-based simulation. As there are totally 1100
routes, we divide them into 5 groups based on the MAPE of rule-based simulation, where the ranges
of simulation MAPEs are [0,0.2], (0.2,0.4], (0.4,0.6], (0.6,0.8], and [0.8,∞], respectively, such that the
estimation difficulty is increasing as the index of group increases. Correspondingly, the number of routes
contained in these groups are 550, 154, 90, 17, and 289. We show the simulation MAPE within each group
in Figure 4, where we can observe that the machine learning-based techniques demonstrate substantial
advantages compared with rule-based simulation when the difficulty level is high. That is because these
routes are associated with high uncertainty, which cannot be appropriately captured by hard-coded rules. In
contrast, the machine learning-based methods can develop data-driven insights on the strategies of historical
decisions, and apply them to make more accurate predictions in future scenarios.

While the DeepFwFm method outperforms the conventional rule-based simulation by 4.83% in total
on the MAPE for estimation the route-wise workload, the dispatch error can be reduced by 860 trucks for
the 53.4 million parcels if the capacity of each truck is 3000 parcels. Apart from the significant reduction
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Figure  4:  Machine  learning-based  techniques  demonstrate  substantial  advantages  compared  with  rule-based
simulation  when  the  difficulty  level  for  estimation  is  high.

of  economic  cost  for  truck  usage,  this  also  mitigates  the  potential  risk  on  transportation  delay.  In  order
to  assess  the  cost  for  employing  the  data-driven  decision  strategies,  we  also  compare  the  execution  time
length  for  rule-based  simulation  and  data-driven  simulation  using  DeepFwFm.  Through  optimizing  the
simulation  program  architecture,  it  takes  157  seconds  for  rule-based  simulation  and  1690  seconds  for
data-driven  simulation.  The  increase  on  execution  time  is  acceptable  in  real-world  applications  especially
when  considering  the  granted  benefits.

6  CONCLUSION

In  this  work,  we  proposed  a  new  paradigm  for  utilizing  machine  learning  in  logistics  system  simulation.
In  specific,  we  utilize  machine  learning  to  emulate  practical  operations  in  logistics  systems  through  data-
driven  decision  strategies,  thereby  improving  the  simulation  accuracy.  It  is  validated  via  establishing  a
machine  learning  model  to  predict  the  routing  of  parcels  given  the  features  extracted  from  current  states
and  candidate  next  hops  of  parcels,  where  the  proposed  method  demonstrates  substantial  improvement
of  simulation  accuracy  compared  with  rule-based  approaches.  Furthermore,  the  proposed  method  is  also
characterized  by  the  high  flexibility  and  transparency,  and  all  of  these  underscore  the  great  potential  to
facilitate  the  high-quality  logistics  system  simulation  in  practical  scenarios.
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