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ABSTRACT

Transformers have demonstrated remarkable efficacy in forecasting time series. However, their dependence
on self-attention mechanisms demands significant computational resources, thereby limiting their appli-
cability across diverse tasks. Here, we propose the perceiver-CDF for modeling cumulative distribution
functions (CDF) of time series. Our model combines the perceiver architecture with copula-based attention
for multimodal time series prediction. By leveraging the perceiver, our model transforms multimodal
data into a compact latent space, thereby significantly reducing computational demands. We implement
copula-based attention to construct the joint distribution of missing data for future prediction. To mitigate
error propagation and enhance efficiency, we introduce output variance testing and midpoint inference for
the local attention mechanism. This enables the model to efficiently capture dependencies within nearby
imputed samples without considering all previous samples. The experiments on the various benchmarks
demonstrate a consistent improvement over other methods while utilizing only half of the resources.

1 INTRODUCTION

Time-series prediction remains an enduring challenge since it requires effectively capturing global patterns
(e.g., annual trends) and localized details (e.g., abrupt disruptions). This challenge becomes particularly
pronounced when dealing with non-synchronized, incomplete, high-dimensional, or multimodal input data.
Consider a time series consisting of N regularly-sampled and synchronously-measured values, where
measurements are taken at the same time at intervals of length T . If the time-step is unobserved at rate
r, then there are (1− r)NT observed values that are relevant for inference. Consider an asynchronously-
measured time series, where input variables are observed at different times, resulting in each time-step having
only 1/N of its variables observed. In this scenario, only (1 − r)T values remain relevant for inference
within the time series. Consequently, employing a synchronous model to address non-synchronized time
series results in a missingness rate of (N − 1)/N . This missingness rate grows rapidly as the number of
variables increases, reaching 95% with just 20 variables in the time series. When designing an architecture
to handle missing data, it is crucial to utilize techniques for approximating missing values while ensuring the
computational overhead does not exceed the effort required to extract valuable insights from the observed
data. To this end, a transformer model (Drouin et al. 2022) with attention-based mechanism (Vaswani et al.
2017) is tailored for time series. This model tokenizes input variables and utilizes a transformer-based
encoding and decoding approach, making it a suitable choice for modeling non-synchronized time series
data. Tokenization also offers significant advantages for missing data, as unobserved data can be seamlessly
excluded from the token stream. Additionally, this model utilizes a copula-based structure (Nelsen 2006) to
represent the sequence distribution to further enhance the prediction performance. Particularly, it learns the
joint distribution with a non-parametric copula, which is a product of conditional probabilities. To ensure
that the product results in a valid copula, it considers permutations of the margins during training such that
a level of permutation invariance occurs. However, this process yields an exchangeable class of copulas in
the limit of infinite permutations, diminishing the utility of the non-parametric copula. Furthermore, the
transformer architecture poses significant computational demands related to the self-attention mechanism.
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In this paper, we introduce the perceiver-CDF model, which utilizes the perceiver architecture (Jaegle
et al. 2021) and the attention-based copulas (Nelsen 2006), to enhance multimodal time series modeling
and address computational efficiency challenges. Particularly, our model consists of the perceiver-based
encoder and the copula-based decoder, enabling the incorporation of a more general class of copulas that are
not exchangeable. The class of copulas used in our approach are the factor copulas, which are conditionally
exchangeable based on the factor. Initially, the perceiver-CDF model transforms the input variables into
temporal embeddings through a combination of input embedding and positional encoding procedures. In
this phase, the observed and the missing data points are encoded, with the value of missing data points
masked. Subsequently, our proposed model utilizes a latent attention-based mechanism (Jaegle et al. 2021)
from the perceiver to efficiently map the input embeddings to a lower-dimensional latent space. Since all
subsequent computations are performed within this compact latent space, it helps reduce the complexity
from a quadratic to a sub-quadratic level. Lastly, the copula-based decoder formulates the joint distribution
of missing data using latent embeddings. This distribution undergoes a sampling process to yield the
predicted outcomes. Our model can effectively handle synchronized, non-synchronized, and multimodal
data, expanding its applicability to diverse domains. Next, we conduct extensive experiments on the
unimodal and multimodal time series datasets. We also conduct memory consumption scaling experiments
using random walk data to demonstrate the memory efficiency of our approach. The results demonstrate the
competitive performance of our model compared to the state-of-the-art methods, including TACTiS (Drouin
et al. 2022), GPVar (Salinas et al. 2019), SSAE-LSTM (Zhu et al. 2021), and AR (Kalliovirta et al. 2015)
while utilizing as little as one-tenth of the computational resources.

2 RELATED WORKS

Neural networks for time series forecasting have undergone extensive research and delivered impressive
results when compared to classical statistical methods (Box et al. 2015). Notably, both convolutional (Chen
et al. 2020) and recurrent neural networks (Shih et al. 2019) have demonstrated the power of deep neural
networks in learning historical patterns and leveraging this knowledge for precise predictions of future
data points. Subsequently, various deep learning techniques have been proposed to address the modeling
of regularly-sampled time series data (Lim and Zohren 2021; Benidis et al. 2022). Most recently, the
transformer architecture, initially designed for sequence modeling tasks, has been adopted extensively for
time series forecasting (Lim et al. 2021; Müller et al. 2021). Using the properties of the attention mechanism,
these models excel at capturing long-term dependencies within the data, achieving remarkable results. In
addition to these developments, score-based diffusion models (Tashiro et al. 2021) achieved competitive
performance in forecasting tasks. However, it is worth noting that the majority of these approaches are
tailored for handling regularly sampled and synchronized time series data. Consequently, they may not
be optimal when applied to non-synchronized datasets. In financial forecasting, the copula emerges as
a formidable tool for estimating multivariate distributions (Krupskii and Joe 2020; Größer and Okhrin
2022; Mayer and Wied 2023). Its computational efficiency has led to its use in the domain adaptation
contexts (Lopez-Paz et al. 2012). Moreover, the copula structure has found utility in time series prediction
when coupled with neural architectures like LSTMs (Lopez-Paz et al. 2012) and the transformer (Drouin et al.
2022), enabling the modeling of irregularly sampled time series data. While previous research has explored
non-synchronized methods (Shukla and Marlin 2021), their practicality often falters due to computational
challenges. For instance, the transformer architecture with copulas (Drouin et al. 2022; Ashok et al. 2024)
is proposed and applicable to both synchronized and non-synchronized datasets. Nonetheless, the inherent
computational overhead associated with the self-attention mechanism poses limitations, particularly when
applied to high-dimensional inputs such as multimodal data. To mitigate the computational complexity,
we utilize the perceiver (Jaegle et al. 2021) as the encoder, with a copula-based decoder. We also use
the midpoint inference (Liu et al. 2019) for the local inference during the decoding phase. This approach
restricts conditioning and effectively embodies a form of sparse attention (Child et al. 2019; Tay et al.
2020; Roy et al. 2021), although the sparsity pattern is determined through a gap-filling process.
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Figure 1: The overview architecture of perceiver-CDF model. The pre-processor includes input embedding,
and positional encoding layers to capture temporal dependencies in the input data. The encoder uses
the cross-attention mechanisms to map the embedding to a lower-dimensional latent space. The decoder
constructs the joint distribution of missing data using the copula-based structure.

3 PROPOSED METHOD

We introduce a new perceiver-CDF model designed for multimodal time series prediction. The model
comprises three key components: the pre-processor, the encoder, and the decoder. The overview architecture
of our proposed model is illustrated in Figure 1. Drawing inspiration from transformers and other transformer-
based models (Drouin et al. 2022), the pre-processor utilizes the self-attention mechanism to encode input
time series variables, effectively transforming them into a sequence of generalized tokens. This transformation
enables the model to process and analyze the temporal aspects of the data efficiently. Following this, the
encoder, based on the perceiver model, applies cross-attention to the resulting token sequence to generate
a conditional distribution of inferred variables using a parameterized copula. Particularly, it converts the
complex input tokens into a compact latent space. This step is crucial for computational efficiency, as
subsequent computations operate within this lower-dimensional space. Subsequently, the copula-based
decoder is utilized to learn the joint distribution of missing data and observed data, facilitating future
predictions. During the training process, we implement midpoint inference in the decoder for local
inference instead of random imputation, contributing to further computational reduction. This mechanism
also aids in establishing dependencies between nearby imputed samples. To validate and refine predictions,
we introduce a variance testing mechanism for output prediction. If the prediction results exhibit instability
and the variance exceeds a predefined threshold, the imputation is deemed unreliable for future predictions.
It will be masked to prevent error propagation. The proposed model utilizes the advantages of both
the self-attention mechanism and latent-variable-based attention mechanisms from perceivers. Notably, it
enables the modeling of dependencies between covariates.

3.1 Perceiver-based Encoder

Let X denote the a time series of interest, with X = {X1, X2, . . . , Xi, . . .}. Each element Xi is defined as
a quadruple: Xi = (vi, ci, ti,mi), where vi is the value, ci is an index identifying the variable, ti is a time
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stamp, and mi is a mask indicating whether the data point is observed or needs to be inferred (i.e., missing
data). For synchronously measured time series, we can organize it into a data matrix denoted as Xc,t. This
matrix has rows corresponding to individual variables and columns corresponding to different timestamps
when measurements were recorded. First, the pre-processor generates embeddings for each data point,
x⃗i, which includes the value vi, a learned encoding for the variable ci, an additive sinusoidal positional
encoding indicating the position of ti within the overall time series, and the mask mi. Subsequently, these
embeddings are passed through the perceiver-based encoder. Here, the encoder leverages a predefined set
of learned latent vectors u⃗L for the cross-attention mechanism, denoted by AC(K,Q, V ), where K is a set
of keys, Q is a query, and V is a set of values. Through the utilization of learned key and value-generating
functions, Klatent( ) and Vlatent( ), the encoder derives latent vectors w⃗L, which effectively encapsulate
the temporal information through cross-attention with the set of observed vectors X⃗O as follows:

w⃗L = AC

(
Klatent(X⃗O), u⃗L, Vlatent(X⃗O)

)
(1)

Following additional self-attention-based processing on the latent vectors, the perceiver-based encoder
proceeds to employ cross-attention with the latent vector set W⃗ , to generate tokens for each data point.
This operation involves using the learned key-generating function Kencode( ), the query-generating function
Qencode( ), and the value-generating functions Vencode( ), to derive token vectors z⃗i as follows:

z⃗i = AC

(
Kencode(W⃗ ), Qencode(x⃗i), Vencode(W⃗ )

)
(2)

Aligned with the perceiver architecture, the number of latent features L is intentionally maintained at a
considerably smaller scale compared to the total number of data points N . This strategic choice serves to
manage computational complexity, which scales at O(NL). The initial cross-attention step in our model
assumes a pivotal role by encoding a comprehensive global summary of the observed data from the time
series into a set of concise latent vectors. These latent vectors effectively capture the essential information
embedded within the entire dataset. Subsequently, our proposed perceiver-CDF model generates tokens for
each individual data point by efficiently querying relevant global information from the previously obtained
latent summary in the second cross-attention step. This process ensures that each token encompasses vital
contextual details drawn from the overall dataset, as necessitated.

3.2 Copula-based Decoder

Next, the decoder is specifically designed to learn the joint distribution of the missing data points conditioned
on the observed ones. To achieve this, the attention-based decoder is trained to mimic a non-parametric
copula (Nelsen 2006). Let x(m) and x(o) represent the missing and observed data points, respectively. Let
Fi be the ith marginal cumulative distribution function (CDF) and fi be the marginal probability density
function (PDF). The copulas, under Sklar’s theorem (Sklar 1959), allow for separate modeling of the joint
distribution and the marginals, which has particular relevance to the case of sequence modeling. Similar
to TACTiS (Drouin et al. 2022), we employ a normalizing flow technique known as Deep Sigmoidal
Flow (Huang et al. 2018) to model the marginal CDF. The marginal PDF is obtained by differentiating
the marginal CDF. The copula-based structure gϕ is described as follows:

gϕ

(
X(m)

)
= cϕc

(
Fϕ1

(
x
(m)
1

)
, . . . , Fϕnm

(
x(m)
nm

))
× fϕ1

(
x
(m)
1

)
× . . .× fϕnm

(
x(m)
nm

)
, (3)

where X(m) = {x(m)
1 , . . . , x

(m)
nm }, cϕc is the density of a copula, and cϕc(Fϕ1(x

(m)
1 ), . . . , Fϕnm

(x
(m)
nm )) =

cϕc1(Fϕ1(x
(m)
1 ))×cϕc2(Fϕ2(x

(m)
2 )

∣∣Fϕ1(x
(m)
1 ))×. . .×cϕcnm

(Fϕnm
(x

(m)
nm )

∣∣Fϕ1(x
(m)
1 ), . . . , Fϕnm−1(x

(m)
nm−1)).

During the decoding phase, our model selects a permutation, denoted as γ, from all data points, ensuring
that observed data points come before those awaiting inference. The decoder then utilizes the self-attention
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Figure 2: (a) Visualization of the midpoint inference mechanism: blue-filled points represent the points
earmarked for inference at a particular depth, while black points represent those already observed or
inferred at that depth and the white points are unobserved. (b) Comparison between the global attention
mechanism and the local attention mechanism, which utilizes a local window containing only the nearest
tokens: green-filled points indicate the currently sampled variable, while red points signify the variables
to which the sampled token directs its attention during the sampling process.

mechanism AS(K,Q, V ) with the learned key and value functions, Kdecode( ) and Vdecode( ), to derive
distributional parameters, θγ(i), for each data point awaiting inference as follows:

θγ(i) = AS

(
Kdecode

(
z⃗γ(j)

)
, z⃗γ(i), Vdecode

(
z⃗γ(j)

) )
(4)

where γ(j) < γ(i). Next, we use a parameterized diffeomorphism fϕ,c : (0, 1) 7→ R. When θ represents
the parameters for a distribution pθ over the interval (0, 1), our model proceeds by either sampling data
points as x̂i = fϕ,ci(ui), ui ∼ pθi , or computing the conditional likelihood: pθi(f

−1
ϕ,ci

(xi)). Additionally,
the decoder’s complexity scales as O(S(S + H)), where S represents the number of data points to be
inferred and H denotes the number of observed data points.

3.3 Midpoint Inference for Local Attention

To enhance computational efficiency while maintaining the prediction performance, we propose the midpoint
inference mechanism with temporally local self-attention to effectively reduce computational overhead.
Instead of relying on random permutations to establish the conditioning structure, our method employs
permutations that recursively infer midpoints within gaps in the observed data. When dealing with a
continuous sequence of missing data points for the same variable, we determine the depth of each data
point based on the number of midpoint inferences required within that sequence before considering the
data point itself as a midpoint. Notably, observed data points are assigned shallower depths compared
to data points that are yet to be observed. Consequently, we sample a permutation γ that positions data
points with shallower assigned depths before those with deeper depths. Here, we determine midpoints by
considering the number of data points between the prior observation and the next observation, as visually
depicted in Figure 2. This method is well-suited for regularly or nearly-regularly sampled time series data.
For each data token z⃗i, our approach selects a set of conditioning tokens H⃗i. These conditioning tokens
comprise both past and future windows, consisting of the k closest tokens for each variable in the series
that precede z⃗i within the generated permutation γ. Figure 2(b) illustrates the proposed local-attention
conditioning mechanism in comparison with the global self-attention. Here, our model employs learned
key and value-generation functions, Kdecode( ) and Vdecode( ), to derive distributional parameters θγ(i)
for each data point to be inferred, following the ordering imposed by γ as follows:

θi = AS

(
Kdecode(H⃗i), z⃗i, Vdecode(H⃗i)

)
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(a) Varying Prediction Length (b) Varying Conditioning Length

Figure 3: Comparison of memory consumption of perceiver-CDF model (our), TACTiS model, TACTiS
model with perceiver-based encoder (TACTiS-PE), and TACTiS model with midpoint imputation (TACTiS-
MI) on a synthetic dataset with (a) varying prediction length and (b) varying conditioning length.

3.4 Output Variance Testing

By incorporating midpoint inference and local attention mechanisms, the decoder adeptly captures depen-
dencies among neighboring imputed samples. However, it is crucial to acknowledge that this enhancement
introduces a susceptibility to errors, potentially hindering the training process. To address this concern and
prevent error propagation, we propose an output variance testing mechanism for each imputed data point.
In this mechanism, for every imputation, we conduct a series of forecasts by sampling from the derived
joint distribution of the missing data. Subsequently, we calculate the output variance of the generated
outcomes and compare it with a threshold set to align with the input data variance. If the output variance
surpasses four times the threshold, we identify the predicted sample for exclusion in future imputations.
In other words, this predicted data point is masked to insulate it from influencing subsequent imputation
processes. With a fixed window size, the decoder’s complexity can be characterized as O(nN), where n
represents the number of time series variables, and N is the total number of data points in the time series.

4 EXPERIMENTAL STUDY

We present comprehensive experiments to showcase the computational efficiency of our proposed perceiver-
CDF model. First, we conduct memory consumption scaling experiments using synthetic random walk data
to demonstrate the memory efficiency of our proposed model. Next, we evaluate the predictive capabilities of
our model, comparing it against the state-of-the-art approaches, such as deep autoregressive AR (Kalliovirta
et al. 2015), GPVar (Salinas et al. 2019), SSAE-LSTM (Zhu et al. 2021), and TACTiS (Drouin et al. 2022).
Our evaluation spans across three unimodal time series datasets from the Monash Time Series Forecasting
Repository (Godahewa et al. 2021), including electricity, traffic, and fred-md, for short-term
and long-term prediction tasks. Moreover, we evaluate the multi-modality capabilities of our perceiver-
based model in three multimodal time series datasets from the UCI Machine Learning Repository (Dua and
Graff 2017), including room occupation (Candanedo 2016), interstate traffic (Hogue 2019),
and air quality (Chen 2019) datasets. The model parameters employed for these experiments were
adopted from the configuration used by TACTiS (Drouin, Marcotte, and Chapados 2022). We adopt these
parameters as the foundation for establishing the perceiver-CDF model. Below, in Table 1, we provide
a comprehensive listing of the model parameters utilized for our perceiver-CDF and TACTiS models.
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Table 1: The architectures and parameters of perceiver-CDF and TACTiS models.

(A) PERCEIVER-CDF MODEL

INPUT ENCODING

SERIES EMBEDDING DIM. 5
INPUT ENCODER LAYERS 3
POSITIONAL ENCODING

DROPOUT 0.01
PERCEIVER ENCODER

NUM. LATENTS 256
LATENT DIM. 48
ATTENTION LAYERS 2
SELF-ATTENTION HEADS 3
CROSS-ATTENTION HEADS 3
DROPOUT 0.01
PERCEIVER DECODER

CROSS-ATTENTION HEADS 3
COPULA DECODER

MIN. U 0.05
MAX. U 0.95
ATTENTIONAL COPULA

ATTENTION LAYERS 1
ATTENTION HEADS 3
ATTENTION DIM. 16
FEEDFORWARD DIM. 48
FEEDFORWARD LAYERS 1
RESOLUTION 20
MARGINAL FLOW

FEEDFORWARD LAYERS 1
FEEDFORWARD DIM. 48
FLOW LAYERS 3
FLOW DIM. 16

(B) TACTIS MODEL

INPUT ENCODING

SERIES EMBEDDING DIM. 5
INPUT ENCODER LAYERS 3
POSITIONAL ENCODING

DROPOUT 0.01
TEMPORAL ENCODER

ATTENTION LAYERS 2
ATTENTION HEADS 2
ATTENTION DIM. 24
ATTENTION FEEDFORWARD DIM. 24
DROPOUT 0.01
COPULA DECODER

MIN. U 0.05
MAX. U 0.95
ATTENTIONAL COPULA

ATTENTION LAYERS 1
ATTENTION HEADS 3
ATTENTION DIM. 16
FEEDFORWARD DIM. 48
FEEDFORWARD LAYERS 1
RESOLUTION 20
MARGINAL FLOW

FEEDFORWARD LAYERS 1
FEEDFORWARD DIM. 48
FLOW LAYERS 3
FLOW DIM. 16

The experimental results show the efficacy of our proposed model over other approaches in prediction
performance and memory utilization.

4.1 Memory Consumption Scaling

In this experiment, we evaluate the computational costs associated with our proposed perceiver-CDF model
and the state-of-the-art TACTiS model with respect to the quantity of observed and inferred data. Here,
we use the synthetic Random Walk data with a synchronously-measured time series consisting of 10
variables, 10 observed time-steps, and 10 to-be-inferred time-steps. Additionally, we vary the number of
observed and inferred time-steps to assess their impact. Our analysis extends to comparing our model with
TACTiS-PE, which leverages the perceiver-based encoder architecture for the TACTiS model. Additionally,
we consider the TACTiS model with a midpoint inference mechanism, called TACTiS-MI. This model
deduces data points using midpoint imputation for temporally local attention. A comprehensive comparison
of memory usage among these models when applied to a single input series is illustrated in Figure 3.
Firstly, it shows the quadratic relationship between the computational cost of TACTiS and the quantity of
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(a) Perceiver-CDF (b) TACTiS

Figure 4: The predicted samples by the perceiver-CDF and TACTiS for one-month forecasts, corresponding
to 48 time-steps, conditioned on two-day historical data in electricity dataset.

(a) Perceiver-CDF (b) TACTiS

Figure 5: The predicted samples by the perceiver-CDF and TACTiS for one-month forecasts, corresponding
to 672 time-steps, conditioned on one-month historical data in electricity dataset.

input data. Secondly, it underscores the remarkable efficiency of the proposed model in terms of memory
utilization. Additionally, it showcases the improvements achieved by utilizing perceiver-based encoder
and midpoint inference mechanism for TACTiS model. TACTiS-PE, which utilizes a global inference
mechanism, operates quadratically when dealing with inferred variables, thereby maintaining its quadratic
scaling with respect to the number of predicted time-steps. Conversely, TACTiS-MI employs TACTiS’
encoder, preserving its quadratic scaling with respect to the number of observed time steps. Overall, these
results underscore the success of the perceiver-CDF model and the proposed midpoint inference mechanism
in efficiently mitigating the inherent quadratic scaling issue within TACTiS.

4.2 Forecasting on Unimodal Datasets

We evaluate our proposed model’s computational cost and inference performance across three real-world
unimodal datasets. To begin, we employ the fred-md time series dataset, consisting of 20 input variables,
each comprising 24 observed samples, to predict 24 time-steps into the future. Table 2 presents a comparative
analysis of performance metrics for perceiver-CDF, TACTiS, GPVar, and AR models. We evaluate these
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Table 2: Comparison of memory usage and prediction performance between Perceiver-CDF and other
approaches in unimodal time series datasets, such as fred-md, traffic, and electricity.

FRED-MD - 24 TIMESTEPS PREDICTION

APPROACH PARAMS MEMORY BATCHES/S NLL RMSE-CM CRPS
AR(24) 6K 3.7 MB 37.4 – 7.0±0.5 1.10±0.05

GPVAR 78K 1.39 GB 11.7 42.3±0.6 6.8±0.5 0.86±0.06

TACTIS 91K 1.51 GB 12.3 42.3±0.4 6.1±0.4 0.74±0.05

PERCEIVERCDF 122K 1.66 GB 16.6 34.2±0.3 6.0±0.4 0.71±0.06

TRAFFIC - 48 TIMESTEPS PREDICTION

APPROACH PARAMS MEMORY BATCHES/S NLL RMSE-CM CRPS
AR(48) 20K 11.5 MB 10.31 – 0.053±0.005 0.431±0.004

GPVAR 78K 4.67 GB 5.81 204.6±0.8 0.044±0.003 0.215±0.008

TACTIS 91K 5.52 GB 5.84 198.7±0.6 0.035±0.002 0.181±0.009

PERCEIVERCDF 122K 2.75 GB 5.95 188.7±0.6 0.028±0.002 0.162±0.006

ELECTRICITY - 48 TIMESTEPS PREDICTION

APPROACH PARAMS MEMORY BATCHES/S NLL RMSE-CM CRPS
AR(48) 20K 11.6 MB 10.34 – 90±0.1 0.149±0.001

GPVAR 78K 4.78 GB 5.76 185.6±0.5 62±0.1 0.060±0.001

TACTIS 91K 5.42 GB 5.81 182.3±0.6 49±0.1 0.060±0.001

PERCEIVERCDF 122K 2.73 GB 5.93 177.8±0.8 42±0.1 0.056±0.001

ELECTRICITY - 672 TIMESTEPS PREDICTION

APPROACH PARAMS MEMORY BATCHES/S NLL RMSE-CM CRPS
AR(672) 270K 47.7 MB 1.74 – 159±0.8 0.290±0.02

GPVAR 78K 4.81 GB 3.48 350±0.4 147±0.5 0.198±0.005

TACTIS 91K 4.81 GB 3.65 280±0.2 141±0.3 0.186±0.006

PERCEIVERCDF 122K 372 MB 18.3 185±0.9 98±0.1 0.133±0.001

models based on negative log-likelihoods (NLL), root-mean-squared-errors of conditional expectations
(RMSE-CM), and continuous ranked probability scores (CRPS). Our proposed model outperforms GPVar
and AR while achieving competitive results with TACTiS in both RMSE-CM and CRPS metrics.

Next, we utilize traffic time series data with 20 input variables, each with 48 observed samples
to predict 48 time-steps ahead. The performance comparisons between our model and other methods are
demonstrated in Table 2. Our proposed model demonstrates a significant performance advantage over
TACTiS, GPVar, and AR, excelling in both RMSE-CM and CRPS metrics. Notably, we achieve 20%
improvement over TACTiS in terms of RMSE-CM. The number of parameters and memory usage also
highlight the efficiency of the proposed model, which utilizes less than 50% of the memory compared to
TACTiS and GPVar.

Lastly, we evaluate our model in the context of short-term and long-term prediction tasks using the
electricity dataset. In the short-term prediction experiment, we utilize 20 variables, each spanning 48
observed time-steps, to forecast 48 time-steps into the future. Visual representations of the predictions from
perceiver-CDF and TACTiS are shown in Figure 4. As shown in Table 2, our proposed model significantly
outperforms other approaches, boasting a 14% improvement in RMSE-CM compared to TACTiS, all while
utilizing just 50% of available memory. For the long-term prediction task, we work with 10 variables, each
encompassing 672 observed time-steps, to predict the subsequent 672 time-steps. This experiment provides
valuable insights into the capabilities of these models on a large-scale dataset. Visual representations of
the predictions from perceiver-CDF and TACTiS are shown in Figure 5. In this scenario, our model
demonstrates a significant performance advantage over TACTiS, excelling in both RMSE-CM and CRPS
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Table 3: Comparison of memory usage and prediction performance between Perceiver-CDF and other
approaches in multimodal time series datasets, such as room occupation, interstate traffic, air quality.

ROOM OCCUPATION - 6 FEATURES ATTRIBUTIONS

APPROACH PARAMS MEMORY RMSE-CM USAGE CO2 LEVEL
SSAE-LSTM 76K 5.22 GB 0.056±0.002 97.1% 96.5%
TACTIS 91K 6.38 GB 0.031±0.001 98.1% 97.7%
PERCEIVERCDF 122K 3.09 GB 0.018±0.001 98.9% 98.4%

INTERSTATE TRAFFIC - 8 FEATURES ATTRIBUTIONS

APPROACH PARAMS MEMORY RMSE-CM RAIN TRAFFIC LEVEL
SSAE-LSTM 76K 5.68 GB 0.083±0.004 95.3% 94.6%
TACTIS 91K 7.13 GB 0.065±0.003 96.7% 96.1%
PERCEIVERCDF 122K 3.22 GB 0.027±0.003 98.2% 97.8%

AIR QUALITY - 12 FEATURES ATTRIBUTIONS

APPROACH PARAMS MEMORY RMSE-CM RAIN PM2.5 LEVEL
SSAE-LSTM 76K 6.17 GB 0.106±0.006 93.7% 93.4%
TACTIS 91K 8.83 GB 0.074±0.005 95.8% 94.9%
PERCEIVERCDF 122K 3.41 GB 0.022±0.004 98.5% 98.1%

while utilizing only 10% of available memory. Additionally, our perceiver-CDF model manages to capture
the seasonal patterns in the data, albeit not as accurately as in the short-term task. Conversely, TACTiS
and other methods face inherent challenges when dealing with extended time series. In particular, TACTiS
struggles to model the underlying seasonal structures within the data, resulting in less reliable performance
when tasked with long-term predictions.

4.3 Forecasting on Multimodal Datasets

We first evaluate the predictive capabilities of the perceiver-CDF model on the room occupation
dataset (Candanedo 2016). This dataset is multimodal, consisting of 6 feature attributes related to room
conditions, such as temperature, humidity, and CO2 levels. The evaluation of predictive performance is
based on the average RMSE-CM across all six attributes. Furthermore, we undertake two classification
tasks: the first task involves predicting room occupancy, while the second task focuses on detecting high CO2

levels (i.e., levels exceeding 700 ppm). Here, we conduct a comparative analysis with TACTiS (Drouin et al.
2022) and SSAE-LSTM (Zhu et al. 2021). Both of these methods employ a strategy of concatenating all
feature attributes at each time-step for prediction. The performance results, as presented in Table 3, consist
of measures such as average RMSE-CM, room occupation detection accuracy, and high CO2 detection
accuracy. The memory usage is also provided to highlight the efficiency of our model when achieving 40%
reduction in RMSE-CM compared to TACTiS while utilizing only half of the computational resources.

Next, we extend our experimentation to the interstate traffic dataset (Hogue 2019). This
dataset comprises 8 feature attributes related to weather conditions (e.g., temperature, snow), holiday status,
and traffic volume. To assess predictive performance, we utilize RMSE-CM calculated across all eight
attributes. Additionally, we investigate two classification tasks: firstly, identifying instances of rainy weather
conditions, and secondly, detecting periods of high traffic volume (i.e., volumes exceeding 2000 cars).
Table 3 illustrates that the proposed perceiver-CDF model significantly outperforms other approaches while
maintaining linear memory usage. Notably, our approach achieves a 58% improvement in RMSE-CM
compared to TACTiS and consistently excels in prediction tasks related to detecting rain and high traffic.

Lastly, we evaluate the performance of our approach on the air quality dataset (Chen 2019),
which encompasses 12 variables, each with 12 feature attributes, including 6 pollution-related features
(e.g., PM2.5, PM10) and 6 weather-related features (e.g., temperature, rain). To assess the quality of our
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predictions, we employ the average RMSE-CM calculated across all attributes. Moreover, we tackle two
classification tasks: firstly, identifying instances of rainy weather conditions, and secondly, detecting periods
with elevated PM2.5 levels, specifically those exceeding 80 µg/m3. Table 3 showcases the performance
comparison between perceiver-CDF and other approaches, with our model achieving a remarkable 70%
improvement in RMSE-CM compared to TACTiS while utilizing only 40% of the memory resources.

5 CONCLUSION

We present a new method for modeling multimodal time series, leveraging cross-attention and copula-
attention mechanisms. Our model adeptly encodes the global patterns within partially observed multimodal
time series into latent representations, effectively streamlining computational complexity. It also incorporates
temporally local attention via midpoint inference, focusing token attention on those with the utmost temporal
relevance to their conditioning for precise conditional modeling. Our experiments demonstrate that our
proposed model exhibits heightened efficiency as prediction length and the number of feature attributes
increases. Perceiver-based encoding proves highly effective in addressing the challenges posed by complex
multimodal datasets. In future work, we aim to extend the applications of this approach by enhancing the
structure of the copula-based model.
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