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ABSTRACT

We develop a novel generative model to simulate vehicle health and forecast faults, conditioned on practical
operational considerations. The model, trained on data from the US Army’s Predictive Logistics program,
aims to support predictive maintenance. It forecasts faults far enough in advance to execute a maintenance
intervention before a breakdown occurs. The model incorporates real-world factors that affect vehicle health.
It also allows us to understand the vehicle’s condition by analyzing operating data, and characterizing each
vehicle into discrete states. Importantly, the model predicts the time to first fault with high accuracy. We
compare its performance to other models and demonstrate its successful training.

1 INTRODUCTION

Many organizations have realized the utility of using machine learning and a data driven approach to
understand and improve the health of their vehicle fleets; these organizations invest enormous amounts of
resources in transportation systems as they are critical to operations. We focus this analysis on the United
States’ Department of Defense (DoD), where the US Army alone is projected to spend an estimated $5
billion per year (in 2020 dollar terms through 2050), developing and acquiring ground vehicles, where
ground vehicles are any vehicles other than aircraft and ships (CBO 2021). Maintaining this enormous
investment is critical to ensuring combat readiness across the DoD, where the department spent $90 billion
in 2022 on maintaining vehicles across domains: ground, air, and sea (GAO 2022).

Predicting requirements is critical to an effective maintenance program. The application of statistics
towards vehicle maintenance prediction is often referred to as predictive maintenance. Recognizing the
importance of predictive maintenance, in the 2022 National Defense Authorization Act (NDAA) Congress
required the DoD Inspector General Office to review predictive maintenance practices, originally established
by DoD directives in 2002 and 2007 (DoDIG 2023). Given the importance of predictive maintenance in
promoting readiness and conserving budgetary resources, the US Army is employing hardware and software
solutions to address Congressional and Departmental guidance.

We propose a model designed to achieve predictive maintenance, with the goal of completing corrective
actions on a vehicle in order to avoid more costly or catastrophic damage in the future (Theissler et al.
2021). This predictive maintenance model is data driven, where conclusions are based on the outcomes
observed in a dataset of sensor and fault signals recorded from an onboard vehicle computer. This data
was collected by the US Army under an effort designated as Condition Based Maintenance (CBM). In
this effort millions of time indexed data points were collected from a number of military vehicle types,
with the goal of informing the development of maintenance processes, hardware, and analysis software to
support predictive maintenance. We have developed a generative learning approach trained on a publicly
releasable subset of this CBM data to predict future vehicle faults. Additionally, we simulate outcomes
conditioned on practical vehicle considerations, including vehicle age, location, and mode sub-type.

We begin the discussion of our model with a brief literature review, introducing general time-series
modeling, then focusing on prediction models for vehicle faults, and relevant technical reports related to the
maintenance of military vehicles. Next, we review an analysis related to the DoD’s efforts with predictive
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maintenance and the CBM dataset used to develop our model. We then introduce the proposed generative
fault prediction model. We conclude with results, providing prediction performance analysis, comparison to
alternate models, and interpretation of the analysis provided by the proposed model. Additional information
regarding model training convergence and parameter interpretation are provided in referenced appendices,
including a link to a github repository with all modeling code and processor information in Appendix B
of the full version of this paper (Kuiper et al. 2024). In summary, our contributions include:

1. We develop and train a practical, generative learning model to accurately predict vehicle faults and
time to first fault on a rolling basis in real time.

2. We generate future sensor feature covariates based on the values of previous covariates, using an
attention based transformer.

3. We also generate future sensor feature covariates based on the values of previous data and a selected
vehicle use profile, where the profile is based upon practical considerations, using a Variational
Auto-Encoder and K-means clustering.

4. We provide results and conclusions which are interpretable and understandable among professional
practitioners in the application field.

2 RELATED WORK

Time series analysis, which leverages time-indexed data to extract meaningful statistical conclusions,
remains an important field in statistics with applications in finance, medicine, and manufacturing. The
wide adoption of machine learning techniques, specifically generative learning, has led to the development
of a number of innovative time series methods. We discuss these techniques, along with their application
to reliability engineering in automobiles.

2.1 General Time Series Prediction

A number of effective, well established methods exist to perform time series analysis; these include Auto-
Regressive (AR) and Moving Average (MA) models, in addition to more advanced integration of both AR
and MA, with Auto-Regressive Moving Average (ARMA) and Auto-Regressive Integrated Moving Average
(ARIMA) (Box and Jenkins 1976). Approaches employing neural networks specifically pertaining to the
forecasting of time-indexed sequence data have included Recurrent Neural Networks (RNNs) and Long-
Short Term Memory networks (LSTMs). Of particular interest to this analysis is the Deep-Auto Regressive
(DeepAR) method developed by Flunkert et al. (2017). The DeepAR method employs a LSTM-based
neural network design, with an AR component, that learns from multiple time series data points. In the
proposed model, multiple time series data includes the fault target and sensor feature covariates.

The DeepAR method produces a probabilistic function via Monte Carlo simulation, allowing for the
model to be queried on quantiles, which then generates forecasted future data. This enables the generation
of multiple future predictions via the quantile function, improving the utility of the analysis when compared
to point estimates. A critical consideration is that the DeepAR model requires the incorporation of
future covariates when forecasting a future target variable. A novel approach for generating multivariate
time series predictions is proposed by Gangopadhyay et al. (2020), with the use of a spatio-temporal
attention mechanism (STAM). This model isolates critical time steps (temporal) and variables (spatial)
when forecasting future target predictions. It does not depend on future covariates during the prediction step
as with DeepAR; however, we found STAM alone does not perform as well on forecasting vehicle faults
when compared to the DeepAR model (see Section 5 for comparison). We propose a hybrid model using
both STAM and DeepAR, where the requirement of the DeepAR model to incorporate future covariates is
addressed by generating these sensor values using STAM. We develop this approach further in the Section
4 with additional discussion in Section 5.4.
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2.2 Vehicle Fault Prediction

Using generative learning to anticipate faults in vehicles remains a relatively new topic. Recently, Hojjati
et al. (2023) completed an analysis similar to our proposed application, using self-supervised learning
and a graph based technique to forecast vehicle faults. The formulation of the technique developed by
Hojjati et al. (2023) differ significantly to our proposed method, and the dataset is much smaller, with the
faults being labeled by experts visually reviewing sensor signals. This is in contrast to our analysis which
leverages a much larger dataset collected in non-experimental, field conditions, where the faults are labeled
by an automated vehicle onboard computer.

Another similar analysis is provided by Shafi et al. (2018), where several discriminative classification
methods are evaluated for determining the occurrence of vehicle faults in several different subsystems. The
evaluated classification model takes real-time vehicle data in the form of sensor data and Diagnostic Trouble
Codes (DTC), with dimensional reduction using Principal Component Analysis (PCA). The experiments
proposed in this analysis are similar to our proposal in that data was collected from dozens of vehicles
of a single vehicle family (make / model), with the goal of forecasting faults in real time using machine
learning. However, the model only produces a discriminative classification, not a generative prediction,
and no interpretable information is provided about the causes of vehicle failure from this analysis.

A general review of machine learning applications for vehicle predictive maintenance is proposed by
Theissler et al. (2021). Of note from this rigorous review and categorization of related work is the proposal
of several research challenges in the field. The authors highlight the need for public real-world datasets,
which are labeled. An additional relevant challenge referenced in this work is the use of more complex,
truly deep neural networks for modeling, while maintaining interpretability and explainability given the
need for understanding when addressing maintenance concerns. We work to address all of these research
challenges in this proposal and provide a practical model for a large family of vehicles in the US Army,
which may be readily applied to additional vehicle types.

2.3 Military Maintenance Background

An detailed report of the CBM dataset, along with a number of other predictive maintenance efforts
established by the US Navy and Marine Corps, is provided by Thurston et al. (2019). This report provides
a wealth of technical detail concerning the vehicle population covered in the CBM dataset, along with the
entire DoD predictive maintenance effort across the uniformed services.

As a check on the CBM dataset, we reference Kays et al. (1998) who developed an insightful analysis
into historical operational readiness rates of several common US Army vehicles. This analysis is relevant
as it describes with precision common operational readiness rates observed among organizations in the
US Army. These published readiness rates serve as a validation for observed rates recorded in the CBM
dataset used in the proposed analysis.

3 CBM DATASET OVERVIEW

We have identified a research demand for a real-world dataset composed of vehicle sensor readings, with
associated vehicle faults. Such a dataset would allow for the development of a data driven fault prediction
model. This dataset would be of particular use in military and civilian automotive applications. We now
provide further details about the US Army CBM dataset which we propose meets the challenges presented by
the predictive maintenance research community, and further develop our assumptions that vehicle electronic
fault signals may be used as a proxy for vehicle condition.
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3.1 US Military Predictive Maintenance Data Collection Efforts

According to the Government Accountability Office (GAO) report titled “Military Readiness: Actions
Needed to Further Predictive Maintenance on Weapon Sytems”, published in December 2022 (GAO 2022),
the US DOD’s predictive maintenance efforts may be summarized as

...any effort that uses condition-monitoring technology or analysis of historical data to
anticipate maintenance needs in a manner that reduces unscheduled reactive maintenance
or overly prescriptive preventive maintenance. The military services use multiple terms
for predictive maintenance or predictive maintenance enablers, including Condition-Based
Maintenance (CBM), Condition-Based Maintenance Plus (CBM+), Prognostic and Predictive
Maintenance (PPMx), Enhanced Reliability-Centered Maintenance (eRCM), and Predictive
Maintenance.

The dataset used in this analysis is from the US Army’s CBM effort. As illustrated in Figure 1, sensor
and fault data was recorded over a period of months from a number of vehicle types. As referenced in this
GAO report, billions of dollars are spent and military readiness is degraded due to unplanned maintenance
associated with US weapons (“weapons” includes vehicles). This degradation of resources and readiness
may be significantly reduced through the use of effective predictive maintenance, as dictated in the 2002
DOD predictive maintenance policy.

Figure 1: Description of Condition Based Maintenance dataset. Data from field vehicle operations, collected
over several months from various vehicle types, are presented. This dataset includes time series of various
fault signals, each with associated recording timestamps, as well as time series from multiple sensors also
timestamped. Our analysis aims to utilize the sensor data as feature covariates to predict fault occurrences.

3.2 Fault Signals and US Army Vehicles

Vehicle fault targets in this analysis are recorded in accordance with the Society of Automotive Engineers
(SAE) J1939 and J1708 data specifications (Thurston et al. 2019). It is important to note that the analysis
we propose relies on these fault signals, also known as Diagnostic Trouble Codes (DTC), as a target and
not an observation of vehicle failure. This is because failure data is not available in the analyzed set. The
assumption that vehicle fault signals or DTC data is highly correlated with actual failure is supported by
the detailed work regarding the CBM dataset completed by Thurston et al. (2019) as described directly
below:

DTCs can be very useful for development and enhancement of PHM (Predictive Health
Monitoring) capabilities, because they contain the ground truth information for impending
failures. In fact, they represent a level of condition monitoring that is already implemented
by electronic control units (ECUs), employing traditionally conservative thresholds to reduce
false alarm problems.
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While true vehicle failure would be an informative additional covariate, the goal of predictive maintenance
is to take action based on vehicle signals before failure, where failures have high correlation with fault
signals, as these signals measure the true status of critical vehicle systems (i.e. engine, transmission, and
brakes).

4 GENERATIVE FAULT PREDICTION MODEL DEFINITION

In this section we propose a target distribution of vehicle faults conditioned on vehicle sensor values, which
would provide significant utility towards predictive maintenance. We formulate a model for this target
distribution employing generative learning. We fully specify this generative learning model and provide
details concerning training and experimentation. The proposed model is designed to predict if a vehicle
will experience a fault and time to first fault, given a fault is predicted to occur.

4.1 Target Distribution Definition

The ultimate goal of this effort is to define the most accurate probability distribution, shown in Equation (1),
where (zt , t ≥ 0) is the fault target, or fault indicator time series, and (xi,t ,1 ≤ i ≤ 38, t ≥ 0) are the sensor
features or covariate time series. Here t is defined as a time point and i is the label of sensor feature covariates,
where there are 38 total sensor covariates in the CBM dataset considered. With this target distribution, a
vehicle operator or maintainer would know precisely the probability of if a vehicle is to experience a fault
from time point t0 to t0+T , or t = [t0 : t0+T ], and when the fault would occur. We propose this information
will allow for vehicle operators and maintainers to significantly improve predictive maintenance. Below
we define this conditional probability distribution, which we name the target distribution:

P(zk
t0:t0+T |zk

0:t0−1,(x
k
i,0:t0−1,1 ≤ i ≤ 38)) ∀k ∈ K ∀ t0 ∈ S, (1)

where, zk
t0:t0+T represents the time series of fault signals collected from vehicle k from time point t0 to

t0 +T , xk
i,t0:t0−1 represents the time series of sensor feature i collected from vehicle k from time point 0

to t0 −1, and for model training and experimental purposes, the set S comprises randomly selected start
times for each vehicle k in K, where K is the set of selected vehicles for analysis.

4.2 Generative Model Definition

While ideally we could formulate the probability distribution in Equation (1) explicitly, in practice this is not
feasible so we employ a generative model to forecast outcomes given the data collected, and subsequently
employ these results to model the target distribution. To accomplish this, we employ a hybrid of generative
models, using DeepAR in conjunction with STAM (see Section 2.1) and a VAE. The complete prediction
process is described below:

• Step 1: We train a DeepAR model (Qθ ) on a large (relative to forecast length) block of vehicle
sensor feature and fault target data.

• Step 2: Given time point t0 to begin our forecasting period, we train the STAM model (gθ ) and a
VAE (vθ ) to generate estimates of future sensor feature covariates.

• Step 3: We generate future targets from times t0 to t0 +T using the previously trained DeepAR
model (Qθ ), and covariates generated from both the STAM model (gθ ) and the VAE model (vθ ).

• Step 4: We use classifier (C - see Equation (3)) and regression model (R - see Equation (4)) to
determine if there is a fault during the forecasted time period [t0 : t0 +T ], and what the time to first
fault is, given a fault is expected to occur.

The complete process of model training and experimentation on a single vehicle dataset is shown in
Figure 2, with each step identified. We note that each vehicle k ∈ K requires the training of a DeepAR
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model, Qθ , and each forecast t0 ∈ S requires the training of a STAM model, gθ , potentially with the
evaluation of the VAE model, vθ . We will further explain this process in the proceeding subsections.

Figure 2: Overview of generative model for conditional vehicle fault prediction on vehicle k ∈ K. At Step
1, a DeepAR model (Qθ ) is trained using time series of fault target and sensor feature values from time
point 0 to q, and is subsequently evaluated at randomly selected time periods, with t0 ∈ S. At Step 2, a
STAM model (gθ ) is trained over a period of b = 3 hours and a VAE model (vθ ) is trained on out of
sample data. At Step 3, the DeepAR model (Qθ ) generates representations of the fault indicator h̃k

t0:t0+T

(resp. ĥk
t0:t0+T ) of T = 30 minutes using the sensor feature covariates generated from the STAM model

(resp. the VAE model), where STAM utilizes a lookback length of 20 minutes. At Step 4, the classifier
(C) and the regression model (R) use the predictions from both the STAM and VAE model to forecast if
there is a fault and what time the first fault is (given a fault is predicted) from time point t0 to t0 +T .

4.3 Spatio-Temporal Attention Mechanism (STAM) and Variational Auto Encoder (VAE) for Feature
Generation

As discussed in Step 1, in order to develop Equation (1), we reference the DeepAR model, Qθ and define
a lookback parameter of length ℓ and Spatio-Temporal Attention Mechanism (STAM) training length b.
It is critical to note that to achieve reasonable performance with the DeepAR model, features must be
available during the prediction time period t = [t0 : t0 +T ], where t0 is the prediction start time (t0 ∈ S for
each vehicle k in K) and t0 +T the end time for the selected forecast. The requirement of features during
the prediction time poses a problem during practical forecasting because this information is future sensor
data which is not available at prediction time. To meet this requirement, we produce sensor feature data
during the prediction time period using two generative methods:

1. gθ ≡ spatio-temporal attention mechanism (STAM), where the STAM is trained on recent data:
gθ (xk

i,t0−b:t0−1)⇒ x̃k
i,t0:t0+T . This model captures the vehicle’s most recent operational history.

2. vθ ≡ variational auto-encoder (VAE), where the VAE is trained on out of sample data: vθ (x̂k′
i,t ′0:t ′0+T )⇒

x̂k
i,t0:t0+T such that t ′0 ∈ S′ and k′ ∈ K′, and k′ /∈ K. This model captures how the vehicle will be

operated in the future, which is either based upon the true data, vθ (xk
i,t0:t0+T ), or conditionally selected

based on latent space cluster state, vθ (x̂k′
i,t ′0:t ′0+T ), to simulate actual vehicle operating conditions.

In the prediction process, with the generated sensor data from both the STAM and VAE generators, we
propose calculating two representations of the fault indicator future time series:

Qθ (zk
t0:t0+T |zk

0:q,x
k
i,0:q, x̃

k
i,t0:t0+T )⇒ h̃k

t0:t0+T (2a)

Qθ (zk
t0:t0+T |zk

0:q,x
k
i,0:q, x̂

k
i,t0:t0+T )⇒ ĥk

t0:t0+T (2b)
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where h̃k
t0:t0+T and ĥk

t0:t0+T , are hidden representations of the target distribution of zk
t0:t0+T . We call these values

hidden representations because they are used in the classification and regression models, C(h̃k
t0:t0+T , ĥ

k
t0:t0+T )=

c∈{0,1} and R(h̃k
t0:t0+T |C(h̃k

t0:T , ĥ
k
t0:t0+T )= 1)= f ∈R+, shown in Equations (3) and (4), where the regression

model R is not trained with the VAE generated hidden representation, ĥk
t0:t0+T . Here the predicted value

from the regression, f , is defined as the time to first fault observed over the forecasted time period. We
focus on predicting the time to first fault, as it has the most practical implications with respect to vehicle
condition and function: the first fault is most likely to cause a maintenance event affecting operation.
The classification and regression models take in the hidden representation data given each type of input
and predicts fault or no-fault, and time to first fault. We employ the random forest classification and
random forest regression models for C and R, respectively. These models were selected based upon their
performance and potential for interpretability (Ho 1995). Additionally, the parameters of the DeepAR
model, θ , are identical for the evaluation of Q when used with generated covariates x̃k

i,t0:t0+T and x̂k
i,t0:t0+T .

C(h̃k
t0:t0+T , ĥ

k
t0:t0+T ) = c ∈ {0,1}. (3)

R(h̃k
t0:t0+T |C(h̃k

t0:t0+T , ĥ
k
t0:t0+T ) = 1) = f ∈ R+. (4)

We note that when training the classification model C, vθ is given the true future covariates for
encoding and decoding, using the trained VAE: vθ (xk

i,t0:t0+T ) ⇒ x̂k
i,t0:t0+T . This is to ensure an accurate

fault classification is given when conditioning on selected latent cluster states. While in practice the true
future sensor covariate timer series, xk

i,t0:t0+T , would not be available for the forecast, the information which
characterizes the vehicle latent cluster state would be available. Using the VAE model, we would be able
to generate future fault covariates from the true vehicle state, where covariates from the common states
are known to be close in the latent space.

Next, in Section 4.4, we will discuss the random selection and generation of sensor data from the
trained VAE latent space, and subsequent simulation of fault probabilities conditioned on this state. Finally,
we observe that with the output of Equations (3) and (4), we may produce a prediction for z⋆k

t0:t0+T , or a
final time series forecast indicating exactly when an initial or first fault will occur. We propose that this
is critically important information for predictive maintenance.

4.4 Simulation using Generative Modeling Conditioned on Vehicle State

As illustrated in Figure 3, the training of a VAE, vθ , on out of sample vehicle data vθ (x̂k′
i,t ′0:t ′0+T )⇒ x̂k

i,t0:t0+T

such that t ′0 ∈ S′ and k′ ∈ K′, and k′ /∈ K allows us to define latent states, in a reduced dimension, which
represent practical considerations associated with vehicles. These practical considerations could include:
vehicle age, maintenance condition, location, etc. We enumerate the practical considerations present in
in the CBM dataset and discuss their impact on the vehicle latent states in Section 5.1. These states are
designated by clustering on the reduced latent dimension produced by the encoding step of the VAE.

Figure 3: Illustration of mapping vehicle operational condition to generate future sensor readings.

In order to simulate vehicle conditions, which were not observed in the actual data, we may randomly
sample data points from the selected state, decode the random point to generate sensor data, x̂k′

i,t ′0:t ′0+T . We
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may then use this data in the DeepAR model and generate the hidden representation ĥk′
t ′0:t ′0+T , with the

simulated sensor values. This will produce alternate values for the classification of vehicle faults and time
to first fault, using models C and R respectively, based on practical considerations.

5 RESULTS

We develop our results addressing two topics. First, what does the clustering of vehicle sensor data,
discussed in Section 4.4, practically indicate with respect to vehicle conditions. Second, how accurate is the
discriminative model described in Section 4.1 at predicting if there will be a vehicle fault observed during the
generated time period, and how accurately can we predict when the first fault will occur. We provide results
allowing for model interpretation, and comparison to alternate generative model formulations. We discuss
the interpretation of model parameters and convergence analysis regarding the training of the DeepAR
model in Appendices A and C (resp.) of the full version of this paper (Kuiper et al. 2024).

5.1 Simulation using Latent Space Representation and K-means Clustering

In Figure 4, we provide a representation of vehicle out of sample sensor data in a three dimensional latent
space. Here the trained VAE, vθ , maps historical sensor readings x̂k′

i,t ′0:t ′0+T , such that t ′0 ∈ S′ and k′ ∈ K′,
into the latent representation shown. See Section 4 for definitions of these variables. Subsequently, the
K-means clustering algorithm is applied to the latent representation, producing five clusters.

Figure 4: K-means
clusters with state in-
terpretation.

Figure 5: VAE latent
representation with
metadata.

Figure 6: Latent
space fault visualiza-
tion.

State Fault Rate
State 0 0.080
State 1 0.078
State 2 0.069
State 3 0.111
State 4 0.098

Table 1: Simulation
of fault rates of vehi-
cle states.

We referenced metadata with respect to vehicle location, odometer mileage, engine hours, and sub-
family and found that the VAE latent state mapping and K-means application identified practical clusters or
states, numbered 0-4, in which each vehicle operates. Figure 5 provides the latent representation of each of
the metadata categories (location, vehicle odometer mileage, engine hours, and vehicle sub-family). This
figure shows how the logical clusters or states were interpreted in Figure 4. In Figure 6, we provide another
view of the three dimensional latent space, where each point is labeled according to whether the vehicle
truly experienced a fault, or did not experience a fault, during the generated time period t = [t0 : t0 +T ].

As proposed in Section 4, we complete a simulation generating sensor data using the decoding function
of the VAE to condition the trained DeepAR model Qθ when producing ĥk

t0:t0+T , the VAE generated hidden
representation of the true fault indicator function zk

t0:t0+T . We employ the trained classifier, C, proposed
in Equation (3) to determine if a vehicle experiences a fault during a predicted time period. This allows
practitioners to generate simulated outcomes conditioned on practical considerations, or “what if” scenarios
associated with their vehicles: i.e. what would happen if they changed the location the vehicle operates
out of, what happens as the vehicle mileage, or engine age increase, etc. In Table 1 we provide these
simulated probabilities. In this simulation, for the same test vehicles and randomly selected time periods
used throughout this analysis, we have generated sensor covariates, x̂k

t0:t0+T , by randomly sampling data
points in the VAE latent space from a fixed state, where the members of the state are determined by the
K-means model. For example, if all the vehicles (k ∈ K) are assumed to be operating in State 0, we
may sample hundreds of points in the latent space only from this fixed state, generate x̂k

t0:t0+T using the
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trained VAE vθ , and subsequently use this generated data in the DeepAR model Qθ to produce the hidden
representation ĥk

t0:t0+T , which is then evaluated using the trained classifier C. In this example for State 0,
we expect a fault rate of 0.080.

The conditioned fault rates observed in this simulation follow logically given the practical interpretation
of vehicle states given in Figure 4. We observe, relative to other states, that the fault rate of States 3
and 4 are the highest, where these are vehicles with medium to high engine hours and lower odometer
readings. This may be an indicator of scheduled service requirements for newer vehicles. Additionally,
considerations with locations 1 and 3 may weigh on the fault rates as different locations often have varying
maintenance programs. As noted in the introduction and formulation of this generative learning model,
a great advantage is given by the ability to visualize and interpret results in order to understand why the
model is generating specific fault forecasts. Furthermore, the values provided in Table 1 are validated by
US Army published standards and observed operational readiness rates of vehicles, cited to be between
80%−100% (Kays et al. 1998).

5.2 Fault Prediction

In this section, we discuss the performance of the discriminative classifier proposed in Equation (3), which
determines if a fault is going to be forecasted during the generated time period t = [t0 : t0+T ]. In the models
trained and experiments visualized, the time period of prediction is 30 minutes, where T = 1800 secs. To
be specific, we consider two cases: 1. using only the STAM generated covariate data, and 2. both the
STAM and the VAE generated covariate data. In the latter case, for the VAE we use the actual latent state
of the vehicle, by referencing the true future feature covariates. Using the actual latent state facilitates the
development of the simulation by mapping the correct latent state to the hidden representation. The latent
state is available in practice as the practitioner knows current attributes of the vehicle (vehicle mileage,
engine age, etc) and may choose the appropriate state.

For each case, we choose 50 pairs of training and test sets through random permutation of the data.
We note that the training and test sets were not split between distinct vehicles, because in practice the
regression model will be updated as the vehicle is operated. As shown in Figure 7, for the test set in each
of the 50 pairs, we plot the Receiver Operating Characteristics (ROC) curve using a unique color. The
average Area Under the Curve (AUC) for the 50 tests are also computed.

These results articulate the highly accurate and steady performance achieved when using: 1. only the
STAM generated covariate data, resulting in a 0.950 AUC, and 2. both the STAM and the VAE generated
covariate data, resulting in a 0.978 AUC. More specifically, Figure 7a displays the ROC curves when the
hidden representation (h̃k

t0:t0+T ) is generated by the DeepAR model taking in only the STAM generated
covariates (see Equation (2a)) and this hidden representation is used in the training and testing of the
classifier: C(h̃k

t0:t0+T ). In Figure 7b, the hidden representations (h̃k
t0:t0+T and ĥk

t0:t0+T ) generated by the
DeepAR models using the covariates generated from the STAM and the VAE (see both Equations (2a)
and (2b)) are both used in the training and testing of the classifier: C(h̃k

t0:t0+T , ĥ
k
t0:t0+T ). We observe that

the inclusion of both the STAM and VAE generated covariates improves the average AUC performance
by 2.8%. This improvement is expected as additional information is provided to the DeepAR (Qθ ) model
via the VAE (vθ ), with the actual latent state information. Even without the latent state information, the
model performs with satisfactory accuracy (0.950). To further illustrate the advantages of our method in
fault prediction, we compare the AUC performance of our method to that of other existing methods in
Section 5.4.

5.3 Time to First Fault Prediction

As discussed in Section 4.2, once a fault is determined to occur during the predicted time period,
C(h̃k

t0:t0+T , ĥ
k
t0:t0+T ) = 1, we employ a random forest regression model, R(h̃k

t0:t0+T |C(h̃k
t0:t0+T , ĥ

k
t0:t0+T ) =

1) = f ∈ R+, to predict the time to first fault (Ho 1995). The regression model R achieves a coefficient

2114



Kuiper, Lin, Blanchet, and Tarokh

(a) ROC curves using
STAM covariates.

(b) ROC curves using
STAM+VAE covariates.
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(c) ROC curves of the
LSTM-based classifier.
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(d) ROC curves of the
STAM-based classifier.

Figure 7: Figure 6(a), 6(b): ROC curves of our proposed discriminative classifiers. We choose 50 pairs
of training and test data by random permutation. We plot the ROC curve on each test data using different
colors after training our classifiers on the corresponding training data. We compute the average AUC for
the 50 ROC curves. In Figure 6(a), we use the representations of the fault indicator generated by the
DeepAR model that takes in only the STAM generated sensor covariates, while in Figure 6(b), we utilize
the representations of the fault indicator generated by the DeepAR model that takes in both the STAM
and VAE generated sensor covariates. Figure 6(c), 6(d): ROC curves of alternate classification models.
We choose 50 pairs of training and test data by random permutation. We plot the ROC curve on each test
data using different colors after training our classifiers on the corresponding training data. We compute
the average AUC for the 50 ROC curves. In Figure 6(c), we we utilize the representations of the fault
indicator directly generated by LSTM, while in Figure 6(d), we we utilize the representations of the fault
indicator directly generated by STAM.

of determination (r2) of 0.77 in predicting time to first fault, where R was trained on the 50th quantile
generated results. We define the coefficient of determination as r2 = 1− ∑i(yi− fi)

2

∑i(yi−ȳ)2 , where yi is the true
time to first fault, fi is the forecasted time to first fault for observation i, and ȳ is the true mean. We note
that all true time to first fault values are no further than 4 minutes (240 secs) from the forecasted time to
first fault; however, these predictions could benefit from further refinement on robustness since the present
prediction indicates potential under-estimation of the time to first fault. This issue has practical implications
for predictive maintenance and we seek to address this shortcoming in future work.

5.4 Comparison to Alternate Models on Fault Prediction

We selected two methods for comparison to the the proposed model. The selected methods include a
LSTM and a STAM model, where both are used to directly generate hidden representations of the target
fault indicator. By contrast, our proposed method uses the STAM model to generate sensor covariates, and
then inputs the generated sensor covariates into the DeepAR model to generate hidden representations of
the target fault indicator.

The time period is set to be t = [t0 : t0 +T ]. As with the proposed methodology, the directly generated
hidden representation, denoted as h̃k

t0:t0+T , serves as the input into a classification model, C(h̃k
t0:t0+T ) = c ∈

{0,1}. The performance of the comparison models are visualized through plots of ROC curves in Figure 7.
In Table 2, we compare the average AUC for these methods and see clearly that the performance for both
the LSTM and STAM models is significantly poorer when compared to the proposed model.

5.5 Discussion

A clear question arises from the proposed model: why does the use of the STAM method to generate
covariates, and subsequently generating target values using the DeepAR model produce such an accurate
fault representation? This is clearly true when compared to other baseline methods as presented in Figure
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Table 2: Model comparison table.

Model for Comparison AUC

LSTM Baseline 0.520

STAM Baseline 0.458

DeepAR with STAM
Covariates (ours)

0.950

DeepAR with STAM and
VAE Covariates (ours) 0.978

7(c)(d). We believe this is due to several attributes of both the DeepAR and STAM models, namely:
(i) DeepAR, being auto-regressive and recurrent, is particularly designed to learn seasonal behavior well,
which is specifically helpful with larger and longer time series datasets (ii) DeepAR incorporates the use
of covariates focused towards learning a specific target distribution, (iii) STAM is demonstrated to be
particularly scalable and accurate when forecasting time series values with multiple variables.

Specifically referencing point (i), we know that the vehicle sensor feature and fault target data exhibits
seasonality or cyclic behavior when explored over significant periods of time. As such, we trained the
DeepAR over 36 hours of data (129600 data points). This allowed for the auto-regressive network to learn
sufficient detail of recurrent structure over the fault targets and sensor feature covariates, as specified in
point (ii). Additionally, while alone not accurate when predicting target values as shown in Section 5.4,
the STAM model is excellent at generating the covariates when trained over modest time periods, such
as 3 hours of data in the proposed model (10800 data points). STAM provides sufficient accuracy when
forecasting the subsequent 30 minutes (1800 data points) of sensor feature data to produce fault target
data which is sufficiently distinguishable to support highly accurate binary classification and regression
results. Attributes of the STAM and DeepAR models are combined with appropriate training periods to
leverage the strengths of both methods in order to facilitate forecasts that are well suited for this vehicle
fault prediction problem.

6 CONCLUSION AND FURTHER WORK

We proposed a modeling approach which allows for the highly accurate prediction of future vehicle faults,
and the simulation of future faults conditioned on practical considerations. The simulated results are
validated using logical interpretation of vehicle metadata and published documentation. We demonstrated
that the model is interpretable and provides actionable results for practitioners in the vehicle operation and
maintenance fields. Significant further work remains including:

1. Improving robustness of time to first fault forecast (Section 5.3) with mitigation of underestimation.
2. Extending prediction time to the scale of hours.
3. Simulating the evolution of states for multiple vehicles to streamline fleet maintenance scheduling.

We note that a link to a github repository with all modeling code and processor information is available
in Appendix B in the full version of this paper (Kuiper et al. 2024). The work presented represents an
initial step in this modeling effort, and we will continue to update our procedures to produce accurate and
interpretable results for the predictive maintenance effort.
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