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ABSTRACT 

The ever-evolving automotive industry landscape, driven by shifting customer demands, necessitates 
flexible manufacturing solutions. Reconfigurable Manufacturing Systems (RMS), integrating modular 
facilities and Automated Mobile Robots (AMRs), emerge as pivotal alternatives to inflexible dedicated 
conveyor systems. This study delves into optimizing layout reconfiguration within automotive assembly, 
with a specific focus on the Reconfigurable Assembly System (RAS) inheriting the traits of RMS. We are 

focused on addressing scenarios characterized by frequent production schedule changes, necessitating 
frequent layout reconfiguration. Our approach prioritizes maintaining high area utilization without 
compromising throughput. In this study, we modified the NSGA- II algorithm, one of advanced Genetic 
Algorithms (GA) and proposed a layout reconfiguration algorithm to concurrently optimize two key 
objectives: (1) area utilization and (2) throughput, crucial facets of layout optimization. The proposed 
algorithm, integrated with discrete event simulation models spanning six layout scenarios, demonstrates 

significant enhancement in area utilization without compromising throughput integrity, by confirmed 
simulation studies. 

1 INTRODUCTION 

The conventional automotive assembly process is traditionally organized around in-line conveyors (Verma 
et al. 2022; Oh et al. 2022). However, the modern automotive industry continues to focus on customization 
and personalization, leading to a shift towards customized production (Verma et al. 2022; Oh et al. 2022; 

Kabasakal et al. 2017). In order to quickly respond to these increasingly diverse customer demands, it is 
necessary to move from the dedicated inflexible conveyor-centric system to a more flexible system (Oh et 
al. 2022). 

The Reconfigurable Manufacturing Systems (RMS) is one of the most suitable solutions to respond to 
rapidly changing market conditions (Yelles-Chaouche et al. 2021). This concept, first defined by Prof. 
Koren in 1999, aims to improve the responsiveness of manufacturing systems to unexpected changes in 

product demand (Koren et al. 2018). The RMS, which refers to a system designed from the ground up for 
this purpose, has six core features: Modularity, Integrability, Diagnosability, Convertibility, Customization, 
and Scalability (Bortolini et al. 2018). The Reconfigurable Assembly System (RAS), which is the target 
manufacturing system of this study, has the features of RMS and is a more flexible and efficient system 
than conventional assembly systems because of modular facilities and AMRs (Verma et al. 2022; Löcklin 
et al. 2022; Bergmann 2022). 

The RAS needs rapid reconfiguration of its capacity and layout depending on the production schedule 
change, and it needs to be flexible enough to respond to unpredictable changes, which requires faster 
decision-making. In addition, the RAS must be able to efficiently utilize the given plant floor area to prevent 
the occurrence of space waste while considering the travel distance of Automated Mobile Robots (AMRs) 
and the possibility of adding new workstations. Therefore, this study aims to develop a layout 
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reconfiguration algorithm to optimize the layout for the RAS rapidly in such a way that the area utilization 
and the throughput (calculated by Units Per Hour (UPH)) are simultaneously enhanced. For this purpose, 
we first formulated the problem in a traveling salesman problem (TSP) and then developed a metaheuristic 

algorithm based on NSGA-II, one of the competitive genetic algorithms solve the problem where the 
discrete-event simulation is used to validate the proposed algorithm. 

The paper is organized as follows: Section 2 provides a definition and overview of TSP and NSGA-II, 
followed by a more detailed problem definition and the implementation of the algorithm and simulation in 
Section 3. Then, in Section 4, we apply the implemented algorithm to six different scenarios and discuss 
the results. Section 5 concludes the paper with the outlook on this research. 

2 LITERATURE REVIEW 

As research on layout optimization continues to be actively pursued, various methodologies targeting 
diverse systems are proposed and utilized (Maganha et al. 2019; Naik and Kallurkar 2016; Pérez-Gosende 
et al. 2021). One such approach is to apply the TSP to address the layout optimization challenge (Lam and 
Delosme 1988). TSP involves combinatorial optimization, aiming to find the shortest distance to visit all 
listed cities, given their respective distances (Goyal 2010). This problem is widely recognized as one of the 

NP-Hard problems, where the expected time to find the optimal solution increases exponentially with the 
increase in the number of solutions (Raman and Gill 2017; Akhand et al. 2020). Optimization algorithms, 
which attempt all possible solutions, employ exhaustive search techniques. Therefore, as the number of 
solutions increases, the computational and time resources required also increase, making it impractical to 
consider such methods for this problem (Tao et al. 2016). On the contrary, metaheuristics operate by finding 
approximate solutions for NP-Hard problems, rendering them more practical approaches (Verma et al. 2021; 

Sörensen & Glover 2013). Consequently, research utilizing various metaheuristics such as Simulated 
Annealing (SA), Ant Colony Optimization (ACO), hybrid ACO, Genetic Algorithms (GA), continues to 
address the TSP, with studies conducted by Sun and Teng (2002); Hasan, Mohammed, Ţăpuş and 
Hammood (2017); Tahery and Kucuksari (2020) serving as examples. 

NSGA-II, as one of the competitive GA methods, is widely utilized for solving diverse multi-objective 
problems and has been actively applied as an enhanced genetic algorithm in TSP (Raman and Gill 2017; 

Verma et al. 2021; Deb et al. 2002; Dong et al. 2022; Azadivar and Wang 2000). It inherits key elements 
such as crossover, mutation, evaluation, and selection from GA (Bergmann 2022; Mirjalili 2019; Lambora 
et al. 2019). Additionally, it incorporates crucial features like Fast Non-dominated Sorting Approach, 
Density Estimation, and Crowded Comparison Operator (Deb et al. 2002). NSGA-II is actively utilized in 
various layout optimization-related studies aiming to enhance the flexibility of the target system. For 
instance, Izui et al. (2013) utilized NSGA-II for multi-objective layout optimization of Robotic Cellular 

Manufacturing Systems (RCMSs), conducting research based on criteria such as robot operating time, 
maneuverability, and layout area design. Erfani, Ebrahimnejad and Moosavi (2020) implemented NSGA-
II and two local search algorithms to simultaneously optimize facility layout and scheduling problems, 
validating the results. Li, Chen, Song, Li and Yu (2023) performed research on optimizing logistics-based 
workshop layouts with the goal on carbon emission reduction using modified NSGA-II. These algorithms, 
such as NSGA-II, are often combined with discrete-event simulations (Bergmann 2022). Azadivar and 

Wang (2000) proposed a method for optimizing the layout of manufacturing systems by integrating 
simulations into the procedures of the GA algorithm. RazaviAlavi and AbouRizk (2017) applied this 
method to derive optimal layouts in construction sites. When combined with metaheuristic methods, the 
discrete-event simulations help algorithms make clear decisions by reflecting the complexity of 
manufacturing sites that are difficult to represent solely through mathematical models (Azadivar and Wang 
2000; RazaviAlavi and AbouRizk 2017; Mourtzis et al. 2014; Lee et al. 2022). In this study, we aim to 

incorporate simulation models into the NSGA-II algorithm based on existing research to consider the 
complexity of the target system, RAS. 
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3 GENETIC ALGORITHM AND SIMULATION BASED INTELLIGENT LAYOUT 

RECONFIGURATION METHOD 

Table 1 illustrates the RAS designed for the beginning part of the trim area in the automotive assembly 

process. The target trim area includes Door off, Weather strips, and Main Body Wire Harness (MBHW), 
with its layout configured in a 4 by 4 area, totaling 16 sizes. There are four types of facilities: 
   

• Facility A is dedicated to handling the Door off process because it requires special tooling. 
• Facility B can handle both Weather strips and MBHW processes as they do not require any 

special tooling and can be performed using common torque tools. There is no specific 

precedence order between Weather strips and MBHW. 
• Facility C is designated for repair products. Note that all products undergo inspection before 

transferring to the next trim area. Defective products are directed to Facility C for repair. 
• Facility D provides space for AMRs to wait for jobs and be recharged if necessary. 

 
Within Facility B, the processing sequence begins with the random selection of either the BMHW or 

weather strips operation at the outset. If BMHW is chosen initially, the product undergoes the weather strips 
process within the next Facility B. Subsequently, all products proceed to the inspection facility for quality 
checks. In the event of a defect, the product is sent for rework and redirected to either Facility A or B, 
depending on the type of defect. Once again, one of the two tasks (weather strips or BMHW) is randomly 
selected for initial execution. Following the completion of all processes, another inspection is conducted 
again. The precedence order in Table 1 presents all possible process sequences. Furthermore, both Facility 

A and B consist of two modules: the part-setting module and the assembly module. 

Table 1: Information of target assembly system. 

Type Description 

Area 16 (4x4) 

Facility A : Door off 

B : Weather strips & MBHW(Main Body Wire Harness) 

C : Inspection 

D : Repair shop 

Precedence 

Order 

Case1) Defective product does not occur 

 

Case2) Defective product occurs 

Module  

 

 

 

 

 

 

Setting 

Assembly 

* Two types of facilities are defined into one module 
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We optimized the layout of the target system by modifying NSGA-II, one of the advanced genetic 
algorithms, and developed a reconfiguration algorithm. To employ a genetic algorithm, the layout 
information derived from the list of facilities must be initially encoded as genetic information. In this study, 

the position of facilities is assumed to be destinations in the TSP and is substituted as genetic information 
for utilization. The information for each facility, designated as A, B, C, and D as depicted in Figure 1, 
corresponds to the colors red, orange, yellow, and green, respectively. The resulting chromosome 
information represents the entire layout of one facility, with each number constituting one gene in the 
chromosome. 

 
Figure 1: Conversion example of layout information into chromosome. 

 

 

Figure 2: Sequence diagram of proposed reconfiguration algorithm derived from NSGA-II (Deb et al. 
2002; Azadivar and Wang 2000). 

3426



Park, Oh, Lee, Lee, Fan, Arinez, and Noh 
 

 

 Our reconfiguration algorithm depicted in Figure 2 aims to simultaneously optimize two metrics: Area 
Utilization and UPH values, which are in a trade-off relationship. The algorithm begins by randomly 
generating 10 initial solutions. Each genetic information undergoes simulation based on the gene 

information to derive Area Utilization and UPH values as results. Subsequently, the objective function 
values of the 10 solutions are sorted, and subsequent generations derive solutions using crowding distance 
values based on their objective function values. Cross probability (5%) is applied to each of the 16 genes, 
while for mutation, a 1% probability is used to randomly select two genes for swapping their placement 
order. The algorithm gradually decreases crossover and mutation probabilities based on decay conditions, 
defined through trial and error, when the sum of two objective function values is above 9.4 and the number 

of generated generations exceeds 20. The iteration sequence concludes when the number of generations 
reaches the maximum generation value of 30. 

 

Figure 3: Simulation model of target system. 

 

Figure 4: 3D models of each facility, product, and AMR. 

 Figure 3 illustrates the simulation model employed to derive the objective function values for each 
layout solution. In Figure 3, components 1, 3, 4, and 5 present the facility, AMR, layout information, and 
simulation results, while component 2 depicts the simulation model generated and executed based on this 
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information. Figure 4 presents 3D models of facilities, product (Car), and AMR. The models are 
strategically placed and utilized within the simulation model according to the layout information defined 
prior to simulation execution. All assembly facilities are positioned behind the Door off or Weather strips 

& Main Body Wire Harness (MBWH) equipment. It is assumed  that AMRs will operate individually, each 
consisting of three units. The simulation model is used to determine the objective function values, namely 
Area Utilization and UPH, for each solution, calculated with the following formulas. 

 

 𝐴𝑟ⅇ𝑎 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
1

𝑛
∗ ∑ √(𝑥𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑥𝑖)2 + (𝑦𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑦𝑖)2𝑛

𝑖=1  (1) 

 
 Firstly, the formula for area utilization employs the Euclidean method, which divides the sum of 
distances from the center coordinates to each facility by the number of facilities (𝑛). In this context, the 

central coordinates of the layout are denoted as (𝑥𝑐𝑒𝑛𝑡𝑒𝑟, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟), and the center coordinates of facility i 
are represented as (𝑥𝑖, 𝑦𝑖). Since the target system may frequently implement new facilities or warehouses 
depending on the circumstances, it is essential to maximize the utilization of available area. This aspect is 
evident in the movement range of the AMR within the simulation model, thus establishing the degree of 
dispersion of each facility as the primary objective function. 
 

 𝑈𝑃𝐻 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 (2) 

 
 Secondly, UPH represents the production throughput (units) per hour, calculated by dividing the total 
number of finished products obtained during simulation by the total simulation time. These two values 
serve as objective function values to assess each solution. Production throughput analysis is a crucial factor 
in the design and operation of every production system. Therefore, it was selected as the second objective 
function for the proposed algorithm. 

 

Figure 5: Interface procedure within the proposed system. 

 Our reconfiguration algorithm and simulation model were implemented using Python and Siemens 

Plant Simulation 23.02, respectively. An interface between them was established using the xlwings library 
and Excel VBA. This interface facilitates the transfer of solutions generated by the proposed reconfiguration 
algorithm to the simulation. The solutions enable the derivation of results, which are then fed back as 
objective function values to the reconfiguration algorithm, aiding its progress. 

4 RESULTS 

The implemented algorithm is validated by defining scenarios and analyzing their results. Each scenario is 

defined in Figure 6 by varying the number of facilities. Furthermore, each scenario is redefined based on 
the results of the previous scenario according to user decisions. Scenarios 4 and 5, aimed at alleviating the 
AMR shortage issue from Scenario 3, apply two different approaches respectively. These scenarios are 
simultaneously applied to Scenario 6, as defined in Figure 6. 
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The generational objective function values of our proposed reconfiguration algorithm include (1) Area 
Utilization, (2) UPH, and (3) Total value, which integrates the two metrics. The Total value is calculated 
by assigning an equal weight of 0.5 to each of the Area Utilization and UPH values and then summing them. 

Area Utilization gradually improves in all scenarios. UPH does not exhibit as dramatic changes as Area 
Utilization; however, despite being in a trade-off relationship with Area Utilization, it consistently shows 
slight improvements across all scenarios, with no instances of degradation in value. This suggests that the 
proposed algorithm in this study is effectively operational. Furthermore, in the Total value combining both 
metrics, all scenarios show improvement, as depicted in Figure 7 below, with Scenario 5 producing the best 
result. 

 

Figure 6: Sequence diagram of scenario generation and defined scenarios information. 

 

    Figure 7: Simulation results of the proposed reconfiguration algorithm. 

 

Figure 8: Area Utilization improvement through evolutions in Scenario 6. 
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 Figure 8 displays how Area Utilization is improved across three different generations derived from 
Scenario 6, which the algorithm progresses. Changes in UPH are also observed along with Area Utilization. 
The diagram shows that the proposed algorithm effectively improves the area utilization without degrading 

the throughput. Meanwhile, Figure 9 illustrates the proposed algorithm's results for Scenario 5, including 
the layout transformation for a single solution. It is evident that as generations progress, all chromosomes 
gradually converge, with each representing a distinct solution layout. In this case, a solution encompasses 
facilities A, B, C, D, and Dummy, as delineated in Figure 1. Each facility is numbered and positioned 
according to its defined gene information, as depicted in Figure 9. Overall, common observations were 
identified across all scenarios in the simulation results. 

 
• Because Area Utilization and UPH are competing with each other, our proposed reconfiguration 

algorithm rather increases Area Utilization with priority while preventing degrading of UPH instead 
of improving both Area Utilization and UPH simultaneously. This shows that the proposed 
reconfiguration algorithm is intelligent enough to identify the trading-off relationship between two 
objectives and prioritize which objective. 

• Facility A, performing the first process, is primarily located in the first column close to the product 
input position. 

• Facility B, performing two processes, tends to be placed close to each other and near the last column 
close to the product output position. 

• Facility C is positioned closer to Facility A and B, enabling faster rework. 
 

Facility D tends to be placed closer to the center of the layout to efficiently improve UPH as the number 
of Facility A and B increases. 

 

Figure 9: Gene information from Scenario 5. 

5 CONCLUSION 

In response to the growing demand to serve a variety of customers, the RAS employs reconfigurable 
modular facilities and AMRs instead of traditional in-line conveyors. This manufacturing approach, 
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inheriting the traits of RMS, offers adaptability and responsiveness to unexpected dynamic manufacturing 
environments compared to dedicated manufacturing systems. In this study, we developed a layout 
reconfiguration algorithm modified from NSGA-II with a dual focus on optimizing area utilization and 

throughput. The implemented algorithm and simulation models are connected through an interface module 
and were executed for a total of six scenarios. As a result, the area utilization significantly improved in all 
scenarios, while the throughput (UPH), which is in a trade-off relationship with the area utilization, showed 
its slight improvement too. From the simulation results, it was observed that each facility was positioned 
optimally based on the relationships between facilities.  

While the target RAS system in this study is designed to consider real-world automotive manufacturing 

processes, a broader application of the algorithm may yield richer insights. Additionally, while our proposed 
algorithm demonstrates efficacy, comparative research against alternative algorithms such as particle 
swarm optimization algorithms could provide valuable insights for future endeavors. 
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