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ABSTRACT 

The semiconductor industry plays an important role in reducing carbon emissions and facilitating CO2 

savings through energy-saving applications, while also generating a significant CO2 footprint during the 
manufacturing process of chips. Despite this, microchips in end-applications have the potential to save CO2 
several times greater than the emissions generated. Chip manufacturers are required to be transparent in 
reporting the CO2 emissions and customers are demanding to reduce the footprint and to increase the 
handprint. In this paper, we present a simulation study which analyzes the energy consumption of two 
exemplary semiconductor products to assess the ratio of fixed and variable energy consumption. In addition, 

the paper analyzes the most energy consuming processes and the linkage between the capacity utilization 
and the energy consumption in a typical semiconductor facility. The paper suggests for future work to 
analyze the handprint as well and to investigate the relation between the footprint and handprint. 

1 INTRODUCTION 

The global semiconductor market value is expected to grow from 590 bn USD in 2021 to 1.065 tn USD by 
2030 (McKinsey & Company 2022). Semiconductors enable the reduction of carbon dioxide (CO2) 

emissions through electrification and energy efficiency improvements in different applications e.g. 
renewable energies and electric vehicles (McKinsey & Company 2022). The footprint of chip 
manufacturers is expected to significantly increase as manufacturing capacity expands to meet the growing 
demand for semiconductors. Enquired by customers and regulators, chip makers are required to account 
their emission in the assessment of the semiconductor industry’s footprint. To achieve this, semiconductor 
manufacturers must be reporting on scope 1, 2 and 3 emissions according to the greenhouse gas (GHG) 

protocol (BCG 2023). Simultaneously, the semiconductor industry facilitates CO2 savings, also known as 
the “handprint”. Consequently, the use-phase of chips in end products is resulting in an ecologically positive 
carbon footprint e.g. with significantly more CO2 savings generated than emissions (Liebi 2011). 
 In the context of the semiconductor industry, the concept of handprint takes on a unique significance. 
While the industry’s footprint represents the CO2 emissions and energy consumption, the handprint 
measures the potential of CO2 savings enabled using semiconductors in applications (Husgafvel 2021). This 

additional perspective on handprint allows us to view the semiconductor industry not just as an emitter of 
CO2, but also as a facilitator of CO2 savings. 
 In this paper, although, the handprint is not delved further, but for future research, it is essential to 
investigate the balance between the semiconductor industry’s carbon footprint and handprint. 
 The semiconductor industry is characterized by short product life cycles driven by fast technological 
advancements and the persisting influence of Moore’s law (Moore 1965). The semiconductor industry faces 

a highly volatile market causing inefficiencies in the supply-demand planning systems and capacity 
utilizations, specifically in time of upheavals (Aytac and Wu 2013). Moreover, the complex and lengthy 
semiconductor manufacturing process results in production lead times of up to six months or longer (Mönch 
et al. 2011). Among the various stages of semiconductor manufacturing, the cleanroom consumes the 
largest share of energy due to the unique environmental conditions required for wafer fabrication (Hu et al. 
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2020). Fabrication (“Fab”) cleanrooms operate continuously and are 1.000 times cleaner than surgery rooms 
and 50 times more energy consuming than commercial buildings (Kircher et al. 2010). To optimize the 
energy consumption, it is important to understand the link between the fab capacity utilization and the 

energy consumption. Due to organizational and financial reasons the latter is only available at a building 
level and not on an equipment or process level.  
Utilizing simulation methods can help bridge the gap in understanding the energy distribution and 
identifying the most energy-intensive processes in a typical semiconductor fabrication facility, providing 
valuable insights for optimization and energy efficiency improvements. 

To address this challenge, this paper employs a discrete-event simulation approach (DES) based on an 

adapted version of the framework of Banks et al. (2005). The simulation model used a combination of real 
and synthetic data of two products in a semiconductor fab to assess the critical energy consuming processes 
and to examine how varying fab capacity utilization levels impact the energy consumption. The data of the 
investigated semiconductor fab between infrastructure (e.g. cleanroom) and equipment energy consumption 
shows that the ratio is 66% to 34% respectively. Thus, the ratio of fixed (including the infrastructure and 
some equipment) versus variable energy consumption, which in the past used to be estimated through a 

rule-of-thumb to be 70% to 30%. The study also elaborates the relationship between the fab capacity 
utilization and its impact on energy consumption by reconstructing the Ecological Operating Curve (EOC) 
adapted from the classical operating curve which links utilization to the flow factor (Hopf et al. 2022). This 
paper is structured as follows: Section 2 provides an overview of existing approaches in academic literature 
followed by the methodology employed in section 3. Subsequently, the simulation model will be proposed 
in section 4. The results will be discussed in section 5 leading to the conclusion in section 6. 

2 LITERATURE REVIEW 

As Liebi (2011) defined a methodology for the calculation of CO2 emissions in the semiconductor supply 

chain, the frontend processes (FE) were identified as the major energy-consuming processes. In the global 

manufacturing network, the frontend encompasses activities building up integrated circuits (ICs) on the 

wafer surface to create microchips. The wafers can undergo up to 900 non-linear process steps in different 

fab locations resulting in the lead time of up to six months or longer even though most fabs operate in a 

365/24 mode (Mönch et al. 2013). To enable production in a particle-free environment, clean rooms must 

maintain a distinct level of temperature, air pressure, humidity, and cleanliness (Ma et al. 2021) to operate 

on a submicron or nano level (Ehm and Lachner 2016). Maintaining cleanroom conditions implies a 

hundred air changes per hour (Kircher et al. 2010). For the maintenance of the necessary humidity, chillers 

and heaters are installed and act as fixed energy consumers. The initial step that creates material layers on 

a clean wafer is oxidation, deposition, or diffusion process, imposing a temperature between 900-1200°C 

(Gopalakrishnan et al. 2010). Manufacturing equipment such as thermal evaporators, mask aligners and 

surface profilers can be seen as variable energy consumers. The backend (BE) of the semiconductor supply 

chain involves several critical steps, including dividing the wafer into individual microchips, connecting 

them to outside pins through die attach and wire bonding processes, and followed by testing for quality 

control (Ehm and Lachner 2016). Compared to the BE, the FE represents by far the most energy- and 

capital-intensive part of the semiconductor supply chain. Therefore, the focus of this paper lies in the FE. 
The objective of this semiconductor supply chain simulation is to address the energy-efficiency topic 

based on the 4 levels of aggregations of supply chain outlined in Figure 1. Simulations allow to 
mathematically model and analyze the behavior of prevailing systems in a cost-efficient and time-
independent manner distinguishing between discrete-event, agent-based and system dynamics simulations 
(Banks et al. 2005). Diverging assumptions can be tested by the adjustment of parameters providing 

transparency in the entity dependencies of systems (Borshev and Filippov 2004). Discrete-event simulations 
(DES) portray entities following a successive series of process blocks that symbolize real manufacturing 
activities (Borshev and Filippov 2004). On the contrary, agent-based simulations (ABM) are used to 
represent interacting instances on a higher abstraction level (Grigoryev 2022). Thirdly, system dynamics 
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(SD) imitate the interaction between numerous parties on a strategic level, for instance, of an end-to-end 
supply chain (Sterman 2000). Since manufacturing processes are portrayed, the DES is chosen in this study. 

 

 

Figure 1: Simulation levels in semiconductor manufacturing adapted from Adan et al. (2012) and Fowler 
et al. (2015). 

Yorck von Wartenburg (2013) investigates whether the global transportation networks for a flexible 
usage of idle capacities at different FE plants of a semiconductor manufacturer can lead to a better CO2 
balance implying a lower energy consumption per unit. For this reason, the emissions of the production 

facilities, transportation and scraped quantities are analyzed in a DES. It was found out that flexibility has 
a positive impact on the CO2 balance in the FE process for products with an inconsistent demand. Hamed 
et al. (2018) delves deeper into the CO2 emissions of the flexible capacity utilization and confirms the 
results by Yorck von Wartenburg (2013). Thiede (2012) focuses as well on the manufacturing systems on 
Level 3 in multiple case studies and formulates a methodology for the measurement of the fixed energy 
consumption. 

 Moreover, Resman et al. (2021) establishes a successive process guideline for the usage of simulations 
aiming to connect both the simulation model and the real system. The idea is to steer the real production 
system by the simulation model. Furthermore, Omar et al. (2015) present a hybrid simulation model that 
combines discrete and continuous modes by accurately synchronizing the sequence signal with the real-
time frame. Consequently, the energy consumption of an automotive production facility can be anticipated 
considering manufacturing, stabilization of air conditions and equipment that uses energy. 
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 Regarding the simulation level 2 of the work area, Guo et al. (2020) outline a flexible cellular 

manufacturing simulation that enables optimization of an air conditioner production line according to 

defined targets by the implementation of the parameter results. However, Seow and Rahimifard (2011) 

remark that the energy consumption shall be quantified on the process and more granular on the product 

level and therefore, the Embodied Product Energy (EPE) framework quantifies the required energy to create 

a manufacturing unit. In this regard, the simulation of a semiconductor fab by Hopf et al. (2022) evaluate 

the variable energy consumption of a generic product in a generic frontend process path. Consequently, a 

share of the energy consumption can be assigned to each process step in the frontend.  
 On the machine level e.g. level 1, Jeon and Prabhu (2013) model the energy consumption in a 

semiconductor fab and observe that the energy efficiency increases, if the equipment operates with lower 
power. Since machines can be configured flexibly and replaced corresponding to the product’s 
requirements, the tool path can change accordingly. Thus, the energy consumption varies and can be 
reduced by predefined equipment adjustments and flexible machine sequencing (Jeon and Prabhu 2013). 
Since the Cycle Time (CT) can be defined as the average time a manufacturer needs to process a customer 
order, Hopp and Spearman (2011) noticed that the waiting i.e. queuing time increases exponentially to the 

capacity utilization of a workstation. Thus, the cycle time consists of the queuing as well the Raw Process 
Time (RPT) (Hopp and Spearman 2011). Fowler and Robinson (1995) capture the trade-off between the 
maximum usage of capacities and minimization of the cycle time with a rising queuing time in the concept 
of the Operating Curve (OC) see Figure 2. The idea is to find the optimum of the fab variability α (alpha) 
between the utilization of a workstation and the Flow Factor (FF) which represents the relation between the 
total CT and the RPT (Figure 2). Therefore, the FF reacts more sensitively at a higher capacity utilization 

as the queuing time rises (Fowler and Robinson 1995). 

 

Figure 2: Schematic visualization of the economic and ecological operating curves by Hopf et al. (2022). 

 Hopf et al. (2022) extend the concept of the operating curve by an Ecological Factor (EF) to the 
Ecological Operating Curve (EOC) portraying the energy consumption of the FE manufacturing process in 

the semiconductor industry. If the machine capacities are fully exploited, the energy consumption per 
product would decrease and thus, the EOC declines as the EOC implies the relation between the available 
capacities and the actual throughout. Therefore, delving deeper into the energy consumption patterns of a 
semiconductor fab and identifying the most energy-intensive processes, as well as further exploring the 
EOC related to fixed energy consumption per product, is essential. The focus of this paper is to model the 
fixed and variable energy consumption in a semiconductor fab identified by Hopf et al. (2022) in detail 

using specific products with different tool paths instead of a generic product. Hence, the energy efficiency 
can be evaluated and consequently optimized. 
 The scope of the simulation in this paper is considering the fab level in a detailed granularity of 
machines. In a typical semiconductor manufacturing company, the concept of a global virtual factory is 
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prevalent. This refers to the orchestration of the entire manufacturing network as if it were a single, unified 
entity. In the following section, we will explore the methodology and simulation approach. 

3 METHODOLOGY 

This section introduces the methodological approach for the conceptualization of the simulation model. A 
simulation model for the verification of the production conditions in a semiconductor fab of two products, 
namely Product A and Product B, is created. An entity-relationship diagram (ERD) according to Bagui and 
Earp (2011) highlights the process flow of the two products across the entire supply chain of a 
semiconductor manufacturer which were used in the simulation study.  

3.1 Simulation approach 

In this paper, the FE production environment of two products is simulated with a focus on two different 

product routes to grasp the process interdependencies. The DES model displays a sequence of FE operations 

in form of building blocks starting from a source and ending in a sink (The Anylogic Company 2019). The 

products pass as entities through the blocks enabling to track busy and idle states and thus, the energy 

consumption. Machines on Level 1 have been created based on the products’ route of the two chosen 

products as described in the ERD diagram in Figure 3.  
 An ERD visualizes the entire database structure showing entities, their attributes, and their 
relationships. There are eight entities involved in this model, namely Supply Chain, Location, Facility, 
Route, Tool Groups, Product Type, Process Times, and Single Process Steps (SPS). Each entity is 

represented by a class and has its own attributes having a unique Primary Key (PK) and multiple Foreign 
Keys (FK). Some of these FKs are the PKs for other entities and help to link the different entities together. 
The ERD highlights the relationships between the entities and associated attributes in an overview. Each 
entity has an input and an output parameter. While the input parameters are input into the simulation model, 
the output parameters are calculated based on the different product routes of the product. 
 Each entity has a specific function and expresses how the product is manufactured and delivered across 

the supply-chain network. As shown in the ERD, a single product or wafer, has multiple points of contact 
in a supply chain. A Product Type, such as a diode or an integrated circuit, consists of one or many Routes 
which consists of different operations, which in turn broken down into single process steps (SPS). For every 
Route, Process Times data was obtained from the operations and controlling department for processes such 
as oxidation, lithography, ion implantation, etc. These process steps are performed in Tool Groups, which 
includes all the equipment and machinery necessary for performing the different operations to make 

different products. A Tool Group belongs to a Facility. A Facility is found in a Location, which is part of 
the Supply Chain. The network through which all these products go through is the Supply Chain which is 
globally spread across the world. 
 Real and qualified synthetic data collected from a typical semiconductor was used to model the data 
structure of the ERD. Energy consumption data is available on building granularity, for this study the energy 
consumptions for processes and equipment were obtained via a top-down analysis using parameters 

calibration similar to the approach from Hopf et al. (2022) and validated the results with measurements 
from selected tool groups and validation via expert knowledge. Even when fab is running in an idle state 
its energy consumption doesn’t reach the value of zero, due to the warm steel state. The warm steel state 
means that the machines are ready to process wafers and set in stand-by mode implying that they still 
consume energy in this state. The cold steel mode on the contrary, means shutting down the machine but 
this would take up to a week to return to the environmental conditions before shutdown. Product A and 

Product B with 82 and 96 operating sequences respectively, each of which have corresponding SPS 
assigned to them depending on the type of operation sequence used. The chosen products represent a 
simplified version of chips where the data is available with the most energy important steps. 
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Figure 3: Entity-relationship diagram (ERD) representing the route and steps to produce semiconductor 

products from single equipment to supply chain level. 

3.2 Simulation Setup 

The simulation model was developed using the modelling software AnyLogic 8. The simulation model 
considers the re-entrant flow nature of the manufacturing process where operation sequences involve 
identical and repetitive processes. This results in wafer lots passing through the same machines multiple 
times before the completion of the production flow. Moreover, the same processes may require different 
SPS depending on the operation sequence of the current wafer lot. For instance, two oxidation steps may 
use different SPSs for two different operation sequences, depending on which oxidation step the wafer lot 

currently needs to undergo. The product route data contains the actual processing times and waiting times 
for each operation sequence of the wafer lot.  

It is important to note that not all processes in semiconductor manufacturing are wafer or lot based. 
Some processes, such as oxidation, are processed in batches, where multiple wafer lots are combined and 
processed together in one machine. Typically, production processes involving furnaces are batched 
processes. The products’ routes data identifies which processes are batched; the simulation model takes that 

into consideration. In actual production scenarios, batch sizes could vary with time and processes in regards 
of their availability and production demand. However, for this study, after a discussion with subject-matter 
experts from the fab, one batch size was chosen and used in the simulation. Figure 4 shows different 
processes that a wafer might undergo through in a fab. 
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Figure 4: Schematic of different processes in a semiconductor fab. 
 
 The eleven-step framework outlined by Banks et al. (2005) provides a comprehensive methodology for 
developing a reliable and robust DES model. It begins with Problem Formulation, where the specific issue 

to be addressed is defined, followed by the Setting of Objectives and Project Planning to establish goals, 
and create a structured plan for development. The method then progresses to Model Conceptualization, 
Data collection, and Model Translation. According to Banks et al. (2005), Verification and Validation are 
then undertaken to confirm the model's accuracy and reliability, followed by Experimental Design for 
planned simulations. Finally, Simulation Runs and Analysis, Documentation and Reporting, as well as the 
Implementation of model insights, complete the structured approach. Following these guidelines, the first 

step for the Model Verification involves the analysis of the output after parameter adjustments. The process 
capacities are varied using default slider buttons in the AnyLogic simulation and the resulting trends in 
process machine utilizations. 
 The relationship between process capacity and machine utilization was found to be inversely 
proportional emphasizing longer waiting times and increased cycle times if the utilization increases. This 
trend was in line with expected results and verified the simulation results. The capacity values that ensured 

a smooth process flow were used for further simulation runs. The total Wafer Starts Per Week (WSPW) 
was another parameter that was varied to analyze the resulting trend which is an indication of the fab 
capacity. The WSPW for Product A was used as a parameter, and the WSPW for Product B was a variable 
dependent on WSPW for Product A. Increasing the WSPW for Product A automatically increased the 
WSPW for Product B, resulting in an increase in machine utilization levels for all the processes and an 
increase in cycle time. The maximum wafers that could be manufactured in the simulated fab were 

estimated using this gradual increase in WSPW. The presence of disruption between the input and output 
data was examined using several checkpoints in the process flow and regular console outputs at relevant 
points. A graphical representation of the model was used to verify the relationship trend between the total 
number of wafers manufactured and the total energy consumed per manufactured wafer. 
 A common assumption that an increase in the total number of wafers manufactured would reduce the 
energy consumed per manufactured wafer was verified and the results supported the assumption. The 

energy consumption for the process in the model, both fixed and variable, was verified through manual 
calculations using MS Excel and compared to the results generated from the simulation model. The outcome 
of both the real and the emulated process were found to be close – almost identical. Overall, the 
conceptualized simulation model is adequately verified and the next step in the simulation modeling process 
involves the validation of model assumptions. According to Banks et al. (2005) there are two types of 
assumptions in simulation modeling: structural and data driven. In this simulation model, a combination of 

both types of assumptions is considered. The energy consumption split as input in the simulation model 
assumes a fixed ratio between fixed and variable energy consumption and is deterministic. This could be 
improved by a study in future with stochastic shares of energy consumption to reflect the situation in reality.  
 Prior to this study the ratio between fixed and variable energy consumption was obtained through a rule 
of thumb approach by experts in the facilities and it was validated by Hopf et al. (2022) with an energy 
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consumption study. The second assumption is data-driven where the relationship between variable energy 
consumption and utilization was initially assumed to be linear. This relationship was later explored by 
plotting various graphs to analyze the possibility of a non-linear relationship. The data validation is carried 

out by the comparison of the historically available total energy consumption data with the energy 
consumption data from the simulation study. The used data was scaled to the relevant maximum production 
capability of the simulated fab for validation purposes. 

4 RESULTS 

In this section, insights gained from the DES model are described. The experimental design used for 
simulation runs, and the outcome derived from these simulation runs along with results gained from various 

experiments using the simulation model outlined. 
 The simulation effects of the energy overview provide valuable insights into the distribution of total, 
fixed, and variable energy consumption. It is observed that a substantial portion of the total energy 
consumption is attributed to the fixed component encompassing infrastructure energy and the energy 
required for maintaining cleanroom conditions and the warm-steel state. The fixed consumption component 
accounts for approximately 90% in the model, leaving the remaining 10% as the variable energy 

component. These findings about the energy consumption are essential in understanding the dynamics of 
energy utilization within the simulated environment. Upon closer analysis of the energy consumption due 
to infrastructure and equipment, a shift in the ratio is discerned. The breakdown reveals that 66% of the 
energy is attributed to infrastructure (which is independent of the production quantity), while the remaining 
34% pertains to equipment. This shift in the distribution of energy consumption provides critical insights 
into the relative contributions of infrastructure and equipment to the overall energy utilization within the 

simulated model. The correlation analysis of the actual dataset offers a comprehensive understanding of the 
relationship between the trend of simulated total energy consumption and the total number of wafers 
manufactured. Figure 5 shows energy consumption split at product level.  

 

 
Figure 5: Energy consumption split at product level. 

A slight positive trend in the total number of wafers manufactured juxtaposed with a slight negative 

trend in total energy consumption is observed. This observation aligns with the trends observed in the actual 

dataset suggesting similarities between the simulated and actual energy consumption patterns. The plausible 
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explanation for this phenomenon is rooted in the improvement of efficiency over time in the fixed energy 

consumption of the fabrication facility. Despite the constant variable energy consumption in the simulation 

model, the direct inclusion of fixed energy consumption yields a discernible slightly negative trend. 

Moreover, the energy consumption shares for different processes are described shedding light on the 

process-wise energy split ratio. Significantly, ion implantation and oxidation processes emerge as the most 

energy-intensive, collectively accounting for nearly 55% of the total energy consumption of the fabrication 

facility. 

This underscores the criticality of ensuring high utilization levels for these processes elucidating the 

pivotal role they play in the overall energy consumption landscape. The utilization levels of different 

processes over time offer valuable insights into the dynamics of process utilization within the simulated 

horizon. Ion implantation exhibits the highest utilization followed by exposure (lithography) and the 

oxidation process, mirroring the observed utilization levels in semiconductor production fabs. This 

alignment validates the simulated model in capturing real-world utilization patterns, thereby establishing 

the practical applicability of the insights derived from the simulation. The simulation model provides an 

understanding of the process-level split of total energy consumption. The delineation of energy 

consumption at the process level reveals that the ion implantation process commands the highest energy 

consumption, followed by oxidation, exposure (photolithography), plasma etching, wet etching, other 

processes, and inspection and measurement processes. This granular breakdown offers valuable insights 

into the energy consumption dynamics at the process level, elucidating the relative contributions of different 

processes to the overall energy utilization within the simulated environment. 

 The EOC concept as proposed by Hopf et al. (2022) is further investigated, with a specific focus on its 

application to multiple products using real data from a semiconductor production facility. The simulation 

model was enhanced by integrating the ecological factor (EF) equation, and the WSPW value was 

systematically augmented through parameter variation experiments to amplify model utilization. For every 

iteration, the α value of the fab was calculated using the formula given (1), where e  𝑢𝑡𝑖𝑙𝑖𝑧 ≠ 0. 
 

𝛼 = (𝐹𝐹 − 1) ∗  
1−𝑢𝑡𝑖𝑙𝑖𝑧

𝑢𝑡𝑖𝑙𝑖𝑧
                                                               (1) 

 

Notably, α representing the fixed energy consumption share remained constant throughout the 

simulation runs aligning with the practiced rule of thumb and validated by Hopf et al. (2022). Incremental 

adjustments via the parameter variation experiments yielded diverse values for cycle time (CT) and 

utilization (utiliz), while raw process time (RPT) remained constant. Furthermore, the EF exhibited 

variability in response to fluctuating utilization levels attributable to changes in variable energy 

consumption. The resulting ecological factor (EF) and flow factor (FF) outcomes for varying utilization 

levels from the simulation experiment are depicted in Figure 6 providing a visual representation of the 

observed relationships. 

The elbow of the operating curve (OC) remains a crucial indicator, denoting the peak utilization level 

within an acceptable range for the CT. In this context, the variable energy consumption rises proportionally 

with increased utilization levels. Consequently, it becomes evident that the variable energy consumption 

per manufactured wafer cannot be decreased as fab utilization levels rise. This leads to the conclusion that 

higher utilization levels result in a smaller EF, thereby reducing the energy consumption per manufactured 

wafer and enhancing the overall energy efficiency of the process. However, this need to be balanced with 

the flow factor since if utilization levels are high the FF is also high which results in slow production. An 

interesting area for future studies would be to analyze the impact of slow production on the energy footprint, 

this is due to the fact that the slow production could result in high ratio of scrap and consequently higher 

energy and ecological footprint which could be avoided by utilizing the OC and EOC concepts to stay 

within the region of producing at lower footprint and with lower cycle time to be able to meet customer 

demand efficiently. See Figure 6 for the results of the OC and EOC from the simulation model. 
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Figure 6: Simulations results showing the operating curve and the ecological operating curve. 
 

The consideration of two products for designing the simulation model of the semiconductor 

manufacturing facility necessitates an exploration of the equipment energy consumption for each product 

and the split based on the process level. The ion implantation process emerges as the highest consumer of 

equipment energy for both products in alignment with the energy ratio split derived from the parameter 

calibration experiment. However, a noteworthy divergence is observed in the secondary consumption 

patterns wherein Product A exhibits the second-highest consumption in the exposure process, while Product 

B demonstrates the second-highest consumption in the oxidation process. This divergence is attributed to 

the distinct product routes for the considered products, underscoring the influence of product-specific 

process sequences on energy consumption patterns. The simulation model offers critical insights into the 

GHG emissions of the simulated fabrication facility. The simulated fab, operating solely on electrical 

energy (neglecting other emission forms because they are out of the scope of the study), yields to an average 

GHG emissions factor of 349 grams CO2/KWh for electrical energy in Germany. This average energy 

consumption for the simulated fab translates to 1.72 KWh/cm2, with a corresponding GHG emission of 0.6 

kg CO2 e/cm2 aligning with current trends in the semiconductor industry. This understanding of the GHG 

emissions underscores the environmental implications of the simulated energy consumption patterns, 

thereby augmenting the applicability of the simulation insights in sustainability assessments. 

In summary, the simulation results of the energy overview provide a comprehensive understanding of 

the distribution of total, fixed, and variable energy consumption within the fabricated environment (Table 

1). The breakdown of energy consumption across different components and processes, coupled with 

insights into GHG emissions underscore the multifaceted utility of the simulation model in informing 

strategic decision-making and sustainability assessments within the semiconductor manufacturing domain. 

Table 1: GHG emission overview of considered products based on exemplary data. 

Product Product A Product B 

Share of total wafers produced 59% 41% 

Variable energy consumption per wafer [KWh] 32,5 45,7 

GHG per manufactured wafer [kg CO2 e] 11.3 15.9 

GHG per cm2 of manufactured wafer [grams CO2 e / cm2] 160 225 
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5 CONCLUSION 

In conclusion, the developed simulation model effectively replicates the energy consumption patterns of a 

semiconductor fab within a global manufacturing network, enabling to derive the total energy consumption 

per product unit for further aggregation. The analysis of product routes for two distinct product types 

highlights the energy consumption differences, with a particular focus on the most energy-intensive 

processes, such as ion implantation and oxidation. The results suggest that structural changes in the FE 

operations are recommended to optimize manufacturing energy consumption. 

The Ecological Operating Curve analysis implies that high-capacity utilization levels can reduce fixed 

energy consumption per product, albeit potentially increasing Flow Factor (FF) and waiting times. Future 

simulation runs should incorporate failure rates and adopt a probabilistic setting. Utilizing different datasets, 

such as those from other wafer fabs, can further validate the simulation model. Lastly, the GHG per cm2 is 

derived from electrical energy. 

Additionally, the study currently only evaluates the energy consumption or the footprint, and we 

recommend incorporating the handprint in future research for a comprehensive assessment of the holistic 

net CO2 balance. This should involve quantifying the CO2 savings resulting from semiconductors over 

their entire lifecycle and exploring strategies to maximize these savings through informed product offerings 

in the market. Future simulations could consider evolving towards a digital twin, continuously gathering 

real-time data from the fab energy systems, and replacing assumptions with actual data to enhance the 

model's accuracy and relevance. 
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