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ABSTRACT

The paper examines the relative errors (REs) of quantile estimators of various stochastic models under
different asymptotic regimes. Depending on the particular limit considered and the Monte Carlo method
applied, the RE may be vanishing, bounded, or unbounded. We provide examples of these possibilities.

1 INTRODUCTION

Analysts employ quantiles to assess risk in application areas such as finance, manufacturing, and nuclear
engineering. Also called a value-at-risk or percentile, the p-quantile, p ∈ (0,1), of a continuous random
variable is a constant ξp for which exactly p of its distribution’s mass lies below ξp, so the median is
the 0.5-quantile. For example, a manufacturer specifying a widget’s warranty length as the 0.1-quantile
of its time to failure would lead to about 10% of sales resulting in warranty claims. Dong and Nakayama
(2019) review estimating ξp via Monte Carlo (MC) methods, including simple random sampling (SRS)
and importance sampling (IS) (Asmussen and Glynn 2007, Chapter V.1).

We focus here on the efficiency of quantile estimators. For an estimator obeying a central limit theorem
(CLT) as the sample size grows large, the estimator’s relative error (RE) is the ratio of the square root of
the CLT’s asymptotic variance over the estimand; e.g., see L’Ecuyer et al. (2010). We consider families of
stochastic models indexed by a parameter r and examine the REs of SRS and IS estimators of ξp ≡ ξp,r
as r approaches some limiting value r0. For example, r may represent the mean or variance of a random
variable, and we let r → ∞ or r → 0. Or r could be the quantile level p, and we let p → 0 or 1. The paper
provides examples under various asymptotic regimes as r → r0 of vanishing, bounded, or unbounded RE.

Many previous papers have studied quantile estimation, but there does not appear to be much analyzing
the estimators’ theoretical efficiency under asymptotic regimes. The asymptotic variance of a quantile
estimator often has a ratio form, with the numerator as the asymptotic variance of an estimator of the
probability of exceeding ξp, and the denominator the squared density at ξp. Prior results analyzing the IS
asymptotics as p → 1 of just the variance’s numerator (ignoring the denominator) include Glynn (1996)
for a sum of independent and identically distributed (i.i.d.) random variables, and Deo and Murthy (2021)
for a black-box model. Kohler and Krzyżak (2019) examine the rate of convergence of quantile estimators
based on surrogate models with sample size n for a quantile level p = pn → 1 as n → ∞. These works do
not consider RE, but Li et al. (2024) does for an i.i.d. sum as p → 1, as described in Section 6.2.

The rest of the paper unfolds as follows. Section 2 develops the mathematical framework. Section 3
considers location-scale families of distributions. We examine SRS estimators of ξp as p → 1 or p → 0 for
some specific parametric families of distributions in Section 4. Section 5 analyzes IS for the exponential
distribution. In Section 6 we consider averages and sums of i.i.d. random variables. Section 7 reviews
results for a quantile of the hitting time to a rarely visited set of states for a regenerative process. We
compare hypothesis tests for quantiles and tail probabilities in Section 8.

2 MATHEMATICAL FRAMEWORK

Consider a family of stochastic models indexed by a parameter r, with ϕ ≡ ϕr an estimand (e.g., a quantile
or mean) to be estimated via a MC method M (e.g., SRS or IS). From a simulation with sample size
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n using M, construct an estimator ϕ̂M,n ≡ ϕ̂M,n,r of ϕr, and for each fixed r, we assume a CLT holds:√
n[ϕ̂M,n −ϕ]⇒ N (0,ς2

M) as n → ∞, where ⇒ denotes weak convergence (Serfling 1980, Section 1.2.4),
N (a,b2) is a normal random variable with mean a and variance b2, and ς2

M ≡ ς2
M,r ∈ (0,∞) is the CLT’s

asymptotic variance. When ϕ ̸= 0, the relative error of the M estimator of ϕ is

REM,r[ϕ] = ςM/|ϕ| ≡ ςM,r/|ϕr|; (1)

e.g., see L’Ecuyer et al. (2010) and Chapter VI of Asmussen and Glynn (2007). To motivate our interest in
RE, let ς̂M,n be a consistent estimator of ςM in the sense that ς̂M,n ⇒ ςM as n → ∞. For a given confidence
level γ ∈ (0,1), e.g., γ = 0.95, we then get (ϕ̂M,n ± z1−(1−γ)/2ς̂M,n/

√
n) as an approximate confidence

interval (CI) for ϕ for large n from the CLT and Slutsky’s theorem (Serfling 1980, Theorem 1.5.4), where
Φ(zq) = q for q ∈ (0,1) and Φ is the cumulative distribution function (CDF) of N (0,1). Obtaining a CI
with a pre-specified relative half-width ε > 0 (i.e., a CI of the form (ϕ̂M,n±ε|ϕ̂M,n|)) entails a sample size
n roughly proportional to the squared REM,r[ϕ], showing the relevance of RE.

We want to study the behavior of REM,r[ϕ] as r → r0 for some limiting value r0 ∈ ℜ ≡ [−∞,∞], with
each r ∈ ℜ ≡ (−∞,∞). If REM,r[ϕ] vanishes (resp., is bounded or unbounded) as r → r0, we say that the
estimator ϕ̂M,n has vanishing (resp., bounded or unbounded) relative error (VRE) (resp., BRE or URE).

We often consider estimands ϕ in (1) related to a random variable Y ≡Yr with CDF F ≡ Fr, which we
denote by Y ∼ F , and let f ≡ fr be the derivative (when it exists) of F . For example, ϕ can be the mean
µ = E[Y ] =

∫
ydF(y), but our main focus will be on estimating a quantile of Y ∼ F . For each p ∈ (0,1),

the p-quantile ξ ≡ ξp of F (or equivalently of Y ) is ξ = F−1(p) = inf{y : F(y)≥ p}.
We may estimate the p-quantile of Y ∼ F using SRS as follows. First generate a sample of n i.i.d.

observations Y1,Y2, . . . ,Yn from F . Compute the empirical distribution F̂SRS,n as an estimator of F , with

F̂SRS,n(y) = (1/n)∑
n
i=1I(Yi ≤ y), (2)

where I(·) denotes the indicator function, which equals 1 (resp., 0) when its argument is true (resp., false).
Then the SRS estimator of ξ = F−1(p) is ξ̂SRS,n = F̂−1

SRS,n(p). For any fixed p ∈ (0,1) such that f (ξp)> 0,

which will be assumed throughout, ξ̂SRS,n obeys a CLT as n → ∞ (Serfling 1980, Section 2.3.3):

√
n[ξ̂SRS,n −ξ ]⇒ N (0,κ2

SRS), where (3)

κ
2
SRS ≡ κ

2
SRS,p = ψ

2
SRS/ f 2(ξp), with ψ

2
SRS ≡ ψ

2
SRS,p = p(1− p). (4)

Note that F̂SRS,n(ξp) has variance ψ2
SRS,p/n, and Dong and Nakayama (2019) explain similar connections

between estimating ξp and F(ξp) for many MC methods. When ξp ̸= 0, the SRS quantile estimator has

RESRS[ξp] = κSRS/|ξp|, (5)

as in (1). Let κ̂SRS,n be a consistent estimator of κSRS, e.g., from Corollary 2.5.2 of Serfling (1980). For
γ ∈ (0,1), an approximate γ-level upper confidence bound (UCB) Un for ξp based on a sample size of n is

Un = ξ̂SRS,n + zγ κ̂SRS,n/
√

n. (6)

We can similarly build an approximate γ-level lower confidence bound (LCB) or two-sided CI for ξp.
For comparison, we sometimes also consider estimating the mean µ of Y ∼ F by its SRS estimator

µ̂SRS,n = (1/n)∑
n
i=1Yi. Assuming that the variance V[Y ] = E[(Y −µ)2] of Y ∼ F is σ2 ∈ (0,∞), the SRS

estimator of µ obeys a CLT
√

n[µ̂SRS,n −µ]⇒ N (0,σ2) as n → ∞ (Serfling 1980, Section 1.9.1), so as
in (1) when µ ̸= 0, the RE of the SRS estimator of the mean is given by

RESRS[µ] = σ/|µ|. (7)
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We can also estimate ξp and µ using some variance-reduction technique (Asmussen and Glynn 2007,
Chapter V), such as IS, and the resulting estimators will also obey CLTs under certain assumptions. To
develop IS, assume that Y = v(X), where X = (X1,X2, . . . ,Xd) ∼ G is an ℜd-valued input random vector
that is fed into a function v : ℜd → ℜ to produce Y ∼ F . Let G̃ be another joint CDF on ℜd whose
measure is absolutely continuous with respect to that of G. We can then apply a change of measure to
write µ =E[Y ] =EG[v(X)] =

∫
ℜd v(x)dG(x) =

∫
ℜd v(x) dG(x)

dG̃(x)
dG̃(x) =EG̃[v(X)R(X)], where EK (resp., VK)

denotes the expectation (resp., variance) operator when X ∼ K, and R(x) = dG(x)/dG̃(x) is the likelihood
ratio (LR). By sampling i.i.d. copies X1,X2, . . . ,Xn of X ∼ G̃, we then obtain an unbiased estimator of µ as
µ̂IS,n = (1/n)∑

n
i=1 v(Xi)R(Xi). The IS estimator µ̂IS,n of the mean obeys a CLT

√
n[µ̂IS,n−µ]⇒N (0,σ2

IS)
as n → ∞ when σ2

IS ≡ VG̃[v(X)R(X)] ∈ (0,∞). If µ ̸= 0, the relative error of the IS estimator µ̂IS,n is

REIS[µ] = σIS/|µ|. (8)

Glynn (1996) develops IS for estimating ξp. A change of measure yields 1−F(y) =EG[I(v(X)> y)] =
EG̃[I(v(X)> y)R(X)], so an unbiased estimator of F(y) is F̂IS,n(y) = 1− (1/n)∑

n
i=1 I(v(Xi)> y)R(Xi) with

each Xi ∼ G̃. Inverting the IS CDF estimator F̂IS,n leads to the IS p-quantile estimator as ξ̂IS,n = F̂−1
IS,n(p). If

there exists constants ε0 > 0 and λ0 > 0 such that EG̃[I(v(X)> ξp−λ0)R2+ε0(X)]< ∞, then the IS quantile

estimator obeys a CLT
√

n[ξ̂IS,n −ξp]⇒ N (0,κ2
IS) as n → ∞, where

κ
2
IS ≡ κ

2
IS,p = ψ

2
IS,p/ f 2(ξp), with ψ

2
IS,p = EG̃[I(v(X)> ξp)R2(X)]− (1− p)2; (9)

e.g., see Glynn (1996) and Chu and Nakayama (2012). Note that F̂IS,n(ξp) has variance ψ2
IS,p/n, which

depends on G̃ but f (ξp) in (9) does not. As in (1) when ξp ̸= 0, the RE of the IS p-quantile estimator is

REIS[ξp] = κIS/|ξp|. (10)

Our goal is to examine the RE of estimators of ξp and µ under various asymptotic regimes when
r → r0. Quantities that we allow to depend on r include the quantile level p or parameters of the CDF F of
Y (or both). For example, we can take p = r and consider r0 = 0 or r0 = 1. Another possibility is that the
mean or variance of F is r, and let r0 = 0 or r0 = ∞. Our notation often omits r to simplify expressions.

We use the following asymptotic notation to describe the RE behaviors as r → r0. For functions h1(r)
and h2(r), we write h1(r) =O(h2(r)) (resp., h1(r) =Ω(h2(r))) as r → r0 if there is a constant c1 > 0 such that
|h1(r)| ≤ c1|h2(r)| (resp., |h1(r)| ≥ c1|h2(r)|) for all sufficiently large (resp., small) r when r ↑ r0 (resp., r ↓ r0).
Moreover, h1(r) = Θ(h2(r)) as r → r0 if both h1(r) = O(h2(r)) and h1(r) = Ω(h2(r)), and h1(r) = o(h2(r))
(resp., h1(r) = ω(h2(r))) as r → r0 if limr→r0 h1(r)/h2(r) = 0 (resp., limr→r0 h2(r)/h1(r) = 0).

3 LOCATION-SCALE FAMILY OF DISTRIBUTIONS

Suppose that Y = a+bX for a scalar random variable X , where X ∼ G, and a,b ∈ ℜ. For example, if X
is a mean-1 exponential with CDF G(x) = [1− e−x]I(x ≥ 0), then for b > 0, Y is a mean-b exponential
shifted by a. Let ν and τ2 > 0 be the mean and variance of G, and let g denote the derivative (when it
exists) of G. Let ηp = G−1(p) be the p-quantile of X ∼ G, and assume that g(ηp)> 0. For Y , its CDF F
and its derivative f then satisfy F(y) = G

( y−a
b

)
and f (y) = 1

b g
( y−a

b

)
. Also, F has mean µ = a+bν and

variance σ2 = b2τ2.
If b > 0, the p-quantile of Y ∼ F is ξp = a+bηp, and f (ξp) =

1
b g

(
ξp−a

b

)
= 1

b g(ηp) (Parzen 2004), so

RESRS[ξp] =

√
p(1−p)

(1/b)g(ηp)|a+bηp| =

√
p(1−p)

g(ηp)| a
b+ηp| (11)
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by (5). (If instead b < 0 and g(η1−p)> 0 for η1−p = G−1(1− p), then ξp = a+bη1−p, and RESRS[ξp] =√
p(1−p)

g(η1−p)| a
b+η1−p| . For simplicity, we will only consider the case when b > 0 from now on.)

We consider different possible choices for the parameters (r,r0) in the asymptotics.

1. Let (r,r0) = (b,∞), with a and p fixed. For estimand ξp ≡ ξp,b, (11) implies that RESRS[ξp] remains
bounded as b → ∞ when ηp ̸= 0, so the SRS estimator of ξp has BRE in this asymptotic regime. In
contrast, suppose the estimand is the mean µ ≡ µb of F when ν = 0 and a ̸= 0, so µ = a ̸= 0. The
variance σ2 ≡ σ2

b of F grows as b2τ2. Hence, the RE from (7) behaves as RESRS[µ] = bτ/a → ∞ as
b → ∞. Thus, in this case for SRS, the mean becomes more difficult to estimate (URE) as b → ∞,
but the p-quantile has BRE for each fixed p ∈ (0,1).
If instead ν ̸= 0, then |µ|= |a+bν | → ∞ as b → ∞. In this case, RESRS[µ] = bτ/|a+bν | → τ/|ν |
as b → ∞, so the SRS estimator of µ has BRE, just like the SRS quantile estimator.

2. Let (r,r0) = (b,0), with a ̸= 0 and p ∈ (0,1) fixed. Thus, the variance σ2 ≡ σ2
b of F shrinks as

b2τ2 as b → 0. By (11) and (7), both RESRS[ξp] and RESRS[µ] shrink to 0 (VRE) as b → 0.

4 SRS ESTIMATION OF p-QUANTILE AS p → 1 OR p → 0 FOR SPECIFIC DISTRIBUTIONS

For Y from some specific parametric families of distributions F , we now examine the RE in (5) of the SRS
estimator of the p-quantile as p → 1 or p → 0. The mean µ and variance σ2 of Y ∼ F do not vary with
p, so RESRS[µ] is then fixed and finite when µ ̸= 0 and σ2 < ∞.

1. Weibull with scale parameter υ > 0 and shape parameter k > 0: The CDF is F(y)= [1−e−(y/υ)k
]I(y≥

0)with density f (y) = (k/υ)(y/υ)k−1e−(y/υ)k
I(y≥ 0), so k = 1 results in an exponential distribution.

For fixed υ > 0, the right tail of the density gets heavier as k shrinks, always with finite variance.
The p-quantile is ξp = υ [− ln(1− p)]1/k. From (4), the asymptotic variance of the SRS estimator
of ξp is κ2

SRS = υ2 p [− ln(1− p)](2/k)−2 /[k2(1− p)], so (5) leads to

RESRS[ξp] =
−1

k ln(1−p)

√
p

1−p → ∞ (URE) as p → 1 or p → 0. (12)

2. (Generalized) Pareto with (ϑ > 0,a0 ∈ ℜ,b0 > 0) = (shape, location,scale) parameters: The CDF is
F(y) = 1− [1+((y−a0)/b0)]

−ϑ I(y ≥ a0) with density f (y) = (ϑ/b0)[1+((y−a0)/b0)]
−ϑ−1I(y ≥

a0), and σ2 < ∞ if ϑ > 2. The p-quantile is ξp = a0 +b0[(1− p)−1/ϑ −1], whose SRS estimator
has asymptotic variance κ2

SRS = b0
2 p/[ϑ 2(1− p)(ϑ+2)/ϑ ]. If a0 = 0,

RESRS[ξp] =
1

ϑ [1−(1−p)1/ϑ ]

√
p

1−p → ∞ (URE) as p → 1 or p → 0. (13)

3. Normal: Suppose that F is normal with mean µ and variance σ2 > 0, so the density is f (y) =
1
σ

φ((y−µ)/σ), with φ(y)= 1√
2π

e−y2/2. The CDF is F(y)=Φ((y−µ)/σ), with Φ(z)=
∫ z
−∞

φ(y)dy.

Let ηp = Φ−1(p), so the p-quantile of F is ξp = µ +σηp. From (4), the asymptotic variance of
the SRS estimator of ξp is κ2

SRS = p(1− p)/[φ(ηp)/σ ]2, and it can be shown that (5) results in

RESRS[ξp] =
σ

√
p(1−p)

φ(ηp)(µ+σηp)
→ ∞ (URE) as p → 1 or p → 0.

Table 1 gives values of RESRS[ξp] for p near 1, where each distribution’s parameters are chosen so that
the median is 2, and a0 = 0 for the Pareto. The right tail of the Weibull (resp., Pareto) gets heavier as k (resp.,
ϑ ) shrinks, and the RE grows by (12) (resp., (13)). Also, the Pareto has heavier tails and larger REs than
the Weibull; e.g., for fixed k and ϑ , the ratio of (13) to (12) satisfies −k ln(1− p)/(ϑ [1− (1− p)1/ϑ ])→ ∞
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Table 1: REs of SRS estimator of p-quantile ξp for normal, Weibull, and Pareto, each with median 2.

1− p N (2,1) Weib(k = 2) Weib(k = 1) Weib(k = 1/2) Par(ϑ = 3) Par(ϑ = 2) Par(ϑ = 1)
10−1 5.2E-01 6.5E-01 1.3E+00 2.6E+00 1.9E+00 2.2E+00 3.3E+00
10−2 8.6E-01 1.1E+00 2.2E+00 4.3E+00 4.2E+00 5.5E+00 1.0E+01
10−3 1.8E+00 2.3E+00 4.6E+00 9.2E+00 1.2E+01 1.6E+01 3.2E+01
10−4 4.4E+00 5.4E+00 1.1E+01 2.2E+01 3.5E+01 5.1E+01 1.0E+02
10−5 1.1E+01 1.4E+01 2.7E+01 5.5E+01 1.1E+02 1.6E+02 3.2E+02

as p → 1. But not all F lead to URE for extreme quantiles; e.g., a uniform distribution on [1,3] has
RESRS[ξp] = 2

√
p(1− p)/[1+2p]→ 0 as p →{0,1}, so VRE. (Section 8 gives examples of F where the

SRS estimators of ξp have URE and VRE in other limiting regimes as r → r0 for fixed 0 ≪ p ≪ 1.)
For any continuous F , examine now the SRS estimator F̂SRS,n(y) in (2) of F(y) for y in the tails. For

u∈ {0,1}, let yu = limp→u F−1(p)∈ℜ. AsV[F̂SRS,n(y)] =F(y)[1−F(y)]/n=V[1− F̂SRS,n(y)] for all y∈ℜ,
we get RESRS[F(y)] =

√
[1−F(y)]/F(y)→ ∞ as y ↓ y0, and RESRS[1−F(y)] =

√
F(y)/[1−F(y)]→ ∞

as y ↑ y1, so SRS estimators of tail probabilities always have URE, in contrast to extreme quantiles.

5 IMPORTANCE SAMPLING FOR THE EXPONENTIAL

The previous sections discuss SRS estimation of the p-quantile ξp. For the special case of an exponential
random variable Y = v(X) = X ∼ F = G with rate λ > 0 (i.e., Weibull with k = 1 and λ = 1/υ in Section 4),
we now consider estimating ξp =− ln(1− p)/λ via IS in which X is sampled from G̃ that simply changes

the exponential’s rate to λ̃ > 0, leading to the LR R(X) = λe−λx/λ̃e−λ̃x in (9). We will argue as in L’Ecuyer
et al. (2009) to determine the value of λ̃ = λ̃p that minimizes κ2

IS = κ2
IS,p in (9) and REIS[ξp] in (10). For

ψ2
IS,p in (9), its first term (i.e., second moment under IS), which is finite if and only if λ̃ ∈ (0,2λ ), satisfies

EG̃[I(X > ξp)R2(X)] =
∫

∞

ξp
λ 2e−2λx

λ̃e−λ̃x
dx = λ 2

λ̃

∫
∞

ξp
e−(2λ−λ̃ )x dx = λ 2

λ̃ (2λ−λ̃ )
e−(2λ−λ̃ )ξp . (14)

Then (14) is minimized at λ̃ = λ + 1
ξp

−
(

λ 2 + 1
ξ 2

)1/2
, which also minimizes κ2

IS,p in (9) as f (ξp) =

λe−λξp = λ (1− p) does not depend on λ̃ . Using ξp =− ln(1− p)/λ leads to

λ̃ = λq ≡ λ

[
1− 1

ln(1−p) −
(

1+ 1
[ln(1−p)]2

)1/2
]
, (15)

and as a consequence, (9) and (14) imply ψ2
IS,p =

(1−p)2−q

q(2−q) − (1− p)2,

κ2
IS,p =

1
λ 2

[
(1−p)−q

q(2−q) −1
]
, and REIS[ξp] =

(
(1−p)−q

q(2−q)[− ln(1−p)]2 −
1

[− ln(1−p)]2

)1/2
, (16)

so REIS[ξp] does not depend on λ . We consider three possibilities for the (parameter, limit) pair (r,r0):

1. (r,r0) = (λ ,0) with p fixed (corresponding, e.g., to a highly reliable Markovian system (HRMS),
where component failure rates go to 0; Goyal et al. 1992): By item 1 of Section 3, the SRS quantile
estimator has BRE when b ≡ 1/λ → ∞. For the IS estimator, (16) implies κ2

IS,p → ∞ as λ → 0
(since q does not depend on λ ), and λ does not appear in REIS[ξp]. Thus, as with SRS, the IS
estimator of ξp also has BRE.

2. (r,r0) = (p,1) with λ fixed: For q ≡ qp in (15), we have that as p → 1,

q = 1− 1
ln(1−p) −

[
1+ 1

[ln(1−p)]2

]1/2
= 1− 1

ln(1−p) −
[
1+ 1+o(1)

2[ln(1−p)]2

]
=− 1+o(1)

ln(1−p) (17)
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since ln(1− p)→−∞. Putting (17) into (16) yields

REIS[ξp] =
(

(1−p)[1+o(1)]/ ln(1−p)

[−(1+o(1)) ln(1−p)][2+(1+o(1))/ ln(1−p)] −
1

[− ln(1−p)]2

)1/2
=
(

e1+o(1)

[2+o(1)][− ln(1−p)] −o(1)
)1/2

,

(18)

so REIS[ξp]→ 0 as p → 1, i.e., the IS (resp., SRS) estimator of ξp has VRE (resp., URE by (12)).
3. (r,r0) = (ε,0) with λ = εc for some constant c > 0 and p = 1− ε (arising, e.g., when considering

extreme quantiles for an HRMS): As in (17) and (18), we get as ε → 0 that q =−[1+o(1)]/ lnε

and REIS[ξp] = ( e1+o(1)

[2+o(1)][− ln(ε)] −o(1))1/2 → 0 (uniformly in c), so the IS estimator of ξp has VRE.
The uniform convergence in c ensures that how extreme the two parameters for the rate and quantile
become is not a critical issue. The SRS RE in (12) does not depend on λ , so SRS yields URE.

6 AVERAGES AND SUMS OF I.I.D. RANDOM VARIABLES

In this section, let X1,X2, . . . ,Xm be m i.i.d. random variables with each X j ∼ G0, where G0 does not depend
on m, µ0 ≡ E[X j] and σ2

0 ≡V[X j] ∈ (0,∞). Let G denote the joint CDF of X = (X1,X2, . . . ,Xm). Below we
will consider Y ≡ Y (m) for Y = (1/m)∑

m
j=1 X j and Y = ∑

m
j=1 X j as m → ∞, so (r,r0) = (m,∞).

6.1 Y is an Average of I.I.D. Summands

Consider Y ≡ Y (m) = (1/m)∑
m
j=1 X j as a sample average under SRS, assuming here that our simulation

code is a black box that outputs only Y but not the individual summands X j. Then Y (m) ∼ Fm obeys a
CLT Z(m)≡

√
m

σ0
[Y (m)−µ0]⇒ N (0,1) as m → ∞. For Km as the CDF of Z(m) and fixed p ∈ (0,1), the

continuity of Φ−1 ensures K−1
m (p)→Φ−1(p) as m→∞ (Van Der Vaart 1998, Lemma 21.2). As in Section 3,

the p-quantile of Y (m) satisfies ξp(m) = µ0+
σ0√

m K−1
m (p)≈ µ0+

σ0√
m Φ−1(p) for large m. We then construct

an estimator ξ̂p,n(m) of ξp(m) from a sample Y1,Y2, . . . ,Yn of n i.i.d. copies of Y =Y (m) as follows. Note that
µ(m) ≡ E[Y (m)] = µ0 and σ2(m) ≡ VFm [Y (m)] = σ2

0 /m, so we define ξ̂p,n(m) = µ̂n(m)+ σ̂n(m)Φ−1(p),
where µ̂n(m) = (1/n)∑

n
i=1Yi and σ̂2

n (m) = (1/(n−1))∑
n
i=1[Yi− µ̂n(m)]2. To simplify the discussion, assume

now that each X j ∼ N (µ0,σ
2
0 ), so Y (m) ∼ N (µ0,σ

2
0 /m). Then the independence of µ̂n(m) and σ̂2

n (m)

(Casella and Berger 2002, Theorem 5.3.1) implies thatVFm [ξ̂p,n(m)] =VFm [µ̂n(m)]+[Φ−1(p)]2VFm [σ̂
2
n (m)] =

[σ2
0 /(mn)]+ 2[Φ−1(p)]2(σ2

0 /m)2/(n− 1) → 0 as m → ∞ for fixed n. Also, ξp(m) → µ0 as m → ∞, so
RESRS[ξp(m)]→ 0 when µ0 ̸= 0 for any fixed p ∈ (0,1), i.e., SRS yields VRE.

6.2 Y is an I.I.D. Sum

Now consider Y ≡ Y (m) = ∑
m
j=1 X j, assuming here that SRS entails sampling the summands X j ∼ G0 and

returning the sum Y , and we compare SRS with IS that changes G0. For Y ∼ F ≡ Fm, let µ ≡ µ(m) = E[Y ]
and ξp ≡ ξp(m) = F−1(p). We will study an asymptotic regime from Glynn (1996) in which the number
of summands r = m → ∞ and simultaneously the quantile level p approaches 1 exponentially fast:

p ≡ pm = 1− e−β0m for some constant β0 > 0. (19)

For SRS and IS with an exponential twist, as developed in Glynn (1996) and further analyzed in Li et al.
(2024), we will see that RESRS[ξp]→ ∞, REIS[ξp]→ 0, RESRS[µ]→ 0, and REIS[µ]→ ∞ as m → ∞, where
the REs are as given in (5), (10), (7), and (8).

To develop the IS, let M0(θ) =
∫

eθx dG0(x), θ ∈ ℜ, be the moment generating function (MGF) of G0.
Let ∆ = {θ ∈ ℜ : M0(θ) < ∞} be the MGF’s domain, and assume that its interior ∆◦ contains 0, which
restricts us to light-tailed summands. Let Q0(θ) = lnM0(θ) be the cumulant generating function, and
define Q′

0(θ) =
d

dθ
Q(θ) as its first derivative. For θ ∈ ∆◦, the exponential twist G̃0,θ of the marginal CDF
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G0 of X j is given by dG̃0,θ (x) = eθx dG0(x)/M0(θ) = eθx−Q0(θ) dG0(x), x ∈ ℜ (Asmussen and Glynn 2007,
Section V.1b). We then define the method IS(θ)with θ ∈∆◦ so that X1,X2, . . . ,Xm are i.i.d., each with marginal
distribution G̃0,θ ; let G̃θ denote the resulting joint CDF of (X1,X2, . . . ,Xm). When µ0 ̸= 0, Theorem 6 of Li
et al. (2024) shows that as m → ∞, RESRS[µ] = Θ(1/

√
m)→ 0 and REIS(θ)[µ] = Ω([α(θ)]m/2/

√
m)→ ∞

for any θ ̸= 0 with ±θ ∈ ∆◦, where α(θ)≡ M0(θ)M0(−θ) ∈ (1,∞). Thus, when estimating the mean µ

of Y ∼ F , SRS yields VRE, but IS(θ) with any θ ̸= 0 leads to exponentially increasing RE.
To estimate the p-quantile for p in (19) and m → ∞, Glynn (1996) applies IS(θ⋆) for θ⋆ > 0 satisfying

−θ⋆Q′
0(θ⋆)+Q0(θ⋆) =−β0, (20)

assuming θ⋆ ∈ ∆◦ exists. Motivated by large-deviations theory, (20) has a root θ⋆ > 0 if Q0 is “steep”
(Dembo and Zeitouni 1998, p. 44), which holds, e.g., when G0 is normal or gamma.

For the SRS and IS(θ⋆) estimators of the p-quantile ξp, Glynn (1996) analyzes the numerators (but not
the denominator f 2(ξp)) of their asymptotic variances in (4) and (9), showing that IS(θ⋆) can substantially
reduce variance compared to SRS. Theorem 7 of Li et al. (2024) provides a fuller picture by further handling
the denominator f 2(ξp) in (4) and (9) through a “saddlepoint approximation” (Jensen 1995, Chapter 2),
establishing that as m→∞, RESRS[ξp] =ω(e(β0/2)m−

√
m/

√
m)→∞ and REIS(θ⋆)[ξp] =O(1/

√
m)→ 0 when

the characteristic function C0(θ) = M0(θ
√
−1), θ ∈ ℜ, of G0 satisfies

∫
ℜ
|C0(θ)|q0 dθ < ∞ for some q0 ≥ 1.

Thus, the SRS estimator of ξp has exponentially increasing RE, but the IS(θ⋆) estimator has VRE.

7 HITTING TIME TO A RARELY VISITED SET OF REGENERATIVE SYSTEM

When Y is the average of m i.i.d. random variables (Section 6.1), an asymptotic regime may be based on
a CLT. Glynn et al. (2018) consider another limiting setting using a different weak-convergence result for
exponential rarity in geometric sums (Kalashnikov 1997). Consider a (non-delayed) regenerative process
X = [X(t) : t ≥ 0] evolving on a state space S ⊆ ℜd (Asmussen and Glynn 2007, Section IV.6b), so
the process “probabilistically restarts” at a sequence of regeneration times 0 = Γ0 < Γ1 < Γ2 < · · · of X .
Examples of regenerative times include the starts of busy periods of a stable GI/G/1 queue, or successive
entrance times to a fixed state in a positive-recurrent Markov chain. We call [X(Γi−1 + s) : 0 ≤ s < τi] the
ith (regenerative) cycle, which has length τi = Γi −Γi−1. The cycles are i.i.d. by the regenerative property.

For A ⊂ S , let T = inf{t ≥ 0 : X(t) ∈ A } be the hitting time to A . Typical examples are the hitting
time to a large level for a stable GI/G/1 queue-length process, or the first time to failure for highly reliable
Markovian systems (Goyal et al. 1992). For F as the CDF of T , our aim is to determine a p-quantile
ξp = F−1(p) for fixed p ∈ (0,1). For i ≥ 1, let Ti = inf{t ≥ 0 : X(Γi−1+ t) ∈A } be the time elapsing after
Γi−1 until the next hit to A , and M = min{i ≥ 1 : Ti < τi}−1 is the number of cycles completed before the
one in which A is first hit. Thus, the hitting time is T = ∑

M
i=1 τi +TM+1. The regenerative structure allows

writing the expected hitting time µ = E[T ] as a ratio µ = E[min(T,τ)]/ζ with τ = τ1 and ζ = P(T < τ)
(e.g., see Goyal et al. 1992 and Glynn et al. 2017).

Now parameterize the model by r so that ζ ≡ ζr → 0 as r → r0; e.g., in a stable GI/G/1 queue-length
process, let r be a large queue threshold with T ≡ Tr as the hitting time of r, and r0 = ∞. Thus, hitting A
in a cycle becomes rarer as r → r0, and the scaled hitting time T/µ converges weakly to an exponential
under various assumptions (Kalashnikov 1997, Chapter 3): for P≡ Pr as the probability measure,

P(T/µ ≤ x)→ 1− e−x as r → r0 (21)

for each x ≥ 0. The advantage of this asymptotic property is that determining quantiles when ζ is small
can be reduced to computing the mean µ ≡ µr since (21) implies ξp ≈−µ ln(1− p) for fixed p ∈ (0,1).
Specifically, let µ̂n be an estimator of µ based on a sample of n cycles, so an estimator of ξp is

ξ̂p,n =−µ̂n ln(1− p). (22)
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Several efficient estimators have been developed for µ (Glynn et al. 2018). For any fixed quantile level
p ∈ (0,1), ξ̂p,n has BRE, VRE or URE as r → r0 if and only if µ̂n has the same corresponding property.
The proof is immediate since ξ̂p,n is simply a linear transformation of µ̂n.

While (22) is based on the limiting result (21), a real system has fixed r, leading to ξ̂p,n having bias that
does not vanish as n → ∞. But the REs in (5) and (10) do not account for such non-vanishing bias, so the
asymptotic variance in the RE should be replaced with the mean squared error, which can be decomposed
as the sum of the squared biased and variance. This is left to future research.

8 SRS HYPOTHESIS TESTING VIA QUANTILE OR CDF

Hypotheses about a quantile can often be expressed equivalently through the CDF (Serfling 1980, Sec-
tion 2.3.7), and the associated statistical tests can have quite different efficiencies. A reason stems from
the asymptotic variance κ2

SRS in (4) of the SRS estimator of the p-quantile ξp. The numerator ψ2
SRS is the

variance of
√

n[F̂SRS,n(ξp)− p] from (2). But the denominator f 2(ξp) of κ2
SRS can be large or small, even

for a non-extreme quantile level 0 ≪ p ≪ 1. We will show this through specific examples.
To motivate the discussion, consider a system with a capacity t0 to withstand a random load Y ∼ F ,

and the system fails (e.g., damage occurs) when Y > t0. A regulator overseeing the system requires strong
evidence that P(Y ≤ t0)> p0 for a specified probability p0 ∈ (0,1), e.g., p0 = 0.95 or p0 = 0.999. We then
define the following null and alternative hypotheses about Y ∼ F :

H0 : F(t0)≤ p0 vs. HA : F(t0)> p0, (23)

and a statistical decision is to be made at a given significance level α ∈ (0,1), say α = 0.05. Thus,
establishing regulatory compliance entails rejecting H0 in favor of HA at level α . For example, for a
postulated accident of a nuclear power plant, the U.S. Nuclear Regulatory Commission (2010) considers
(23) with the load Y as the peak cladding temperature (PCT) having a capacity of t0 = 2200◦ Fahrenheit
and p0 = 0.95, and HA must be established with at least confidence level γ = 1−α = 0.95 (U.S. Nuclear
Regulatory Commission 2005, Section 3.2). This is known as a “γ|p0 criterion” (U.S. Nuclear Regulatory
Commission 2011, Section 24.9), which can be demonstrated via SRS (in a large-sample setting) through
a level α = 1− γ hypothesis test as follows. From an i.i.d. sample Y1,Y2, . . . ,Yn of size n from F , construct
an approximate γ-level lower confidence bound Ln for F(t0), and reject H0 in favor of HA when

Ln > p0. (24)

We can obtain such an LCB Ln by noting that the empirical distribution function in (2) obeys a CLT
√

n
[
F̂SRS,n(t0)−F(t0)

]
⇒ N (0,ψ2

0 ) (25)

as n → ∞, where ψ2
0 = F(t0)[1−F(t0)], leading to an approximate (for large n) γ-level LCB for F(t0) as

Ln = F̂SRS,n(t0)− zγ ψ̂0,n/
√

n (26)

with ψ̂0,n a consistent estimator of ψ0, e.g., using ψ̂2
0,n = F̂SRS,n(t0)[1− F̂SRS,n(t0)].

We can also study (23) through the p0-quantile ξp0 , where we assume that f (ξp0) > 0. In this case,
F(t0)≤ p0 if and only if ξp0 ≥ t0, so we can equivalently express (23) as hypotheses

H ′
0 : ξp0 ≥ t0 vs. H ′

A : ξp0 < t0, (27)

and use the same significance level α . For an approximate γ-level upper confidence bound Un for ξp0 , e.g.,
as in (6) with p = p0 and sample size n, we make a statistical decision that the γ|p0 criterion holds if

Un < t0. (28)
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Wilks (1941) provides an asymptotically equivalent approach; see Section 2.6.1 of Serfling (1980).
In certain cases, when HA in (23) and equivalently H ′

A in (27) are actually true, a statistical test may
be able to reject H0 through (24) with a much smaller sample size than would be required to reject H ′

0 via
a test (28), or vice versa. First consider trying to establish HA holds in (23) with SRS through (24) using a
LCB Ln in (26) at confidence level γ = 0.95. Applying ideas related to Pitman efficiency (Serfling 1980,
Section 10.2), we want to determine the sample size n so that (24) holds with a given probability (power)
β ∈ (1− γ,1). For Φ(·) = 1−Φ(·), the probability of (24) occurring is

P(Ln > p0) = P
( √

n
ψ̂0,n

[
F̂SRS,n(t0)−F(t0)

]
> zγ +

√
n

ψ̂0,n
[p0 −F(t0)]

)
≈ Φ

(
zγ +

√
n

ψ0
[p0 −F(t0)]

)
(29)

when n is large by the CLT (25) and the consistency of ψ̂0,n. Equating the right side of (29) to β yields
zγ +

√
n

ψ0
[p0 −F(t0)] = Φ−1(1−β ) = z1−β =−zβ , so ψ2

0 = F(t0)[1−F(t0)] gives the needed sample size

n ≡ nγ,β =
(zγ+zβ )

2F(t0)[1−F(t0)]
[F(t0)−p0]2

. (30)

Next instead consider trying to establish H ′
A holds in (27) by showing a γ = 0.95 level UCB Un from

(6) for the p0-quantile satisfies (28), for p = p0 in (4) and (6) with ξ̂SRS,n = F̂−1
SRS,n(p0). We now determine

the sample size n = n′ so that (28) holds with a given power β ∈ (1− γ,1). Event (28) has probability

P(Un < t0) = P
( √

n
κ̂SRS,n

[
ξ̂SRS,n −ξp0

]
<−zγ +

√
n

κ̂SRS,n
[t0 −ξp0 ]

)
≈ Φ

(
−zγ +

√
n

κSRS
[t0 −ξp0 ]

)
(31)

when n is large by the CLT (3) and the consistency of κ̂SRS,n. Equating the right side of (31) to β yields
−zγ +

√
n

κSRS
[t0 −ξp0 ] = Φ−1(β ) = zβ , leading to the required sample size, by (4), as

n′ ≡ n′
γ,β =

(zγ+zβ )
2κ2

SRS
(t0−ξp0 )

2 =
(zγ+zβ )

2 p0(1−p0)

(t0−ξp0 )
2 f 2(ξp0 )

. (32)

Below we will compare n in (30) and n′ in (32) for two examples of normal mixtures. We take CDF

F(y) = w1Φµ1,σ1(y)+w2Φµ2,σ2(y), (33)

where w1,w2 ≥ 0 are mixing weights with w1+w2 = 1, and Φa,b is a normal CDF with mean a and variance
b2, so Φa,b(x) = Φ((x−a)/b). Let φa,b be the density of Φa,b, so φa,b(x) = (1/b)φ((x−a)/b), where φ

is the density of Φ, and f (y) = w1φµ1,σ1(y)+w2φµ2,σ2(y) is the density of F . We will consider various
choices for the parameters (including r for the asymptotic regime), leading to vastly different behaviors
for the RE of the SRS estimator ξ̂SRS,n = F̂−1

SRS,n(p0) of ξp0 , with fixed p0 ∈ (0,1), for F̂SRS,n in (2).

8.1 Example where SRS Estimator of ξp0 for Fixed p0 has URE

First assume that the component means in (33) satisfy µ1 ≡ µ1,r = c0 − r and µ2 ≡ µ2,r = c0 + r for some
fixed constant c0, and consider the asymptotic regime in which r → r0 = ∞, where all other parameters
are fixed. Under this parameterization, let F ≡ Fr, f ≡ fr, and ξp0 ≡ ξp0,r be the CDF, density, and
true p0-quantile, respectively. The density fr will roughly have two humps, one centered at µ1,r with
approximate mass w1, and another centered at µ2,r with roughly mass w2, with c0 in the middle between
the two humps. As r grows, the two humps move away from each other, and the density fr at c0 shrinks to
0. We choose the quantile level p0 = w1, so the true p0-quantile ξp0,r → c0 as r → ∞. The left (resp., right)
side of Figure 1 shows the density (resp., CDF) of the mixture with w1 = 0.7, w2 = 0.3, σ2

1 = σ2
2 = 1,

c0 = 5, and r = 5, so µ1 = 0 and µ2 = 10. In this case, the p0-quantile is ξp0,r ≈ c0 = 5, and we then get
fr(ξp0,r)

.
= 1.49E−06 and RESRS[ξp0,r]

.
= 6.16E+04 by (5). The asymptotic variance of the SRS estimator
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w1 = 0.7 = p0 w2 = 0.3

µ1 = c0 − r ξp0
.
= c0 µ2 = c0 + r = t0

0 5 10
y

f (y)

F(t0)
.
= 0.85

0 5 10

0.7

1

y

F(y)

Figure 1: The density function f (y) (left) and CDF F(y) (right) are plotted for a normal mixture in (33),
where w1 = 0.7, w2 = 0.3, µ1 = 0, µ2 = 10, and σ1 = σ2 = 1. For p0 = 0.7, ξp0

.
= 5 and f (ξp0)

.
= 1.49E−06.

(and also of many other MC estimators) of the p0-quantile includes f 2
r (ξp0,r) in the denominator, as in

(4) and (9), and fr(ξp0,r)≈ w1φ(r/σ1)/σ1 +w2φ(−r/σ2)/σ2 → 0 exponentially fast as roughly e−r2/2 as
r → ∞ when σ1 = σ2 = 1. Thus, as r → ∞, the asymptotic variance (4) of the SRS estimator of ξp0,r blows
up, but the true quantile ξp0,r tends to c0. Hence, for c0 ̸= 0, the SRS estimator of ξp0,r has URE as r → ∞,
even though 0 ≪ p0 ≪ 1, so not just extreme quantiles (as in Section 4) may be difficult to estimate.

In contrast we next show that the SRS estimator (2) of F(y) has BRE as r → ∞ for y in a large
neighborhood of ξp0,r for p0 = w1. For large r, the two means in the mixture components are far apart,
with the p0-quantile ξp0,r in the middle of the two modes. Note that F(ξp0,r) = p0, and the CDF F of
Y is nearly flat in a large neighborhood of ξp0,r as the density is very small there; see the right plot of
Figure 1. Specifically, for any (small) δ > 0, there is a large d > 0 such that |F(y)−F(ξp0,r)| ≤ δ for
all y ∈ (ξp0,r − d,ξp0,r + d). Hence, while the true value of the p0-quantile is quite sensitive to small
perturbations in p0, the CDF F(y) changes little from large shifts in y around ξp0,r. Thus, as r → ∞ in
this case, even though the SRS estimator of ξp0,r has URE, we estimate F(y) with BRE for y in a large
neighborhood of ξp0,r since V[F̂SRS,n(y)] = F(y)[1−F(y)]/n and F(y) is bounded away from 0 and 1.

We now examine the efficiencies of hypothesis tests for (23) and (27) on the normal mixture in Figure 1
with p0 = w1 = 0.7, r = 5, and t0 = µ2,r = 10. The p0-quantile ξp0

.
= 5 lies below t0, and

F(t0) = w1Φµ1,r,σ1(µ2,r)+w2Φµ2,r,σ2(µ2,r) = w1Φ((µ2,r −µ1,r)/σ1)+w2/2 .
= 0.85 > p0 = 0.7. (34)

Thus, H ′
A holds in (27), and HA holds in (23). Recall that (32) (resp., (30)) gives the approximate sample

size n′ ≡ n′r,γ,β (resp., n ≡ nr,γ,β ) needed to reject H ′
0 via (28) (resp., H0 via (24)) with probability β ,

which we set as β = 0.95. For large r, while (t0 −ξp0,r)
2 ≈ (µ2,r − c0)

2 = r2 in (32), f 2
r (ξp0,r) behaves as

roughly e−r2
, so n′ ≡ n′r,γ,β grows exponentially in r2. For example, the specified parameter values result

in n′ .
= 4.11E+10. In contrast, for n in (30), because t0 = µ2,r in our hypotheses in (23), (34) implies

that Fr(t0)→ w1 +(w2/2) = 0.85 as r → ∞, so n is bounded in r. In particular, we have that Fr(t0)
.
= 0.85

and p0 = 0.7 by (34), so (30) gives n .
= 61 for our specific parameter values. Thus, confirming the γ|p0

criterion through Fr(t0) using (24) requires a much smaller sample size than through ξp0 using (28).

8.2 Example where SRS Estimator of ξp0 for Fixed p0 has VRE

We next consider another normal mixture (33) with different parameters for which the SRS estimator of the p0-
quantile has VRE. The parameters in (33) are now w1 = w2 = 0.5, µ1 = 0, µ2 = Φ−1(0.9) .

= 1.2816, σ1 = 1,
and σ2 = r for r = 10−3. For these values, the left and center panels of Figure 2 display the density function
of the mixture as a standard normal density with a spike near x= µ2, where the left (resp., center) panel shows
the vertical axis on a linear (resp., log) scale. The first component in the mixture is a standard normal, which
is clearer when the vertical axis has log scale, so then the standard normal density appears as a quadratic.
The right panel of Figure 2 plots the CDF F , showing a sharp increase near x = µ2 corresponding to the spike
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f (y) linear scale 
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µ1 == 0 

0 ------------------' -3 -2 -1 0 1 2 3 

Figure 2: The density function f (y) and CDF F(y) are plotted for the normal mixture in (33), where
w1 = w2 = 1/2, µ1 = 0, µ2 = Φ−1(0.9) .

= 1.2816, σ1 = 1, and σ2 = 10−3. For p0 = 0.7, the p0-quantile
ξp0 = µ2, where f (ξp0)

.
= 199.56. The left (resp., center) panel shows the density with the vertical axis in

linear (resp., log) scale, and the right panel displays the CDF.

in the mixture density. Note that Fr(µ2) = w1Φµ1,σ1(µ2)+w2Φµ2,σ2(µ2) = w1Φ(Φ−1(0.9))+w2/2 = 0.7,
so for p0 = 0.7, the p0-quantile ξp0,r = µ2, and fr(ξp0,r)

.
= 199.56, which lead to RESRS[ξp0,r]

.
= 0.0018

by (4) and (5). As r → 0 with p0 = 0.7 fixed, the p0-quantile remains ξp0,r = µ2, but fr(ξp0,r)→ ∞, so
κ2

SRS,p0
≡ κ2

SRS,p0,r → 0 in (4) and RESRS[ξp0,r]→ 0. Thus, the SRS estimator of ξp0,r has VRE as r → 0.
Now consider the hypotheses (23) and (27) with t0 = Φ−1(0.91) .

= 1.3408, and γ = 1−α = 0.95 = β .
Then Fr(t0) = w1Φµ1,σ1(t0)+w2Φµ2,σ2(t0) ≈ w1Φ(Φ−1(0.91))+w2 = 0.955 > 0.7 = p0 and ξp0,r = µ2

.
=

1.2816 < t0, so HA in (23) and H ′
A in (27) are true. Consider trying to establish this using the tests

(24) with (26) and (28) with (6). From (32), the sample size n′ needed so that (28) roughly holds with
probability β = 0.95 satisfies n′ = n′r,γ,β → 0 as r → 0 because κ2

SRS,p0,r → 0. But the necessary sample size
n = nr,γ,β from (30) so that (24) roughly holds with probability β remains bounded as r → 0 because then
ψ2

0 ≡ ψ2
0,r = Fr(t0)[1−Fr(t0)] is bounded away from 0 since ψ2

0,r → (0.955)(0.045) = 0.042975 as r → 0.
Our specific parameter values lead to n′r,γ,β

.
= 0.016 from (32) and nr,γ,β

.
= 7.15 from (30), although both

sample sizes should be taken much larger for the CLT approximations in (31) and (29) to roughly hold.
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