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ABSTRACT

We present a new optimization method for the group selection problem in linear regression. In this problem,
predictors are assumed to have a natural group structure and the goal is to select a small set of groups
that best fits the response. The incorporation of group structure in a design matrix is a key factor in
obtaining better estimators and identifying associations between response and predictors. Such a discrete
constrained problem is well-known to be hard, particularly in high-dimensional settings where the number
of predictors is much larger than the number of observations. We propose to tackle this problem by framing
the underlying discrete binary constrained problem into an unconstrained continuous optimization problem.
The performance of our proposed approach is compared to state-of-the-art variable selection strategies on
simulated data sets. We illustrate the effectiveness of our approach on a genetic dataset to identify grouping
of markers across chromosomes.

1 INTRODUCTION

Given a dataset (yyy, X) consisting of a response vector yyy ∈Rn and a design matrix X ∈Rn×p with n and p
denoting the number of observations and the number of features respectively, the linear regression assumes
that yyy and X have the linear relationship,

yyy = Xβββ + εεε, (1)

where βββ ∈Rp denotes the unknown regression coefficients and εεε = (ε1, . . . ,εn)
> ∈Rn represents a vector

of unknown errors, unless otherwise specified, assumed to be independent and identically distributed.
The goal of group selection methods is to identify which groups of features are relevant for predicting

the outcome variable and estimate the corresponding regression coefficients. This can help in situations
where predictor variables naturally fall into meaningful groups or where there is prior knowledge suggesting
that certain groups of variables may be related to the outcome variable. For instance, in genomics, genes
belonging to the same pathway typically share similar functionalities and collaborate in regulating biological
systems. The collective effect of these genes can be significant, making it feasible to detect them as a
group, either at the pathway or gene set level. Incorporating this grouping structure has become increasingly
common, largely due to the success of geneset enrichment analysis approaches (Subramanian et al. 2005).
Incorporating group structure into regression analysis has proven effective for biomarker identification
(Yuan and Lin 2006; Meier et al. 2008; Puig et al. 2009; Simon and Tibshirani 2012).

To formulate this problem, partition the design matrix X into distinct groups, denoted as X =
[X1,X2, . . . ,XJ], where each X j ∈Rn×p j represents j-th group with p j features. Note that p = p1+ · · ·+ pJ .
Then, (1) can be re-expressed as

yyy =
J

∑
j=1

X jβββ j + εεε, (2)

3217979-8-3315-3420-2/24/$31.00 ©2024



Mathur, Moka, Liquet, and Botev

where for each j, βββ j ∈ Rp j is the regression coefficients associated with j-th group X j. To simplify our
exposition, we do not include an intercept term in (2), assuming that the response variable yyy is centered.

The group selection problem then can be stated as a subset selection problem of the form

minimize
βββ 1,...,βββ J

1
n
‖yyy−

J

∑
j=1

X jβββ j‖2
2, subject to

J

∑
j=1

I
(
‖βββ j‖2 > 0

)
≤ k. (3)

where k is the sparsity parameter, ‖ · ‖2 denotes L2-norm, and I(·) denotes the usual indicator function.
By incorporating group-wise structure into the regression model, group selection methods can improve

model interpretability, reduce overfitting, and provide insights into the relationships between different
groups of features and the outcome variable. Common approaches for group selection in linear regression
include group Lasso Regression (Yuan and Lin 2006), a variant of the Lasso regression where the penalty
term is applied at the group level rather than at the individual variable level thus encouraging sparsity
at the group level, effectively selecting entire groups of features. An extension of group Lasso is sparse
group Lasso (Simon et al. 2013) which allows for within-group sparsity, meaning not all features within
a group are forced to be nonzero simultaneously. A third variant is hierarchical variable selection, which
can be useful when the groups exhibit a hierarchical organization, such as in gene expression data or nested
experimental designs. Relatively recent work (Hazimeh et al. 2023) proposes an efficient approximate
algorithm for solving (3) based on a combination of coordinate descent and local search methods.

The paper is organized as follows. In Section 2, we state the group selection problem and formulate our
continuous extension. In Section 3, we provide extensive numerical experiments comparing the proposed
method with the most popular existing methods. In Section 4 we demonstrate our method using a complex
genetic dataset where single nucleotide polymorphisms (SNPs) are utilized to predict gene expression across
four distinct tissue types. Concluding remarks and possible future research directions are in Section 5.

2 GROUP SELECTION VIA COMBSS

The goal of this section is to show how the (non-group) model selection approach in (Moka et al. 2024) can
be extended to the case of group selection. We call this method Group COMBSS (Continuous Optimization
Method Towards Best Subset Selection). To this end, we first restate the exact group selection problem
(3) as a binary constrained problem given by

minimize
s1,...,sJ∈{0,1}

minimize
βββ 1,...,βββ J

1
n
‖yyy−

J

∑
j=1

s jX jβββ j‖2
2, subject to

J

∑
j=1

s j ≤ k. (4)

For each J-dimensional binary vector sss = (s1, . . . ,sJ) ∈ {0,1}J , let X[sss] be matrix constructed from X
by removing groups X j that correspond to all s j = 0. Thus, the number of columns of X[sss] is equal to
∑

J
j=1 p jI(s j = 1). Similarly, let βββ [sss] be the vector obtained from βββ by removing the elements of βββ indices

that correspond all groups with s j = 0. Then, (4) can be expressed as

minimize
sss∈{0,1}J

minimize
βββ [sss]

1
n
‖yyy−X[sss]βββ [sss]‖2

2, subject to |sss| ≤ k, (5)

where |sss| denotes the number of 1’s in sss. Now suppose, for a given sss, β̂ββ [sss] is a solution of

minimize
βββ [sss]

1
n
‖yyy−X[sss]βββ [sss]‖2

2, (6)

then (5) is equal to

minimize
sss∈{0,1}J

1
n
‖yyy−X[sss]β̂ββ [sss]‖2

2, subject to |sss| ≤ k. (7)
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Solving (6) for β̂ββ [sss] is relatively easier task compared to solving (7). Indeed, the latter problem is well-known
to be NP-hard (Natarajan 1995).

Now, for each ttt = [t1, . . . , tJ]> ∈ [0,1]J , let

Tttt = Diag
(
[t1, . . . , t1︸ ︷︷ ︸

p1 times

, t2, . . . , t2︸ ︷︷ ︸
p2 times

, . . . , tJ, . . . , tJ︸ ︷︷ ︸
pJ times

]>
)

where Diag(uuu) is a diagonal matrix with diagonal being uuu. Furthermore, take

Xttt = XTttt ,

and define

Lttt =
X>ttt Xttt

n
+(I−T2

ttt ). (8)

One can view Lttt as a ’convex combination’ of the matrices X>X and I/n. The term I−T2
ttt ensures that

Lttt remains non-singular when zero-group exists and when all ti = 1 there is zero impact on the matrix
X>X/n. Let β̃ββ ttt be a solution of the linear equation (in uuu)

Ltttuuu =

(
X>ttt yyy

n

)
.

Then, we consider a Boolean relaxation of (7) given by

minimize
ttt∈[0,1]J

1
n
‖yyy−Xttt β̃ββ ttt‖2

2, subject to
J

∑
j=1

t j ≤ k. (9)

We transform the discrete problem (7) into a continuous optimization (9) to take advantage of gradient
evaluations. Generally, continuous optimization is acknowledged to be less challenging than combinatorial
optimization. An example of this is Linear Programming (LP) vs Mixed-Integer Linear Programming
(MILP), see (Fletcher 2000). The following result establishes some key properties of β̃ββ ttt and shows the
relationship between (7) and (9).
Theorem 1 The following are true.

(i) Lttt is non-singular for all ttt ∈ (0,1)J .
(ii) For any corner point sss ∈ {0,1}J , X[sss]β̂ββ [sss] = Xsssβ̃ββ sss.

(iii) For every sequence of vectors ttt(1), ttt(2), · · · ∈ (0,1)J that converges to a point ttt ∈ [0,1]J ,

‖yyy−Xttt β̃ββ ttt‖2 = lim
`→∞

‖yyy−Xttt(`) β̃ββ ttt(`)‖2.

The proofs of (i), (ii) and (iii) are natural extensions of the proofs of Theorem 1, 2 and 3 in (Moka
et al. 2024), and are thus omitted.

Theorem 1 (i) implies that for all interior points t ∈ (0,1)J , β̃ββ ttt is unique and is given by β̃ββ ttt =L−1
ttt X>ttt yyy/n,

and (ii) implies that at the corners of the hypercube [0,1]J , the value of objective function in (9) is identical
to the value of the objective function in (7). Theorem 1 (iii) establishes the continuity of the objective
function of the Boolean relaxation problem (9).

In this paper, instead of solving (9), we consider a relaxation using the Lagrangian form

fλ (ttt) =
1
n
‖yyy−Xttt β̃ββ ttt‖2

2 +λ

J

∑
j=1

√
p jt j,
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for a tuning parameter λ > 0 and aim to solve

minimize
ttt∈[0,1]J

fλ (ttt). (10)

Instead of the sparsity parameter k, we now have the parameter λ to control the level of the sparsity in
the solution. The √p j term is included to ensure the penalty term is scale-invariant with respect to the
group size. The optimization (10) still has unwieldy box constraints. To get rid of these box constraints,
we consider the equivalent unconstrained problem:

minimize
www∈RJ

gλ (www), (11)

where gλ (www) = fλ (ttt(www)), www ∈ RJ, with ttt(www) = 1/(1+ exp(−www)). That is, for each i = 1, . . . ,J, the j-th
element t j is obtained by applying the Sigmoid function on w j. Since the Sigmoid function is strictly
increasing, solving unconstrained problem (11) is equivalent to solving the box-constrained problem (10).
We use the Adam optimizer, a popular gradient based approach, for solving (11). See Appendix A for a
derivation of the gradient ∇gλ of the objective function gλ . Algorithm 1 provides a pseudo-code for the
proposed method. It takes the data (yyy,X), group sizes (p1, . . . , pJ), penalty parameter λ , initial point www(0),
and threshold τ that helps convert the Sigmoid output into a binary one. For the given λ , Adam

(
www(0),∇gλ

)
executes the Adam optimizer, which takes www(0) as an initial point to provide a solution www. This www is mapped
to a point ttt ∈ [0,1]J using the Sigmoid function and then ttt is mapped to a binary vector sss ∈ {0,1}J using
the threshold parameter τ ∈ (0,1).

Algorithm 1 Group COMBSS

Input: (yyy,X), (p1, . . . , pJ), λ ,www(0),τ

1: www← Adam
(
www(0),∇gλ

)
2: for j = 1 to j = J do
3: t j← 1/(1+ exp(−w j))
4: s j← I(t j > τ)
5: end for
6: return s = (s1, . . . ,sJ)

>

Remark 1 Recent work Hazimeh et al. (2023), Mazumder et al. (2023) suggests that when the signal-
to-noise ratio (SNR) is low, additional ridge regularization can improve the prediction performance of the
best subset selection. To include such additional ridge penalty in our implementation, we replace β̃ββ ttt with

β̃ββ
Ridge
ttt :=

[
X>ttt Xttt +n(I−T2

ttt )+ γ T2
t

]−1
X>ttt yyy.

The parameter γ controls the strength of the ridge penalty. Note that when γ > 0 the estimator β̃ββ
Ridge
ttt

agrees with the simple ridge estimator at any corner point,

β̃ββ
Ridge
sss =

[
X>[sss]X[sss]+ γ I

]−1
X>[sss]yyy, sss ∈ {0,1}J.

3 NUMERICAL SIMULATIONS

To compare the performance of a variate of group selection methods, we use datasets simulated from the
model:

yyy = Xβββ
∗+ εεε, where εεε ∼N (000,σ2In), (12)
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where we generate synthetic predictors X = [X1,X2, . . . ,XJ] with X j ∈ Rn×p j . The design matrix X is
simulated as a multivariate normal with a between-group correlation ψ and within-group correlation ρ .
We run Group COMBSS Algorithm 1 and compare its statistical performance against the state-of-the-art
grouped variable selection methods: L0 Group, Group Lasso, Group MCP and Group SCAD. We implement
Group Lasso, Group MCP and Group SCAD with the R package grpreg (Breheny and Huang 2015).
L0 Group is implemented with the Python software accompanying Hazimeh et al. (2023). To tune the
parameter λ we generate an independent validation set from the generating process (12) with identical
parameter values for ρ and ψ . We then minimize the generalization risk on the validation set over a grid
with 100 values. We set the parameter τ to a default value of 10−1. The coefficient βββ

∗ contains k nonzero
groups and the nonzero entries of βββ

∗ are all set to 1.
After generating a training and validation set in each simulation, we run Group COMBSS to evaluate

the λ that minimizes the generalization risk on the validation set. We denote this minimizer as λ ∗ and the
corresponding model coefficient estimate as β̂ββ λ ∗ . The number of correct and incorrect non-zero groups in
β̂ββ λ ∗ are referred to as true positives (T P) and false positives (FP), respectively. Likewise, the number of
correct and incorrect zero groups in β̂ββ λ ∗ are referred to as true negatives (T N) and false negatives (FN),
respectively. We consider the following performance measures:

1. Precision: Precision is defined as T P/(T P+FP). A precision close to 1 indicates that the method
is reliable in its classifications of non-zero groups while minimizing false positives.

2. Recall: Recall is defined as T P/(T P+FN). A recall close to 1 indicates that the method is reliable
in its classifications of non-zero groups while minimizing false negatives.

3. Matthews correlation coefficient (MCC): MCC is defined as,

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN +FP)(TN +FN)
.

The MCC is a balanced measure that ranges from −1 (perfect disagreement) through 0 (no better
than random chance) to +1 (perfect agreement).

4. Generalization Risk: This is defined as 1
n‖Xβ̂ββ λ ∗−Xβββ

∗‖2
2.

We consider the following simulation settings:

• Setting 1: n = 100, p = 40, ρ = 0.9, ψ = 0.2, k = 4 and p j = 4.
• Setting 2: n = 100, p = 40, ρ = 0.9, ψ = 0.5, k = 4 and p j = 4.
• Setting 3: n = 400, p = 600, ρ = 0.9, ψ = 0.2, k = 15 and p j = 4.
• Setting 4: n = 400, p = 600, ρ = 0.9, ψ = 0.5, k = 15 and p j = 4.

The value of σ2 is chosen to achieve an SNR of either 1 or 3. For each simulation setting, we replicate
the simulation 50 times and report the mean value of each performance measure. Standard errors of the
mean are provided in parentheses.

In the low-dimensional and low-group-correlation setting (Setting 1, Table 1), Group COMBSS exhibits
the highest MCC, Precision, and Recall scores closely followed by L0 Group. Group LASSO, MCP, and
SCAD exhibit lower model risk as these are methods that not only select sparse models but also penalize
regression coefficients. However, the performance of these three methods is inferior compared to Group
COMBSS and L0 Group. In these simulations, the ridge penalty γ in Group COMBSS is set to zero, thereby
excluding any penalization on the regression coefficients. In subsequent simulation efforts, we intend to
explore the implications of a non-zero ridge penalty, chosen over a pre-defined grid. In the high-group
correlation setting (Setting 2), we observe Group COMBSS achieving the best MCC score. When the
signal is strong and group correlation is low, Group COMBSS and L0 group perfectly identify the non-zero
groups in the low noise setting (Setting 1, Table 2).
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Table 1: Low-dimensional, high noise (Setting 1 and 2).

SNR = 1

Method Setting MCC Precision Recall Risk

Group COMBSS 1 0.95 (0.02) 0.98 (0.01) 0.95 (0.02) 17.87 (1.06)
L0 Group 0.91 (0.02) 0.97 (0.01) 0.92 (0.02) 20.41 (1.07)
Group LASSO 0.46 (0.03) 0.55 (0.01) 0.99 (0.01) 16.89 (0.76)
Group MCP 0.71 (0.03) 0.74 (0.02) 0.96 (0.01) 4.97 (0.20)
Group SCAD 0.59 (0.03) 0.65 (0.02) 0.98 (0.01) 4.85 (0.20)

Group COMBSS 2 0.74 (0.03) 0.94 (0.02) 0.74 (0.02) 28.62 (1.28)
L0 Group 0.67 (0.03) 0.92 (0.02) 0.66 (0.02) 32.13 (1.18)
Group LASSO 0.41 (0.03) 0.53 (0.01) 0.97 (0.01) 21.43 (0.94)
Group MCP 0.47 (0.03) 0.67 (0.03) 0.74 (0.03) 7.31 (0.23)
Group SCAD 0.49 (0.04) 0.62 (0.02) 0.91 (0.02) 6.67 (0.3)

Table 2: Low-dimensional, low noise (Setting 1 and 2).

SNR = 3

Method Setting MCC Precision Recall Risk

Group COMBSS 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 5.52 (0.27)
L0 Group 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 5.49 (0.27)
Group LASSO 0.41 (0.03) 0.52 (0.01) 0.52 (0.01) 6.75 (0.31)
Group MCP 0.78 (0.02) 0.78 (0.02) 1.00 (0.00) 1.56 (0.07)
Group SCAD 0.57 (0.03) 0.63 (0.02) 1.00 (0.00) 1.61 (0.08)

Group COMBSS 2 0.97 (0.01) 0.98 (0.01) 0.98 (0.01) 9.26 (0.55)
L0 Group 0.91 (0.02) 0.95 (0.02) 0.96 (0.01) 10.65 (0.57)
Group LASSO 0.43 (0.03) 0.53 (0.01) 1.00 (0.00) 9.35 (0.44)
Group MCP 0.65 (0.03) 0.70 (0.02) 0.95 (0.02) 3.09 (0.14)
Group SCAD 0.55 (0.04) 0.62 (0.02) 0.98 (0.01) 3.09 (0.13)

In the high-dimensional regime, as shown in Tables 3 and 4, Group COMBSS achieves the best group
selection among all methods, attaining a Precision score that is significantly closer to 1 in comparison to the
Lasso, MCP, and SCAD, which tend to select a higher number of false positives. As discussed in Mazumder
et al. (2023), it is observed that in cases of high noise (Table 3), the subset selection methods (Group
COMBSS, L0 Group) yield higher generalization risk scores. Conversely, in the low-noise, low-group
correlation scenario (Setting 3, Table 4), Group COMBSS exhibits the lowest generalization risk.
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Table 3: High-dimensional, high noise (Setting 3 and 4).

SNR = 1

Method Setting MCC Precision Recall Risk

Group COMBSS 3 0.64 (0.01) 0.80 (0.02) 0.56 (0.01) 194.04 (4.89)
L0 Group 0.56 (0.01) 0.83 (0.02) 0.42 (0.01) 238.72 (5.05)
Group LASSO 0.39 (0.01) 0.28 (0.01) 0.87 (0.01) 132.93 (2.82)
Group MCP 0.49 (0.01) 0.43 (0.01) 0.71 (0.02) 157.16 (3.37)
Group SCAD 0.41 (0.01) 0.29 (0.01) 0.86 (0.01) 135.59 (2.88)

Group COMBSS 4 0.30 (0.02) 0.51 (0.02) 0.23 (0.01) 313.71 (7.98)
L0 Group 0.25 (0.02) 0.50 (0.03) 0.17 (0.01) 373.94 (7.04)
Group LASSO 0.21 (0.01) 0.21 (0.01) 0.55 (0.02) 171.99 (3.95)
Group MCP 0.20 (0.01) 0.28 (0.01) 0.30 (0.01) 259.55 (5.99)
Group SCAD 0.21 (0.01) 0.21 (0.01) 0.53 (0.02) 173.23 (4.30)

Table 4: Low-dimensional, low noise (Setting 3 and 4).

SNR = 3

Method Setting MCC Precision Recall Risk

Group COMBSS 3 0.94 (0.01) 0.95 (0.01) 0.94 (0.01) 55.70 (1.70)
L0 Group 0.88 (0.01) 0.96 (0.01) 0.84 (0.01) 69.27 (2.33)
Group LASSO 0.47 (0.01) 0.30 (0.00) 1.00 (0.00) 58.61 (1.34)
Group MCP 0.73 (0.01) 0.63 (0.01) 0.94 (0.01) 66.06 (2.05)
Group SCAD 0.54 (0.01) 0.36 (0.01) 0.99 (0.00) 64.01 (1.54)

Group COMBSS 4 0.57 (0.02) 0.74 (0.02) 0.49 (0.01) 139.57 (3.44)
L0 Group 0.50 (0.02) 0.77 (0.02) 0.37 (0.01) 172.26 (3.44)
Group LASSO 0.38 (0.01) 0.27 (0.01) 0.85 (0.01) 90.36 (1.95)
Group MCP 0.36 (0.01) 0.38 (0.01) 0.49 (0.01) 153.58 (3.01)
Group SCAD 0.41 (0.01) 0.30 (0.01) 0.83 (0.02) 97.67 (2.63)

4 ILLUSTRATION WITH GENETIC DATA

We demonstrate the application of our approach within the domain of genetic regulation. In expression
Quantitative Trait Loci (eQTL) analysis, which aims to identify the genetic factors influencing gene
expression variation (i.e., transcription), gene expression data are treated as a quantitative phenotype,
while genotype data (SNPs) serve as predictors. In this study, we utilize a dataset extracted from a larger
investigation (Heinig et al. 2010) focusing on the Hopx genes, as referenced in Petretto et al. (2010). This
dataset has also been analyzed by Liquet et al. (2016), who employed a Bayesian model to identify a concise
set of predictors explaining the collective variability of gene expression across four tissues: adrenal gland
(ADR), fat, heart, and kidney. Liquet et al. (2017) utilize a sparse group Bayesian multivariate regression
model for a similar objective. The Hopx dataset comprises 770 SNPs from 29 inbred rats forming the
design matrix (n = 29, p = 770), with the expression levels measured in the four tissues (ADR, fat, heart,
and kidney) serving as outcomes. A comprehensive description of the dataset is also available in Liquet
and Chadeau-Hyam (2014) and can be accessed through the R package R2GUESS. Table 5 displays how
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Table 5: Repartition of the SNPs along the chromosomes.

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Group size 74 67 63 60 39 45 52 43 31 51 21 26 33 22 15 27 18 30 34 19

the SNPs are distributed across the 20 chromosomes of the rats. The chromosome information establishes
the grouping structure of the design matrix.

Figure 1: Best Subset Solution Path for ADR variable (γ = 1).

We executed Group COMBSS on each tissue separately. The best subset solution path for each tissue
has been obtained over a grid with 150 values of λ using Algorithm 1. Due to the high-dimensional aspect
of the data (n = 29, p = 770), we add a ridge penalization (γ = 1). The solution path for the ADR tissue is
presented in Figure 1. As an example, we analyse a parsimonious model with 4 groups, our model picked
chromosomes 2, 4, 7 and 10. These chromosomes were also identified as being linked to the ADR tissue
(Liquet et al. 2017), which utilized a sparse group Bayesian multivariate regression model. The results of
our approach on the other tissues are presented in Figures 2, 3 and 4 in Appendix B. For the Kidney tissue,
chromosomes 3, 4, 7 and 10 have been selected (for a model with four groups). Note that the ADR and
Kidney outcomes are highly correlated (r = 0.7), which may explain why three out of four groups have
common chromosomes. For the Heart Tissue, chromosomes 2, 4, 14 and 15 have been selected (for a model
with four groups) while chromosomes 1, 2, 4 and 15 have been selected when analysing the Fat tissue.
Note also that the solution path using COMBSS for a partial least squares approach (Liquet et al. 2024),
with a multivariate outcome (the four tissues) but without group selection, has identified a parsimonious
set of SNPs located on chromosomes 4, 10, and 14. Chromosome 4 was selected in our four separate
models, chromosome 10 was selected with the ADR and Kidney models and finally, chromosome 14 was
selected when we analysed the heart tissue.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented an unconstrained continuous optimization algorithm for the group selection
problem in linear regression. Our approach makes it possible to extend the non-group selection method
in (Moka et al. 2024) to the group selection setting. We conducted extensive numerical simulations in
both high- and low-dimensional settings to compare the performance of the proposed algorithm with the
popular grouped variable selection approaches.

We have demonstrated our technique on a complex dataset comprising gene expression data (with
four measurements from 29 samples) and SNP explanatory variables (consisting of 770 variables). The
dataset exhibits a structured group organization (with 20 groups), delineated by chromosomes. Our current
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Group COMBSS selection is not designed yet for analysing a multivariate response. To fully exploit the
multivariate response, one can extend the univariate square error loss to accommodate the multivariate
outcome. Furthermore, in genetics, it’s a common practice to introduce an additional layer of sparsity
within selected groups to improve interpretability. This involves identifying the relevant SNPs (variables)
within the chosen groups.

Sparse group selection problem is an important generalization of the group selection problem, where
in addition to the group selection, it is assumed that only a small number of features in each selected
group are active. Similar to Friedman, Hastie, and Tibshirani (2010) that extends Group LASSO to the
sparse group selection problem, our method can be extended to this problem. To see this, in addition to
ttt ∈ [0,1]J , we consider rrr = [rrr>1 , . . . ,rrr

>
J ]
> ∈ [0,1]p with rrr j = [r j,1, . . . ,r j,p j ]

> ∈ [0,1]p j . The vector rrr acts as
binary relaxation for individual features. We can enforce group and within-group sparsity by incorporating
appropriate penalties on ttt and rrr.

In future research, we can also include a ridge penalty as explained in Remark 1 to enhance Group
COMBSS’s performance when minimizing generalization risk, particularly when SNR is low.

In Moka et al. (2024), an alternative version of COMBSS for linear regression is proposed for best
subset selection, i.e., optimization (5) with the number of groups equal to the number of features (J = p).
Future work can focus on numerical and theoretical study of the extension of this version of COMBSS to
the group setting.

A DERIVATIVES OF THE OBJECTIVE FUNCTION

Our goal is to solve (11) using a gradient descent approach. To do that, we need to compute the gradient
∇wwwgλ (www) = (∂g(www)/∂w1, . . . ,∂g(www)/∂wJ). With � denoting the Hadamard (i.e., element-wise) product
between two vectors, observe that

∇wwwgλ (www) = ∇ttt fλ (ttt(www))� ttt(www)(1− ttt(www)),

where we used the fact that the derivative of the Sigmoid function ttt(www) is ttt(www)(1− ttt(www)).
Let Z = X>X/n− I, so that Lttt = TtttZTttt + I. Further, let E j be a diagonal matrix of dimension p

with zeros everywhere except ones along the diagonal at (∑ j−1
k=1 pk)+1, . . . ,∑ j

k=1 pk. The following result
establishes the derivatives ∂ β̃ββ ttt/∂ t j. Its proof is similar to the derivation of the gradient in (Moka et al.
2024) and hence ignored.

Lemma 1 Let β̃ββ ttt = L−1
ttt

(
X>ttt yyy

n

)
. For any ttt ∈ (0,1)J , the derivatives of β̃ββ ttt are given by

∂ β̃ββ ttt

∂ t j
= L−1

ttt
[
E j−E jZTtttL−1

ttt Tttt −TtttZE jL−1
ttt Tttt

](X>yyy
n

)
, j = 1, . . . ,J.

We shall use this Lemma to obtain ∇ fλ (ttt) for ttt ∈ (0,1)J . Let ηηη ttt = Tttt β̃ββ ttt . Then,

‖yyy−Xttt β̃ββ ttt‖2
2 = ‖yyy−Xηηη ttt‖2

2 = yyy>yyy−2ηηη
>
ttt

(
X>yyy

)
+ηηη

>
ttt X>Xηηη ttt .

Now we focus on the j-th element of ∇ttt fλ (ttt), that is,

∂ fλ (ttt)
∂ t j

=
∂

∂ t j

1
n
‖yyy−Xttt β̃ββ ttt‖2

2 +
√

p jλ .

Here,

∂

∂ t j

[
1
n
‖yyy−Xttt β̃ββ ttt‖2

2

]
=

2
n

(
∂ηηη ttt

∂ t j

)> [
(X>X)ηηη ttt −X>yyy

]
= 2

(
∂ηηη ttt

∂ t j

)>
aaattt ,
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where aaattt =
(
X>X/n

)
ηηη ttt −

(
X>yyy/n

)
. From the definition of β̃ββ ttt and ηηη ttt ,

∂ηηη ttt

∂ t j
=

∂Tttt

∂ t j
β̃ββ ttt +Tttt

∂ β̃ββ ttt

∂ t j
= E jβ̃ββ ttt +TtttL−1

ttt
[
E j−E jZTtttL−1

ttt Tttt −TtttZE jL−1
ttt Tttt

](X>yyy
n

)
.

Further simplification yields,

∂ηηη ttt

∂ t j
= E jβ̃ββ ttt +TtttL−1

ttt

[
E j

(
X>yyy

n

)
−E jZηηη ttt −TtttZE jβ̃ββ ttt

]
= E jβ̃ββ ttt −TtttL−1

ttt E jbbbttt −TtttL−1
ttt TtttZE jβ̃ββ ttt ,

where bbbttt = Zηηη ttt −
(

X>yyy
n

)
= aaattt −ηηη ttt . To further simplify, let cccttt = L−1

ttt (ttt�aaattt), and dddttt = Z(ttt� cccttt). Then,

the matrix ∂ηηη ttt
∂ ttt of dimension p× J with the j-th column being ∂ηηη ttt

∂ t j
can be expressed as

∂ηηη ttt

∂ ttt
= BlkMat(β̃ββ ttt)−TtttL−1

ttt BlkMat(bbbttt)−TtttL−1
ttt TtttZBlkMat(β̃ββ ttt),

where for a p-dimensional vector aaattt = [aaa>ttt,1, . . . ,aaa
>
ttt,J]
>, the p× J matrix BlkMat(aaattt) is defined as

BlkMat(aaattt) :=



aaattt,1 000 . . . 000

000 aaattt,2
...

... 000
. . .

...
...

...
...

000 000 . . . aaattt,J


.

Let hhh = [
√

p1, . . . ,
√

pJ]
>. Then,

∇ fλ (ttt) = 2
(

∂ηηη ttt

∂ t j

)>
aaattt +λhhh

= 2BlkMat(β̃ββ ttt)
>aaattt −2BlkMat(bbbttt)

>L−1
ttt Ttttaaattt −2BlkMat(β̃ββ ttt)

>ZT>ttt L−1
ttt Ttttaaattt +λhhh

= 2BlkMat(β̃ββ ttt)
>aaattt −2BlkMat(bbbttt)

>cccttt −2BlkMat(β̃ββ ttt)
>dddttt +λhhh

= 2


β̃ββ
>
ttt,1(aaattt,1−dddttt,1)−bbb>ttt,1cccttt,1

...

β̃ββ
>
ttt,J(aaattt,J−dddttt,J)−bbb>ttt,Jcccttt,J

+λhhh.
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B SUPPLEMENT MATERIAL: GENETIC DATA

Figure 2: Best Subset Solution Path for Kidney variable (γ = 1).

Figure 3: Best Subset Solution Path for Heart variable (γ = 1).

Figure 4: Best Subset Solution Path for Fat variable (γ = 1).
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