
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

FIXED-PRECISION RANKING AND SELECTION AS MARKOV DECISION PROCESS

Ruihan Zhou1, and Yijie Peng1

1Wuhan Institute of Artificial Intelligence & Guanghua School of Management, Peking University,
Beijing, CHINA

ABSTRACT

In this study, we conceptualize the fixed-precision ranking and selection (R&S) problem as a stochastic
control problem and subsequently model it using Markov Decision Process (MDP). Our approach aims to
study the fixed-precision paradigm of R&S within a stochastic dynamic programming framework. To address
the fixed-precision R&S challenge, we employ AlphaRank, an innovative artificial intelligence technique
for tackling fixed-budget R&S problems. This procedure intelligently handles learning and decision-making
through deep reinforcement learning, thereby addressing the R&S problem where the mean differences
between various alternatives tend to approach zero. We use a numerical example to illustrate the efficacy of
AlphaRank in solving fixed-precision R&S problems. Notably, this method mitigates, to a certain extent,
the issues faced by traditional fixed-precision programs, which often require excessive sampling to reach
a specified accuracy level.

1 INTRODUCTION

In decision-making scenarios, a common challenge involves evaluating a set of alternatives based on specific
performance metrics. This study focuses on such comparative analyses with the objective of identifying
the best alternative, defined by having either the largest (or smallest) mean performance. This task is
particularly complex in stochastic environments where the mean performances of these alternatives are
unknown and must be estimated through statistical sampling from stochastic systems. Consequently, a
systematic selection procedure is essential to ascertain the required number of samples from each alternative
and subsequently determine the best alternative based on the collected sample information. These kinds
of decision-making problems are frequently referred to as ranking and selection (R&S).

R&S problems dated from the 1950s, primarily in the fields of agriculture and clinical studies (Bechhofer
1954). During this era, it is customary to test for the homogeneity among multiple alternatives, such as
comparing grain yields or the efficacy of different drug treatments. A typical inquiry might involve assessing
whether various grains yielded identical average outputs or if multiple drug therapies achieve the same
average effectiveness. When the homogeneity of their means is rejected statistically, a pressing question
emerges: which alternative is the best? This problem is initially put forth by Paulson (1949), sparking the
early advances of R&S procedures.

R&S procedures can be classified into frequentist and Bayesian procedures, based on the probability
models used for analyzing collected samples, as demonstrated in works like Chick (2006), Kim and Nelson
(2006), and Branke et al. (2008). In contrast, this study adopts a different perspective, in line with Gabillon
et al. (2012), Hunter and Nelson (2017), and Hong et al. (2021), by categorizing R&S problems into fixed-
precision and fixed-budget procedures, which are differentiated by their distinct objectives. Particularly,
fixed-precision procedures are designed to offer a statistical guarantee that the selected alternative is the
best, or at least nearly so. Conversely, fixed-budget procedures focus on the strategic allocation of a given
sampling budget in either optimal or approximately optimal manners. To delineate these two categories,
Hong et al. (2021) illustrate that they essentially follow two different formulations, i.e., the hypothesis-
testing and dynamic-programming formulations, respectively. This perspective has been widely recognized
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and adopted in the literature, leading to the development of new procedures within these two formulations,
as exemplified by the works of Batur and Choobineh (2012) and Peng et al. (2018).

Fixed-precision procedures are developed to provide a statistical guarantee that the optimal (or at
least approximately optimal) alternative will be selected. These procedures aim to achieve a predefined
selection probability of 1−α for the best alternative. The challenge in achieving this objective of these
procedures critically depends on the closeness of the mean values of the alternatives in competition. To
solve this issue, Bechhofer (1954) and Rinott (1978) propose an indifference-zone (IZ) framework. Recent
advances in the well-established IZ framework include Kim and Nelson (2001), Frazier et al. (2007), Ni
et al. (2017), Luo et al. (2015), Hong et al. (2021), Zhong and Hong (2021) and many others. In this
framework, parameter δ is introduced to define the smallest discernible difference. Under this paradigm,
an IZ sampling procedure can choose either the best alternative or an alternative whose performance is
within δ range with a probability of 1−α . Additionally, Fan et al. (2016) introduce an IZ-free procedure,
enhancing the identification of alternatives across any range of mean differences. In fixed-precision R&S,
the primary focus is on ensuring the statistical probability level selecting the best alternative, even though
this often leads to allocating more simulation observations than necessary.

In the realm of fixed-budget procedures, the primary objective is to judiciously allocate simulation
observations to maximize the efficacy in pinpointing the best alternative. Key methodologies in this arena
include Optimal Computing Budget Allocation (OCBA) (Chen et al. 2006; Chen et al. 2000) Expected
Value of Information (EVI) (Chick et al. 2010; Inoue 2001), Knowledge Gradient (KG) (Frazier et al. 2007;
Gupta and Miescke 1996), and Expected Improvement (EI) (Jones et al. 1998; Ryzhov 2016). Peng et al.
(2016) and Peng et al. (2018) introduce a stochastic dynamic programming (SDP) framework to capture
sequential sampling and formulate the sampling-allocation problem as a Markov decision process (MDP).
Traditional fixed-budget R&S research has not directly addressed the original SDP problem. Instead, the
focus has been on static allocation approximations or one-step look-ahead approximations. Zhou and Peng
(2023) introduce a Monte Carlo-based rollout method for learning and decision-making in the fixed-budget
R&S problem. To overcome challenges related to computational complexity and efficiency, Zhou et al.
(2024) develop AlphaRank, an AI-driven solution employing deep reinforcement learning (DRL). This
involves obtaining a neural network (NN) through offline pre-training, which is then used for online
allocation decisions. Significantly, the rollout policy is incorporated as a means of policy improvement
during the pre-training phase.

Different from these works, the goal of this study is to focus on the fixed-precision R&S problem, and
explain how the existing AlphaRank procedures fit in the framework. AlphaRank procedure is a natural fit
for solving the fixed-budget R&S problem, utilizing approximate dynamic programming (ADP) methods
within a SDP framework. Subsequently, we model the fixed-precision R&S problem as an infinite-horizon
MDP with a defined stopping time, ensuring the probability of correct selection (PCS) of the best alternative
up to a pre-specified probability level 1−α . The PCS can be approximated either by the estimated value
function derived from a rolling horizon rollout policy or through a well-trained NN in AlphaRank. This
method significantly curtails the volume of simulation observations required to attain a certain PCS level. In
a sense, AlphaRank, when applied to the fixed-precision R&S problem, also can be regarded as an IZ-free
procedure, accommodating scenarios where the pairwise mean differences between alternatives might be
arbitrarily close to zero.

This paper only focuses on selecting the best mean. However, it is worth noting that certain related
challenges may also fall under the umbrella of R&S problems. These encompass various combinations
of objectives and performance metrics used for comparisons. Examples include ranking all alternatives,
selecting the top-m alternatives, or identifying a subset that contains the best. Performance metrics might
range from quantiles to proportions. Interested readers may refer to comprehensive reviews in Kim and
Nelson (2006).

The rest of this paper is organized as follows. Section 2 describes the MDP modeling for the
fixed-precision R&S problem. Section 3 offers a concise overview of the rollout technique, followed by

2716



Zhou and Peng

a comprehensive description of the AlphaRank procedure, including its detailed setup and pre-training
process. Section 4 presents the results of the numerical experiments utilizing AlphaRank. Section 5
provides conclusions.

2 MDP MODELING OF FIXED-PRECISION R&S

In this section, we commence with the formulation of the fixed-precision R&S problem, and then we
proceed to model the problem as a MDP with a defined stopping time.

2.1 Formulation

We capture the statistics of a set of alternatives indexed by i = 1,2, . . . ,N, and observe a sequence of data
Xi,1,Xi,2, . . . ,Xi,t , where Xi,t is the observation at time step t for alternative i. Note that the t-th index of the
observations of alternative i may be different from the t-th index of steps, because the i-th alternative is
not necessarily allocated at each step. We assume that the observations follow a distribution Fs with mean
µ true

i and are independent and identically distributed (i.i.d.) for each alternative, i.e., Xi,t ∼ Fs.
We use Assumption 1 to describe the structure of the R&S problem in the case of normal sampling

distribution, which is one of the most common assumptions in R&S research.
Assumption 1 Suppose that the samples follow a normal distribution, i.e., Xi,t ∼ N(µ true

i ,(σ true
i )2), where

parameter µ true
i is unknown and (σ true

i )2 is known.
Note that the specific case we present under the assumption of a normal sampling distribution in R&S

is primarily for better understanding. The MDP modeling of the R&S problem introduced in Section 2, and
the solution method proposed in Section 3, are not confined to this assumption but can be applied under
other distributional assumptions in both requentist and Bayesian framework such as Peng et al. (2018),
Chen and Ryzhov (2019) and Gao et al. (2017).

We assume that there is only one best alternative, although the following paradigm can be generalized
to problems with multiple best alternatives. Our objective is to find the best alternative defined by
argmaxi=1,...,N µ true

i , where µ true
i is estimated in different ways under different assumptions after allocating

t simulation observations. To describe the precision of selection, one common way is to use the probability
that the selected alternative is the true best, i.e., PCS. Let st be the current state after spending t sampling
budget, which contains complete environment information, including the sample information. Let the
selection made after allocating t simulation observations be Ŝt . The PCS given the current state st is

PCS(st) = Pr
(

Ŝt = arg max
i=1,...,N

µ
true
i

∣∣∣∣st

)
.

For fixed-precision R&S problem, under a fixed precision 1−α (0 < α < 1− 1/N), the objective is to
deliver a PCS guarantee as

PCS(sτ)≥ 1−α,

and then τ is the number of simulation observations at the end of the experiment.

2.2 MDP Modeling

In the fixed-precision R&S problem, we guarantee a probability of 1−α . Formally, the problem can be
stated as follows. After obtaining t samples, we can derive statistical characteristics of the alternatives based
on the sample information. For example, under Assumption 1, at step t, the statistics εt of the alternatives
can be simply defined as

εt = {X̄t , σ̄
2
t },

where X̄t = {X̄1,t , . . . , X̄N,t} and σ̄2
t = {σ̄2

1,t , . . . , σ̄
2
N,t}. X̄i,t and σ̄2

i,t are the sample mean and sample variance
of alternative i, respectively. Under different assumptions, other statistical characteristics can be collected
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according to their settings. For instance, in scenarios where there is assumed correlation among alternatives,
the correlation between pairs of samples could be considered (Zhang and Peng 2024). Similarly, under
assumptions where the unknown true mean has a conjugate prior, characteristics like the prior mean and
prior variance of the parameters can be taken into account (Zhou et al. 2024).

The number of simulation observations that have been allocated is t, and pt is the current precision.
Therefore, the state space st is

st = {εt , t, pt}.
The state after allocating alternative i can be defined as

s(i)t+1 = {ε
(i)
t+1, t +1, p(i)t+1},

where ε
(i)
t+1 represents the updated statistics after the (t +1)-th simulation observation has been allocated

to alternative i. After each sampling, the state transitions to a new state based on the outcome of the
observation and the remaining simulation budget. In the current discussion, the state transition mechanism
is to update X̄t+1, σ̄2

t+1 according to the latest allocated sample. Let Ti,t represent the number of simulation
observations allocated to alternative i with a total of t allocated simulation observations, ∑i=1,...,N Ti,t = t.
If the t +1-th simulation observation is allocated to alternative i, then Ti,t+1 = Ti,t +1 and the observation
is Xi,t+1. Specifically, the sample mean X̄i,t+1 and sample variance σ̄2

i,t+1 of alternative i are updated as
follows:

X̄i,t+1 =
Ti,t · X̄i,t +Xi,t+1

Ti,t+1
, σ̄

2
i,t+1 =

Ti,t

Ti,t+1
·
(

σ̄
2
i,t +

(X̄i,t −Xi,t+1)
2

Ti,t+1

)
.

Parameters of other alternatives except for alternative i being allocated will not be updated at the t +1-th
step. In the absence of precision updating the explicit function expression, we can obtain the updated p(i)t+1
by approximation. The rollout technique described in Section 3 is a suitable technique for estimating PCS,
which uses action value Q(i)

t to approximate p(i)t+1. Further, we can also approximate PCS with NNs, for

example, using the output Vt of AlphaRank’s value NN in Section 3 to approximate p(i)t+1.
The MDP modeling of fixed-precision R&S problem can be characterized as follows. The continuation

value in the Bellman equation takes into account that the agent may decide to stop the process at any time,
and the expected value of PCS related to continuing versus stopping is considered in the optimal policy. In
this problem, the stopping time is τ

.
= min{t ∈ Z : pt ≥ 1−α}, and the equation is expressed as follows.

For 0 ≤ pt < 1−α , we have
a∗t+1 = arg max

i=1,...,N
Q(st , i),

Vt(st) = Q
(
st ,a∗t+1

)
= E

[
Q
(

st ,a∗t+2
)∣∣st ,a∗t+1

]
= E

[
Vt+1(st+1)|st ,a∗t+1

]
,

where a∗t+1 is the optimal allocation policy at t +1-th step, Q(st , i) is the state-action-value function, which
represents the reward value of choosing alternative i, and st+1 is determined by st and newly allocated
observation Xa∗t+1,t+1. In principle, the action values Q(st , i) can be calculated using classic SDP techniques,
such as value iteration or policy iteration.

To identify the best alternative from the set of N alternatives based on the observations, the alternative
that maximizes the posterior PCS, based on the information of all allocated simulation observations, is
selected, given the current state. At the time when PCS condition pt ≥ 1−α is satisfied for the first time,
i.e., t = τ , the optimal selection policy at the state sτ of step τ is (Peng et al. 2016)

S∗τ = arg max
i=1,...,N

Pr
(

µ
true
i ≥ µ

true
j

∣∣sτ

)
, (1)

and the value function after allocating τ simulation observations is

Vτ(sτ) = Q(sτ ,S∗τ) = E[V (sτ ,S∗τ)|sτ ],
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where
V (sτ ,S∗τ) = 1{Ŝτ = arg max

i=1,...,N
µ

true
i }.

After reaching the stopping time, the simulation allocation procedure terminates.
Under most circumstances, except for some specific and stringent assumptions, directly computing

equation (1) presents a considerable challenge. To circumvent this, it is common to utilize approximate
optimal selection policies. These policies may include selecting the largest sample mean under frequentist
assumptions or opting for the largest posterior mean of the true mean under Bayesian assumptions. In this
study, we chose to implement the policies of selecting the largest sample mean as our approximate optimal
selection, i.e.,

Ŝτ = arg max
i=1,...,N

X̄i,τ .

3 METHODOLOGY

In this section, we first introduce the AlphaRank procedure proposed by Zhou et al. (2024) to solve
fixed-budget R&S problems, because it is the building block of our procedure. We then develop a new
fixed-precision procedure whose pre-training process has some modifications compared to the original
fixed-budget version to ensure that the procedure can meet the given statistical guarantees.

3.1 AlphaRank Procedure

This subsection will address three core aspects: the essence of AlphaRank, the source of its capability to
enhance the performance of base policies, and its applicability in resolving fixed-precision R&S problems.

AlphaRank trains the NN models to study the behavior of the rollout policy introduced by Zhou
et al. (2024). This rollout policy represents an effective online sampling policy based on Monte-Carlo
simulation, although it encounters some challenges related to computational efficiency, which is crafted
to facilitate learning and decision-making in the fixed-budget R&S problem with a budget of T . In this
context, the policy considers the final PCS achieved by selecting an alternative at the current step t, and
subsequently allocating the remaining H observations based on a base policy. This resultant PCS is treated
as the action-value function for the chosen alternative at step t. To solve the computational issue of rollout
policy, AlphaRank procedure involves the pre-training of a series of NN models with high precision. This
pre-training is conducted offline, utilizing a predetermined prior distribution. Once trained, these NN
models can be directly applied for making allocation decisions in practical scenarios.

Specifically, each NN model is intricately designed to output the estimated action value for every
alternative. This estimation is based on input data that reflects the current state, such as the collected
sample information and the remaining budget. Specifically, in a fixed-budget R&S scenario with a budget
of T , the input of the NN, denoted as inputt at state t, encompasses the statistical data of the alternatives
along with the number of steps to explore forward in the rollout, H, i.e.,

inputt = {εt ,H}.

For example, in the normal case, the input could be inputt = {X̄t , σ̄
2
t ,H}, which has 2 sample statistics

including sample mean, sample variance, parameter prior mean and variance, and each statistic is an
N-dimensional vector. The actual number of steps to explore forward H in the inputt can be adjusted
according to the actual situation. For example, H can represent the remaining budget when the budget T
for the problem is small, i.e., H = T − t. When a rollout does not encompass the full set of remaining
T − t steps, H can be a fixed constant.

The output of NN out putt is an action value vector

out putt =Vt =
(

V (1)
t , . . . ,V (N)

t

)
,
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which evaluates the expected PCS for performing each action at the current state t, where V (i)
t represents

the action value of selecting alternative i at step t.
Next, we specifically explain how the rollout policy estimates the potential PCS of each action as its

action value. Let a(i)t+1 be the possible action that allocates the (t+1)-th simulation observation to alternative

i, there is a theoretical action value of taking action a(i)t+1 in st which is represented by Q(st ,a
(i)
t+1). Let

s(i)t+1 be the updated state after selecting the i-th alternative through action a(i)t+1 at current state st . Given a

base policy π , Q(st ,a
(i)
t+1) represents the PCS value PCSπ(s(i)t+1) that can be obtained when the remaining

simulation observations are allocated through the base policy π after action a(i)t+1 is selected at st . Since it

is difficult to have an explicit form to calculate Q(st ,a
(i)
t+1) precisely, we approximate this value by Monte

Carlo simulation. The rollouts entail the generation of K trajectories by the base policy π , which means that
starting from s(i)t+1, the remaining H observations are allocated according to π . Then we can get the rewards

r(i)t,k . In the k-th rollout, r(i)t,k = 1 when the selection is correct, and r(i)t,k = 0 otherwise, with probabilities

PCSπ(s(i)t+1) and 1−PCSπ(s(i)t+1), respectively. Therefore, Q(i)
t (s(i)t+1) can be calculated by

Q(i)
t

(
s(i)t+1

)
=

1
K

K

∑
k=1

r(i)t,k =
1
K

R(i)
t,K .

As K → ∞, Q(i)
t (s(i)t+1) → Q(st ,a

(i)
t+1) = PCSπ(s(i)t+1). Upon estimating the action value, the (t + 1)-th

simulation observation is then strategically allocated to the alternative that exhibits the highest calculated
action value at that point, i.e., the sample-allocation action of the rollout policy is

aroll
t+1 = arg max

i=1,...,N
Q(i)

t

(
s(i)t+1

)
.

The selection after all T simulation observations have been allocated is

Sroll
T

(
s(a

roll
T )

T

)
= arg max

i=1,...,N
Pr

(
µ

true
i ≥ µ

true
j

∣∣sT
)
.

For simplicity, as discussed in Section 2, we can also approximate the selection of an alternative. The diagram
illustrating the rollout process is presented in Figure 1. This figure depicts the decision-making process
and the state transitions occurring within the rollout, using a scenario with two alternatives to showcase
how each allocation decision impacts the state of the alternatives. In Figure 1, different types of circles
represent distinct states: black circles denote alternatives that have yet to receive any simulation allocations;
hollow circles indicate alternatives currently being allocated simulations; and gray circles symbolize the
simulation observations, which are essentially samples drawn from the updated prior distribution.

Zhou et al. (2024) prove that the rollout policy is statistically guaranteed to perform at least as well
as its base policy within a certain probability threshold. Consequently, leveraging an offline-trained NN
to learn the value functions estimated by the rollout policy and then utilizing this NN to address the SDP
challenge online can obviate the need for an actual rollout. This approach significantly accelerates the
process while aiming to preserve decision quality.

Furthermore, during each round of pre-training iterations, the NN from the preceding training round is
adopted as the base policy for the rollout in the current round. This strategy guarantees that the NN, which
assimilates the behavior of the current round’s rollout policy, exhibits superior performance compared to
the NN from the previous round. Detailed training procedures will be further expounded in Section 3.2.

A vital aspect to note is that the observations utilized in the rollout are not drawn from the simulation
models but are instead sampled from the current updated prior. This makes them computationally more
accessible and permits their acquisition offline, where the simulation models might not be available. This
factor plays a crucial role in the pre-training process, enabling a more efficient and feasible approach.
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Figure 1: The decisions in the rollout process.

In Section 2, we discuss how, when the fixed-precision R&S problem is formulated as a MDP with a
stopping time, its state is characterized by the current sample statistical characteristics and the precision
of PCS under that state. For the fixed-budget R&S problem, the trained NN takes in these current sample
statistical characteristics and the number of step look forward (remaining budget). Its output is the estimated
PCS achieved after the remaining budget is allocated. This setup enables us to apply the NN for tackling
fixed-precision R&S problems. In particular, since fixed-precision R&S problem is regarded as a fixed-
budget problem with an infinite budget, when utilizing a well-trained NN, we input the current sample
statistical characteristics along with a predetermined small numerical value, H, representing the number
of step look forward in the rollout. We use the output value V (i)

t to approximate the PCS value obtained
after selecting alternative i and then allocating H additional simulation observations. Sampling is ceased
and an additional H simulation observations are allocated only when the output estimated value meets the
stopping criteria, i.e.,

min
i=1,...,N

V (i)
t ≥ 1−α, (2)

and the total budget expended is thus t +H. The reason for choosing the lower bound rather than the upper
bound of the estimated value in (2) to meet the given precision level is that, despite the accuracy of the NN
estimation, there will always be some error compared to the actual PCS. This approach better ensures that
the actual use of the NN achieves the specified precision. For computational complexity analysis regarding
rollout policy, NN training, and direct use of NN as allocation policy, see Zhou et al. (2024).

3.2 Pre-training Process of AlphaRank

In a manner akin to the techniques used in training image classifiers, we pre-train a NN using a dataset
that is generated from prior information. This process significantly enhances the NN’s capability to adapt
to the dynamics of sampling in R&S problems. The NN is subsequently deployed for online sampling in
R&S scenarios. The input data for the NN, reflecting current states like statistics of alternatives and the
remaining budget, and the output targets of this process are the estimated action values generated through
a rollout policy. The NN is trained based on this rollout policy, which undergoes iterative refinement. In
each successive training round, it is used as the base policy in the rollout of next round. The efficiency of
the NN’s allocation is assessed by applying the currently trained NN directly as an allocation policy. This
involves evaluating whether the resulting PCS satisfies our predefined stopping criteria. This continuous
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improvement loop ensures that the NN becomes progressively adept at making allocation decisions in R&S
problems.

The NN is trained to optimize the loss between NN predicted value Vt and rollout action value Qt ,
where Qt = (Q(1)

t , . . . ,Q(N)
t ). We utilize the cross-entropy with a regularization term as the loss function

for training NN:

Loss =− 1
N

N

∑
i=1

[
V (i)

t logQ(i)
t +(1−V (i)

t ) log(1−Q(i)
t )

]
+ c|| · ||2.

The training and evaluation process of AlphaRank is depicted as follows.

• Training data generation Utilizing a rollout policy, the training data for our study are generated
through a process akin to self-play. Within this rollout, the NN assumes the role of the base policy.
In the initial training round, the NN, being untrained, lacks the proficiency to guide the allocation
of simulation observations effectively. Therefore, in these early rounds, classic fixed-budget R&S
sampling procedures such as EA and OCBA can be employed as the base policy for the rollout.
Since in the fixed-precision problem, the number of steps to rollout forward is a fixed value H, the
generation of the training dataset requires specifying a dataset size M. Consequently, in each round,
a total of M simulation observations are allocated, generating M pieces of data. Each data contains
its state vector and the estimated PCS value from rolling out H steps forward in the corresponding
state.

• NN training The dataset amassed through data generation process is instrumental in training a new
NN. This NN is specifically designed to learn the behavior of the rollout policy. Once trained, it
is then employed to direct the rollout in a self-play mode during the subsequent round of training.
This cyclical approach allows the NN to progressively refine its understanding and implementation
of the rollout policy, thereby enhancing its decision-making capabilities in successive iterations.

• NN evaluation A single iteration of training data generation and NN training is referred to as a
round. After several such iterations, the new NN is used directly as a policy to guide simulation
resource allocation, as well as a policy used for PCS estimation at each step. For the fixed-
precision R&S problem, the primary evaluation criterion is whether the PCS reaches the desired
precision level of 1−α . The secondary consideration is the reduction of the simulation budget.
This contrasts with the fixed-budget R&S problem, where the sampling process ceases once all
simulation observations are allocated, the sampling process in the fixed-precision R&S problem
continues if pt+H ≈ mini=1,...,N V (i)

t < 1−α , with H simulation observations being allocated until
mini=1,...,N V (i)

t ≥ 1−α . If the PCS yielded by the new NN surpasses that of the previous NN, the
training parameters are updated to reflect this improved performance. If not, the existing NN is
maintained. This method ensures a continuous enhancement in the precision and efficiency of the
simulation resource allocation.

• Stopping rule For the fixed-precision R&S problem, the training process continues until the PCS
exceeds 1−α , and no further improvement is observed in the NN evaluation, which signifies that
the sampling policy, as dictated by the NN, has attained the specified level of precision.

The pseudo-code of the pre-training process is shown in Algorithm 1 and the pipeline of the training
is depicted in Figure 2.

4 NUMERICAL EXPERIMENTAL RESULTS

In this section, we conduct a comparative analysis of AlphaRank and two traditional IZ procedures within
the scope of fixed-precision R&S problems. The performance metrics presented in this section are estimated
from 105 independent macro-simulations.
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Algorithm 1: Pre-training
Input: number of alternatives N, times of rollout K, number of forward steps in rollout H, size of

the training dataset M
1 while the PCS in evaluation does not satisfy the stopping rule do
2 for t=1 to M do
3 Calculate the current statistics of alternatives εt according to aroll

t .
4 for k=1 to K do
5 for i=1 to N do
6 Rollout H steps forward with NN as the base policy and get the reward r(i)t,k .
7 end
8 end
9 Calculate the value function Q(i)

t = 1
K ∑

K
k=1 r(i)t,k .

10 Collect the training data {εt ,Qt}.

11 The sampling action is aroll
t+1 = argmaxi=1,...,N Q(i)

t .
12 end
13 NN training: update parameters of NN by minimizing Loss with the Adam optimizer.
14 NN evaluation: NN is used as allocation policy in simulation and then the corresponding PCS

is obtained.
15 end

Output: the trained NN

Stopping rule of fixed precision R&S

rollout using base policy л
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update NN

Figure 2: NN training and evaluating architecture with the number of alternatives=2.

4.1 Benchmark

We first provide a brief introduction to the concept of the IZ framework and two benchmark procedures.
In R&S problems, we may not be able to select the best with the desired precision, when the means are
sufficiently close to each other. To overcome this obstacle, Bechhofer (1954) introduced a so-called IZ
parameter δ > 0, which refers to the smallest mean difference worth detecting. Given the IZ, the R&S
problems are modified to select the best alternative, when all the inferior alternatives are outside the IZ
of the best, i.e., µ true

[N] − δ > µ true
[N−1], where µ true

[N] > µ true
[N−1] > · · · > µ true

[1] . Therefore, if µ true
[N] − µ true

[i] ≤ δ ,
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i = 1, . . . ,N −1, we believe that there is no difference in choosing µ true
[i] , . . . ,µ true

[N] as the best alternative.
Considering the fixed-precision constraint, most of the existing R&S procedures are designed under the IZ
formulation. These procedures are often called IZ procedures. In this experiment, we compare AlphaRank
with two classical IZ procedures, i.e., Rinott (Rinott 1978) and Kim and Nelson’s (Kim and Nelson 2001)
procedures. Next, we provide a brief description of the two procedures.

Rinott procedure First, generate T0 samples for each alternative i and calculate the sample variance
σ̄2

i,T0
. Second, the total sample size Ti allocated to alternative i is set to be positively proportional to its

sample variance, i.e.,

Ti = max

{
T0,

⌈
h2

Rσ̄2
i,T0

δ 2

⌉}
.

Generate Ti−T0 samples from alternative i and calculate the sample mean X̄i,Ti . Finally, select the alternative
with the largest sample mean as the best. In our experiment, to avoid the complexity in calculating hR,
we use the variation of Rinott procedure proposed by Clark and Yang (1986), which adopts Bonferroni’s
inequality and sets it approximately as the 1−α/(N −1) quantile of a t-distribution with T0 −1 degrees
of freedom.

Kim and Nelson’s (KN) procedure The primary aim of such a sequential procedure is to quickly
identify and eliminate those alternatives that appear notably subpar, thereby optimizing the overall com-
putational effort needed to find the best. It also uses an additional initial stage of sampling to estimate
the unknown variances. Once these variances are estimated, the procedure transitions to the screening
of alternatives. For each pair of alternatives j and i, it constructs the partial-sum process for their mean
difference, represented as {t(X̄ j,t − X̄i,t) : n = 1,2, . . .}. At each step t, KN procedure evaluates whether
this partial-sum process moves beyond a pre-defined triangular region, and decisions are made based on
this assessment. Finally, the only alternative remaining within the specified region is selected as the best.
The details of these formulas are not covered in this brief overview; interested readers can refer to Kim
and Nelson (2001) for comprehensive information.

4.2 Experiment

The experiment is conducted with Xi,t ∼ N(µ true
i ,(σ true

i )2), i = 1,2, . . . ,5. We use µ true
i ∼ N(µi,σ

2
i ) to

generate µ true
i . Different examples are set by varying the hyper-parameters µi, σ2

i and (σ true
i )2. For Rinott

and KN procedures, we set the IZ parameter δ = 0.05. The first 50 simulation observations are allocated
equally to each alternative for estimating the sample means and variances, i.e., T0 = 10. The settings and
results of other hyper-parameters are presented in Table 1.

Table 1: Average performance of Rinott procedure, KN procedure, and AlphaRank in Experiment 4.

Parameter Settings Rinott KN AlphaRank

µ σ2
i σ true 1−α budget PCS budget PCS budget PCS

0 0.01 1 0.5 537 0.736 188 0.591 58 0.4912

0 1 1 0.9 2797 1 366 0.916 102 0.9056

0 1 1 0.95 3570 1 561 0.997 124 0.9483

The results in Table 1 indicate that the number of samples consumed by Rinott and KN is much higher
than that required by AlphaRank, e.g., about 2879% and 452% of AlphaRank’s consumption, respectively,
at 95% confidence, and is highly sensitive to the pre-specified target. The PCS of AlphaRank is in close
agreement with the target 1−α . To increase the probability guarantee level from 90% to 95%, the Rinott
procedure and KN procedure require 773 and 195 more simulation observations, respectively, and their
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actual PCSs reach 1 approximately, whereas AlphaRank requires only 22 more simulation observations
and its actual PCS is very close to 95%.

5 CONCLUSION REMARK

In this study, we formulate the fixed-precision R&S problem under the umbrella of MDP. We utilize
AlphaRank, a cutting-edge AI approach that uses DRL and rollout techniques to effectively tackle this
problem. A series of extensive numerical experiments demonstrate AlphaRank’s efficacy, overcoming a
common limitation in previous methodologies where the number of simulation observations often surpasses
what is necessary to guarantee a satisfactory level of PCS.

The application of AI methods to R&S problems creates numerous research opportunities. For example,
Zhou et al. (2024) propose the DCR framework, merging the concepts of “divide-and-conquer" and
“recursion", using small, well-trained NN models to solve large-scale R&S problems effectively by leveraging
a parallel computational platform. Future work includes adapting this method to large-scale fixed-precision
scenarios. It is also noteworthy to mention that our discussions have so far been predicated on the assumption
of normality. In future developments, AlphaRank’s functionality can be expanded to include a broader
spectrum of distribution assumptions, significantly widening its range of application.
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