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ABSTRACT 

Surrogate models are increasingly used to reduce the computational costs of building performance 
simulation (BPS) models. However, they are rarely coupled with optimization algorithms to inform 
retrofitting decisions. The goal of this paper is to compare the performance of several commonly used meta-
heuristic algorithms on a machine learning (ML) surrogate of a BPS model to better shape best practices in 
future work on surrogate model optimization. A surrogate model with an hourly prediction scheme is 

developed, and retrofits are optimized to minimize annual electric and natural gas loads, as well as 
PMVSET as a measure of discomfort. This study incorporates exploratory landscape analysis (ELA) to 
better understand the problem, then separately applies four optimization algorithms (random search, 
OMOPSO, NSGA-II, AMOSA). NSGA-II is the best-performing algorithm, finding 74% of the final set of 
Pareto efficient points and converging in 9% of the time required by the second fastest algorithm. 

1 INTRODUCTION 

Energy consumption in buildings is a large contributing factor to increasing greenhouse gas (GHG) 
emissions worldwide, with buildings accounting for more than 36% of total energy consumption and carbon 
emissions (Olu-Ajayi et al. 2023). The pressing need to mitigate the negative effects of climate change has 
pushed several governments to adopt policy changes with the aim of reducing energy consumption in 
buildings, such as Canada’s aim to achieve net-zero and climate-resilient buildings by 2050 (Natural 
Resources Canada 2022). A major component of this push is retrofitting existing buildings in order to 

improve on the existing building stock (National Research Council Canada 2020). 
 To best guide the retrofitting process, physics-based Building Performance Simulation (BPS) tools are 
routinely used to model existing buildings to simulate particular retrofits and predict the energy 
consumption of the retrofitted building. For example, Barbosa and Azar (2018) modeled retrofits using a 
BPS of a commercial building in the United Arab Emirates (UAE), achieving a 24.4% reduction in energy 
consumption through simple operation strategies. However, there are some limitations to building design 

and retrofitting workflows using the mentioned BPS-based approach. Bell (2023) found that while BPS 
toolkits can be used to bridge industry challenges in predicting energy use, they are most effective when 
the scope of simulated retrofits is narrow, making it time-intensive to utilize BPS tools for comprehensive 
investigations of retrofits. Similarly, Lee et al. (2015) surveyed 18 different energy retrofit toolkits, which 
included 10 physics-based toolkits. They found that while these tools represented high-fidelity models, they 
required large input data, which is not always available, as well as longer simulation time. 

To mitigate the effects of slow simulation times, data-driven surrogate models have been developed to 
mimic the performance of complex BPS models and leverage their predictive capabilities at reduced 
computational cost. For example, Ali et al. (2023) trained different machine learning (ML) models to 
predict annual energy consumption and peak loads using a dataset generated by EnergyPlus, indicating that 
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even basic models (e.g., linear regression (LR)) can attain acceptable levels of accuracy with R2 values 
exceeding 0.9 at very low computational times. In another study, Papadopoulos et al. (2018) developed 
tree-based ML models (i.e., random forests (RF), extra trees (ET) and gradient-boosted regression trees 

(GBRT) to predict heating and cooling loads based on geometrical features. Their results showed that 
GBRT outperformed the other models with a shorter training time.  

BPS models have also been extensively used with optimization algorithms to help with the decision-
making process of retrofits. Hashempour et al. (2020) reviewed a large body of literature on the topic, and 
found more than 50 papers that dealt with the optimization of building retrofits. Examples of this process 
include the work by Rosso et al. (2020), who coupled a BPS model of a residential building in Rome with 

an optimization algorithm and found retrofits that could reduce the annual energy demand by 49.2%.  
To date, there has been little work that has coupled the surrogate modelling of buildings with 

optimization algorithms. Current literature on the subject is limited, with only a few papers detailing this 
workflow. Studies such as Bamdad et al. (2017) and Bamdad et al. (2020), who used Artificial Neural 
Network (ANN) surrogates alongside several optimization algorithms, found that ant colony optimization 
was the most effective algorithm. Older studies by Tresidder et al. (2011) and Tresidder et al. (2012) found 

that their surrogate could find optimum solutions faster than typical evolutionary algorithms almost 95% 
of the time. All four studies mentioned used annual metrics for their objective functions, which limits the 
ability to look at outputs on a more granular scale. This was partially mitigated in the recent study by Zhan 
et al. (2023), who utilized an ANN-based surrogate of an educational building to output predictions on 
shorter timescales, finding a 4% improvement in energy consumption and comfort when optimizing for two 
objectives. 

Overall, papers that coupled surrogate modelling with optimization algorithms typically share the 
limitation that they were designed to handle, at most, two objective functions. For papers that compared 
different optimization algorithms for a single model, their surrogate models output annual data. Finally, to 
the best of the author’s knowledge, no attempt has been made to test and compare different multi-objective 
optimization algorithms on surrogate models with sub-annual prediction schemes in currently published 
scientific literature. 

The goal of this paper is to compare the performance of several commonly used meta-heuristic 
algorithms on an ML surrogate of a BPS model. The study thus aims to inform building retrofits along three 
performance metrics: electricity consumption, natural gas consumption, and thermal comfort, to better 
shape best practices in future work on surrogate model optimization.  As data-driven methods for simulation 
become more common in streamlining and accelerating scientific efforts, a study such as the one to be 
undertaken here is helpful to gauge the performance of different algorithms on similar black-box 

optimization problems. 
This paper is organized as follows: Section 2 outlines the methodology followed. Section 3 details the 

results of the proposed methods, and Section 4 discusses the limitations of this study and concludes the 
work. 

2 METHODOLOGY 

The methodology of this paper consists of three main phases, shown in Figure 1 and detailed in the 

following subsections. Phase 1 consists of creating the ML surrogate model based on a validated BPS model 
of an archetypal office building, Phase 2 details the selection of optimization algorithms to test as well as 
the basis of comparison to be used, and Phase 3 consists of the implementation and comparison of the 
selected optimization algorithms’ capabilities to inform building retrofit measures. 

2.1 ML Surrogate Model Development 

A previously developed BPS-based dataset is used to train the surrogate model (Markarian et al. 2024). The 

BPS model is representative of an archetype three-story office building that was compliant with the National 
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Energy Code of Canada for Buildings (NECB). Detailed information on the building’s characteristics can 
be found in Kharvari et al. (2022). 
 The dataset was generated by varying key input parameters (e.g., heating and cooling setpoints and 

window U-value) and estimating hourly electricity and natural gas consumption as well as Predictive Mean 
Vote at Standard Effective Temperature (PMVSET). PMVSET is a comfort metric from the Pierce two-
node model that simplifies the human body into two isothermal compartments: the core, where all metabolic 
heat is generated, and the skin (Chen et al. 2017). The model additionally standardizes the actual 
environment to a hypothetical one at SET, defined as the dry-bulb temperature in an imaginary setting with 
50% relative humidity and appropriate clothing for occupant activity. PMVSET is obtained from 

𝑃𝑀𝑉𝑆𝐸𝑇 = (0.303𝑒−0.036𝑀 + 0.028)(𝐻 − 𝐿𝑆𝐸𝑇∗) , where M, H and LSET* represent metabolic rate, 
occupant’s internal heat production rate and energy loss from body at SET, respectively. PMVSET within 
the range of -1 and 1 indicates occupants’ comfort (Chen et al. 2017). 

 

Figure 1: Methodology flowchart. 

The list and the range of parameters to vary were determined based on previous literature (Hashempour 
et al. 2020). A Latin Hypercube Sampling (LHS) method was employed to draw samples from the specified 
ranges, which were then fed into EnergyPlus to generate hourly results. Overall, the dataset has 11 input 
features, including both weather and building-related features and three target variables, with a total of 
876,000 instances (Markarian et al. 2024). 

Extreme Gradient Booting (XGB) is selected to develop the ML surrogate model due to its high level 
of accuracy in the building energy performance context (Ali et al. 2023; Sánchez-Zabala and Gómez-Acebo 
2024; Sun et al. 2020). The Multioutput Regressor from the scikit-learn library is utilized with XGB from 
the xgboost library as its estimator, allowing for the simultaneous prediction of the three target variables. 
The model is trained on 80% of the dataset selected randomly and tested on the remaining 20%. To further 
improve the model performance, a two-step hyperparameter tuning involving “HalvingRandomSearchCV” 

and “RandomizedSearchCV” is conducted. “HalvingRandomSearchCV” uses a successive halving 
technique which progressively allocates more resources to promising configurations while discarding poor-
performing ones (Soper 2023). This technique is executed multiple times to find the approximate location 
of the hyperparameters and narrow down the search space, as it is computationally less intensive than a 
random grid search method. A random grid search is then conducted to find the optimal hyperparameters. 
Finally, the predictive accuracy is evaluated using adjusted R2, mean absolute error (MAE) and coefficient 

of variation of root mean square error (CV(RMSE)). For more details on input selection, sampling, and 
surrogate model development, please refer to Markarian et al. (2024). 
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2.2 Optimization Algorithm Selection 

Algorithm selection is key to optimization. In general, the fitness of an algorithm is highly dependent on 
the optimization problem, with Table 1 detailing the families of algorithms as classified by Muñoz et al. 

(2015). A review done by Nguyen et al. (2014) on optimization of BPS models found that most researchers 
utilized stochastic algorithms to avoid problems with finding gradients of functions that may not be 
differentiable across their domain, which are potential challenges for black-box models in general. 

Table 1: Algorithm classification. 

Class Family  Common algorithms 

Deterministic Line search methods Gradient descent 
Trust region methods Levenberg-Marquardt 
Pattern search methods Nelder-Mead 

Stochastic Random search methods N/A 

Simulated annealing methods AMOSA 
Population based algorithms PSO, GA 

 
One method of aiding algorithm selection for black-box models that has become increasingly prevalent 

in recent years is exploratory landscape analysis (ELA). ELA is an umbrella term for calculations that can 

help gauge a deeper understanding of a black-box model (Malan 2021; Mersmann et al. 2011). While the 
problem being tackled is multi-objective in nature, most literature on ELA is restricted to single-objective 
problems. Some work — see Seiler et al. (2024); Liefooghe et al. (2020) — has recently begun to tackle 
the usage of ELA for multi-objective problems, but the field still lacks maturity. For this reason, ELA is 
used here to analyze each objective function as a standalone problem, to aid with algorithm selection.  

While many ELA techniques exist, the one utilized for this paper is finding local optima networks 

(LON) proposed by Adair et al. (2019). This technique gives practitioners the ability to gauge an estimate 
of the number of local optima and study their distribution across the function landscape. Optima that are 
close together in space and separated from other clusters of optima are known as funnels. LON analysis 
also gives an estimated number of funnels within the function. Formally, if we denote 𝑋 ∈ ℝ𝑛 as the set of 
all possible solutions to the problem, 𝑁 as the neighborhood of solutions around a single solution 𝑥, and 
𝑓(𝑥) as the fitness function at 𝑥, then a local optimum 𝑥∗ is a solution such that ∀𝑥 ∈ 𝑁(𝑥∗), 𝑓(𝑥∗) ≤ 𝑓(𝑥). 

The method of finding these clusters mirrors the logic of basin-hopping, first introduced by Wales and Doye 
(1997), which translates the landscape of a function into points of different potential energy, in which the 
algorithm is tasked with finding the highest potential energy (which indicates to the global minima). For 
this study, the implementation of LON on the Python package pflacco is utilized (Prager and Trautmann 
2024). The algorithm is run in order to understand the modality of each objective function. To do this, the 
decision variables are sampled using an LHS scheme before being passed to the main algorithm. 

2.2.1 Algorithms Utilized 

Following the classification presented in Table 1, one algorithm from each family of stochastic algorithms 
was chosen, apart from population-based algorithms; seeing as they are the most popular for similar 
applications (see (Mousavi et al., 2023)), two algorithms were chosen to represent this family. Each of the 
four was given an upper limit of 300 possible undominated solutions to find. The first is random search, 
which is considered in order to judge how well other algorithms perform with respect to some baseline. The 

second algorithm is an implementation of multi-objective particle swarm optimization algorithms 
(MOPSO) commonly called OMOPSO, first formulated by Sierra and Coello Coello (2005). OMOPSO is 
a population based algorithm that simulates particles moving in a swarm, and utilizes a crowding factor in 
which leading candidate solutions are given a crowding value to represent the distance between it and other 
candidate solutions. Candidates with fewer crowding neighbors are favored in selection and stored in an 
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archive, promoting diversity of solutions. OMOPSO also utilizes multiple fitness values for each objective, 
making it well suited for multi-objective problems. Both of the preceding algorithms are implemented 
through jMetalPy, a Python library created by Benitez-Hidalgo et al. (2019).  

The third algorithm implemented is non-dominated sorting genetic algorithm II (NSGA-II), which is a 
widely used algorithm for optimization problems with 2 or 3 objective functions (Ma et al. 2023). Originally 
proposed by Deb et al. (2002), NSGA-II creates a parent population and generates an offspring population 
from the parent, mimicking natural selection. The resultant of these two populations is combined and sorted 
according to dominance. This is repeated until termination. NSGA-II was implemented through the Python 
package Pymoo (Blank and Deb 2020b). A stricter convergence than the one originally proposed in Blank 

and Deb (2020a) was implemented, with a tolerance of the design space set to 10-10  and a tolerance of the 
objective space set to 0.000025. For both OMOPSO and NSGA-II, the mutation parameters (uniform and 
nonuniform for the former, and polynomial for the latter) were set to a probability of 1/11 as per the 
comparative study conducted by Godínez et al. (2010). 

The final algorithm implemented was archived multi-objective simulated annealing (AMOSA), first 
proposed by Bandyopadhyay et al. (2008). This algorithm is similar to basin-hopping (discussed in 

subsection 2.2) but extends to multi-objective problems. The inspiration for simulated annealing algorithms 
comes from statistical mechanics, whereby the temperature of matter is increased then slowly decreased to 
a minimum, where the low-energy states of the matter represent the global minima. For multi-objective 
problems, this concept is expanded to contain an archive of solutions representing the Pareto front of the 
problem. This algorithm was implemented using the pyAMOSA package (Barone 2021). An initial 
temperature of 200 degrees was taken, with the final (termination) temperature taken to be 10-7, as per the 

original paper’s recommendation. 

2.2.2 Performance Indicators 

Correctly benchmarking the suitability of algorithms requires some measure of performance. Over the 
years, many different indicators have come to be used, including simple measures such as time and 
iterations and more sophisticated measures dealing with convergence to a known Pareto front (Audet et al. 
2021). The indicators utilized in this study are the number of Pareto efficient solutions found, the 

hypervolume of the found solutions, as well as the computational time required for each algorithm.  
On the first of the mentioned metrics, it should be noted that the number of solutions found is not an 

indication of the quality of said solutions. This is instead better represented by the number of Pareto efficient 
solutions found by each algorithm when compared to the union of all four solution sets. Formally, a solution 
𝑥∗ is Pareto efficient in set 𝑋 if there is no solution 𝑥′ that dominates it, i.e. if 𝑥∗ is not worse than 𝑥′ in all 
objectives and is strictly better in one. Therefore, the set 𝑃 of Pareto optimal solutions contains all non-

dominated solutions, i.e. solutions in which there exists no other solution that is simultaneously more 
efficient in all three objectives. 
 The second metric is hypervolume, which is a widely used metric as it does not require existing 
knowledge of the Pareto front. A reference point of (𝑟𝑖, … , 𝑟𝑛) is given by the user such that this point falls 
outside the set of possible solutions. Assuming normalized variables, 𝑟𝑖 > 1, the volume bounded by the 
found Pareto front and the reference point is called the hypervolume of the solution, and the aim of the 

optimization is to maximize the hypervolume (Cao et al. 2015). Given that for the implementation of 
OMOPSO and random search, there was no other suitable termination criterion, the termination of these 
two algorithms was done either after a predetermined runtime or if a hypervolume of 0.9 was achieved. The 
reference point for hypervolume is taken to be (𝑟, 𝑟, 𝑟), with 𝑟 = 1 + 1/23, which is suitable given the 
population size of 300 chosen, according to the recommendation given in Ishibuchi et al. (2017). For the 
termination criterion, the variables are normalized as 𝑥/(1 + 𝑥) due to incomplete information about the 

maximum and minimum of each range. For the final hypervolume calculation, maximum and minimum 
values are extracted from the solution sets to be used, and hypervolume is re-calculated for all four solution 
sets using Pymoo’s hypervolume function to ensure fairness of comparison. In this algorithm, solutions are 
stored in a list 𝐿 according to their 𝑧 coordinate (assuming three objective functions), and projects each 
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solution onto the (x, y)  plane relative to the provided reference point. This area is multiplied by the 
difference in 𝑧 between the current solution and the one stored below it in 𝐿. This is repeated for all 
solutions in 𝐿 to provide the hypervolume of the found Pareto front, as detailed in Fonseca et al. (2006).  

The final metric, computational time, becomes increasingly important as problems scale up, either in 
terms of decision variables or number of objectives. It is used here in conjunction with the number of Pareto 
efficient points to gauge whether the algorithm found a wide array of efficient solutions in an acceptable 
time. To ensure fairness, all algorithms are run on the same computer, equipped with an AMD Ryzen 7 
5800HS processor. All algorithms that do not terminate within 11 hours are manually terminated at the 11-
hour mark. Seeing as computational efficiency is a large motivator behind the usage of surrogate models, 

the need to get results in a reasonably short timeframe outweighs the importance of finding the true Pareto 
front, especially if some algorithms terminate before 11 hours and perform well in other metrics. 

2.3 Multi-Objective Optimization Experimental Design 

The optimization problem at hand contains 11 decision variables, with Table 2 listing the variables and the 
reference material used to generate realistic input values. Unlike the ML training and testing phase in 
Section 2.1, the design variables are bounded by tighter upper bounds to ensure code compliancy. The 

optimization utilizes hourly weather conditions to simulate the performance of the building under typical 
weather conditions in Ottawa over one year. For some variables, such as infiltration, it is difficult to quantify 
possible inputs, therefore the minimum was taken to be approximately half of the initial condition. These 
variables represent possible envelope retrofits as well as operational changes, to best capture different 
retrofit scenarios that practitioners could undertake to improve building performance. 

Table 2: Optimization search space. 

Variable Search Space Variable (cont.) Search space 

X1: Wall R-value 

(m2K/W) 

[4.17,10] (Morrison 
Hershfield 2021) 

X7: Cooling 

Setpoint (6:00-

21:00) 

[22,28] (Azar and 
Menassa 2014; 
Bamdad et al. 
2017; Shen and 

Pan 2023) 
X2: Roof R-value 

(m2K/W) 

[7.69,10] (Morrison 
Hershfield 2021) 

X8: Cooling 

Setpoint (21:00-

6:00) 

[25,35] (Azar and 
Menassa 2014) 

X3: Roof U-value 

(W/m2K) 

[0.79,1.69] (Love and 
Bozoian 2022; National 

Fenestration Rating Council 
2023) 

X9: Chiller COP [4.5,5.3] (Love 
and Bozoian 

2022) 

X4: SHGC [0.79,1.69] (Love and 
Bozoian 2022; National 
Fenestration Rating Council 
2023) 

X10: Heating 

Efficiency 

[0.72,0.95] (Love 
and Bozoian, 
2022) 

X5: Heating Setpoint 

(21:00-6:00) 

[16,20] (Talami et al. 2023) X11: Infiltration 

(m3/s/m2) 

[0.000125,0.0003] 

X6: Heating Setpoint 

(7:00-21:00) 

[18,24] (Bamdad et al. 2017; 
Shen and Pan 2023) 

  

 

 The optimization to be performed is multi-objective in nature. For this study, three objective functions 
are minimized, (i) annual electric consumption (ii), annual natural gas consumption, and (iii) a discomfort 
metric. The first two objectives are found by summing the hourly outputs of the model, and the third is 
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found by outputting the absolute value of PMVSET at every hour, and calculating the mean across all 
occupied hours of the year. Due to PMVSET being calculated at an hourly scale, the sub-annual prediction 
scheme detailed in Subsection 2.1 is deemed necessary. 

3 RESULTS AND DISCUSSION 

Results are given in two Subsections. The first details the results of the training and testing of the ML 
model, and the second gives the results of the optimization.  

3.1 ML Model Testing 

Table 3 demonstrates the predictive performance of the XGB model developed using the testing portion 
(20%) of the dataset described in Subsection 2.1. The results confirm the predictive performance of the 

developed model with R2 values exceeding 0.9 for all three target variables. Additionally, CV(RMSE) 
values of the target variables are well below the 30% threshold proposed by the ASHRAE 14 guideline for 
hourly models (ASHRAE 2023). 

Table 3: Developed XGB model predictive performance. 

Metrics Electricity Natural gas PMVSET 

Adjusted R2 0.97 0.97 0.92 

MAE 4.9 kWh 7.56 kWh 0.1 

CV(RMSE) 0.13 0.21 0.22 

 
The actual and predicted values of the three target variables are demonstrated in Figure 2. The data 

points form a relatively even dispersion along the diagonal line, indicating a strong positive correlation 
between actual and predicted values. The model overestimates the PMVSET for some instances, falling 
between 0 and 0.7.. Analysis of the input data indicated that the overestimation was primarily due to one 

specific EnergyPlus run, which acted as an outlier. This, however, does not undermine the overall 
performance, as confirmed by the performance metrics listed in Table 3.  

 

Figure 2: Predicted vs. actual values for each objective. Each point represents one hourly value of 
electricity (left), natural gas (center), and PMVSET (right). 

3.2 Optimization Results 

The set of Pareto efficient points across the union of the sets are displayed in Figure 3, showcasing first 

each possible combination of objective functions in the lower triangle, as well as the distribution of the 
solutions found along the diagonal, with tags specifying which algorithm corresponds to its distribution. 
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Different colors and markers are used to represent the algorithm that found its respective solutions. The 
three scatterplots clearly showcase the conflicting relationship between energy consumption and comfort 
(lowest row), but the relationship between electricity and natural gas consumption (upper left scatter plot) 

shows no clear correlation. This can be explained by recognizing that while envelope changes would benefit 
both objectives, other variables (especially chiller COP and heating efficiency) would have little to no effect 
on one objective while strongly affecting the other. NSGA-II outperformed the other algorithms in terms 
of number of efficient solutions found; of the 300 solutions found by the NSGA-II algorithm, 97% were 
undominated by any other solution found across the four solution sets and constituted 74% of the final set 
of Pareto efficient points. The distribution of solutions displayed on the diagonal of Figure 3 also shows 

that NSGA-II was consistently successful in finding low values for all three objectives. 

 

Figure 3: Set of all non-dominated solutions, alongside the distribution of solutions found. 

 To further understand each algorithm’s ability to capture the optimal solution, Table 4 details the 

optimal solution found by each algorithm for each of the three objectives — annual electricity consumption, 
annual natural gas consumption, and |PMVSET| respectively. The best-performing solution for each metric 
is indicated in bold. Also listed is the hypervolume of each solution set, as well as the number of solutions 
found out of a predetermined maximum of 300. In this comparison, NSGA-II also found better optimal 
solutions for each of the three objective functions, and its solution space covered a larger hypervolume. 
 It is prudent to mention here the results of the LON analysis (detailed in Subsection 2.2). The LON 

analysis of the objective functions found 100 funnels in each of the objective functions, as well as 1532, 
1486, and 1719 local optima in the three objective functions as defined in Subsection 2.3. The high 
multimodality of the objective functions is further validation of the need to use stochastic optimization 
algorithms instead of deterministic ones, as the usage of algorithms dependent on derivatives would not be 
able to traverse the objective space effectively. This density of local optima is showcased through Table 4 
as each of the algorithms found a minimum annual electric consumption of ~1.6 TJ, a minimum annual 
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natural gas load of ~0.34 TJ, and a minimum |PMVSET| of ~0.93. The results showcase the many scenarios 
in which numbers near the absolute minimum could be achieved, and highlights the difficulty of the 
objective space being traversed. The difficulty in finding good solutions due to the large number of local 

minima for each function is further evinced by the fact that of the 797 solutions found, only about half were 
truly non-dominated in the union of the four individual sets. There is also little doubt that there are more 
non-dominated solutions that were not found by any of the algorithms. NSGA-II handled this complex 
landscape best in terms of the quality of solutions found. 

Table 4: Optimal solutions found by each algorithm, and the hypervolume of their Pareto fronts. 

Algorithm nfound nnds Optimal Obj-1 Optimal Obj-2 Optimal Obj-3 HV Time 

(hr) 

Random 

Search 

224 1 (1.60,0.42,1.17) (1.72,0.35,1.29) (1.75,0.51,0.93) 0.64 11 

OMOPSO 81 46 (1.60,0.43,1.00) (1.69,0.34,1.30) (1.74,0.45,0.93) 0.70 11 

NSGA-II 300 290 (1.59,0.49,1.14) (1.69,0.33,1.29) (1.74,0.48,0.93) 0.73 0.49 

AMOSA 192 55 (1.60,0.41,1.22) (1.69,0.33,1.30) (1.74,0.52,0.93) 0.70 5.82 

 
 As for the optimization computational cost, the four algorithms were run either until termination, or up 
to 11 hours provided that the algorithms did not terminate. Of the four, only NSGA-II and AMOSA 
terminated before the 11-hour mark, at a runtime of 30 minutes and 5.82 hours respectively. The stark 
contrast in time required to find each solution set also diminishes the possibility that the difference in 

solution quality was related to small computational inefficiencies in the implementation of each of these 
algorithms. While the optimal solution quality and hypervolumes do not vary greatly amongst the four 
solution sets, the time in which NSGA-II achieved the best-performing solution sets its performance apart 
from the other algorithms tested in this study, having found its superior solution set almost 12 times faster 
than AMOSA and 22 times faster than OMOPSO and random search. 

4 CONCLUSION 

Recent studies on building surrogate models with sub-annual prediction schemes do not usually attempt to 
compare the performance of different optimization algorithms. This paper presented a unique comparison 
of four optimization algorithms applied to surrogate models of BPS to test retrofit strategies. The presented 
approach consisted of three main phases: (1) developing an ML surrogate of a validated archetypal BPS 
office model; (2) detailing the process of algorithm selection and the utilization of ELA techniques to gain 
a deeper understanding of the black-box model, and (3) conducting a multi-objective optimization to find 

retrofitting solutions that minimize electricity and natural gas consumption, as well as PMVSET. This study 
has studied the effectiveness of four different algorithms on such a model to showcase the difficulty of 
optimizing highly multimodal objective landscapes. 
 Having developed an accurate ML surrogate of a validated BPS archetype office building, the surrogate 
was studied using LON within the ELA framework to gauge the modality of the objective functions. This 
highlighted the need to use stochastic algorithms to efficiently find solutions, and four commonly used 

algorithms (random search, OMOPSO, NSGA-II, AMOSA) were utilized to compare their performance 
using three performance indicators, namely the quality of solutions (through comparing the four solution 
sets and sorting out dominated solutions, as well as judging the best found solution for each objective), the 
hypervolume of each solution set, and the computational time required to find their respective solution sets. 
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Of the four algorithms, NSGA-II was found to be the best performer, having yielded the best results 
for every objective function, as well as finding the largest number of Pareto efficient solutions. Coupled 
with its superior hypervolume performance, as well as the speed in which these solutions were found, 

NSGA-II is the most suitable algorithm for such a problem from the ones tested. The efficient solution set 
found by NSGA-II constituted 74% of the final set of Pareto efficient solutions, and this large volume of 
efficient solutions was found at a mere fraction of the time needed for other algorithms to find inferior 
solutions, with NSGA-II finding its solution set in 9% of the time when compared to AMOSA, and 5% 
when compared to random search and OMOPSO.  

The algorithms surveyed in the current paper are commonplace, but new algorithms are being 

developed regularly that may outperform the algorithms selected here. Due to the generic nature of the 
proposed methodology, this framework can easily be adapted to test algorithms different from the four 
selected here. Additionally, the inclusion in ELA is likely novel within the field of building surrogates, and 
the widespread nature of the algorithms used also gives practitioners an idea of which algorithms could 
perform best for their respective problems. The ability to efficiently optimize for building surrogates (with 
the best solution set being found in a mere 30 minutes) further lends credence to the idea that future 

retrofitting problems can quickly find solutions to complicated designs. This allows for the incorporation 
of more decision variables and objective functions, thus bypassing one of the main bottlenecks faced when 
using typical BPS-in-the-loop optimization schemes. 

Finally, it is worth noting that a stronger understanding of the problem being optimized is highly 
recommended for algorithm selection. Tools such as ELA, while not widespread in the field of building 
surrogates, could be useful to gauge a deeper understanding of the black-box model being utilized. Future 

work could include more tools implemented from ELA and scaling the comparison to many-objective 
problems to better inform best practices in the field of surrogate model optimization, with the aim of 
informing building retrofits. Sub-annual prediction schemes could also be further leveraged for metrics 
pertaining to Net-Zero Energy Building (NZEB) design, such as renewable energy modeling. 
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