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ABSTRACT

Data protection rules often impose anonymization requirements on datasets by means of aggregations that
hinder the exact simulation of individual subjects. For example, clinical pathways that disclose medical
conditions of patients may typically need to be aggregated to preserve anonymity of the subjects. However,
aggregation unavoidably results in biasing the simulation process, for example, by introducing spurious
pathways that can skew the simulated trajectories. In this paper, we study this problem and develop
approximate decomposition methods that mitigate its impact. Our method is shown to produce from the
raw aggregates pathways with higher fidelity than sampling a Markov chain model of the aggregate data,
even preserving the same length of the original pathways. In particular, we observe a relative increase in
average cosine similarity of up to 52% with respect to the true pathways compared with aggregate Markov
chain sampling.

1 INTRODUCTION

Data protection and privacy are vital attributes in healthcare information, regulated by laws such as GDPR
in Europe (Olatunji et al. 2022). Among the essential anonymization techniques is data aggregation,
which severely limits the identifiability of clinical information associated with individuals. In the context
of clinical pathways, which are descriptors of the sequence of medical events associated with a clinical
episode, aggregation yields the side effect of introducing ambiguities concerning the paths followed by
patients within the healthcare system. This can therefore suggest that certain combinations of events are
possible in real-life, when in fact they do not occur in the disaggregated data traces. Such instances,
which we refer to as spurious pathways, consequently diminish the value of simulation as a predictive tool,
since the system dynamics is biased by the presence of fictitious sequences that may be far statistically
from the actual observations. Therefore, a scientific challenge arises on how to improve the quality of
simulations based on aggregate data, reducing the incidence of spurious pathways in determining the
simulation outcomes. Solving this challenge allows automating discovery of clinical pathway classes for
future simulation models, without the need for time-consuming manual data processing.

In this paper, we study this problem, focusing on aggregate pathways data presented in the form
of counting matrices. Our analysis reveals that the knowledge of the original pathways length and the
presence of second-order statistical information concerning the aggregate, in terms of standard deviation
of the counts, can lead to a substantial reduction of the biases produced by spurious pathways, resulting in
higher fidelity simulation of clinical pathways. In particular, we propose a Bayesian optimization approach,
called IBPD (Iterated bi-level pathway decomposition), which significantly improves the similarity of
pathways generated from aggregate data compared with simple baseline methods relying on a simulation
of the Markov chain associated to the aggregate counting data. We observe a relative increase in average
cosine similarity of up to 54% with respect to the true pathways compared with the baseline Markov chain
sampling approach.

952979-8-3315-3420-2/24/$31.00 ©2024



Plumb, Bottle, and Casale

Core to the IBPD technique is the generation of linear feasibility constraints for the simulated pathways,
as well as an iterative method to tighten the feasible region based on tighter upper bounds on the decision
variables. We show through ablation analysis that these mechanisms are some of the main drives of the
overall accuracy of the method.

The rest of the paper is organized as follows. Section 2 summarizes related work. Section 3 gives
the problem statement, followed in Section 4 by the definition of the proposed decomposition methods.
Experiments are given in 5, followed by conclusions in Section 6.

2 RELATED WORK

Anonymization techniques are widely used to preserve privacy on individual data by removing Personally
Identifiable Information (PPI), using a wide variety of techniques (Murthy et al. 2019). While keeping
individual data, even anonymized, can still be potentially identified by a small number set of quasi-identifiers
(QI) features such as gender, zip code and date of birth (Sweeney 2002a; Sweeney 2002b). This can follow
on to linkage attacks (Fung et al. 2010), also known as a deanonymization attack. For graph-based
information, anonymization techniques can be used (Majeed and Lee 2020). These methods include,
adding or modifying edges, shifting, shuffling, and clustering (Casas-Roma et al. 2019; Kumar and Kumar
2017; Mohapatra and Patra 2019). In healthcare, this has been used with electronic health records, treating
them as graph structures using manipulation or clustering-based anonymization (Olatunji et al. 2022).

These anonymization techniques, such as adding edges, would hinder the exact simulation of a system
with the introduction of spurious or simplified graphs. Previous studies applying simulation have shown
how using aggregated data affects performance and insights (Patterson et al. 2010; Hoffmann et al. 2016).

Synthetic data generation is a way to bypass some issues arising from privacy concerns (Figueira and
Vaz 2022). If the raw data is accessible, it is common to train Generative Adversarial Networks (GANs) to
generate a new synthetic graph structure (Hernandez et al. 2022). However, the limitations and potential bias
using GANs generated data may misrepresent the raw dataset through issues such as oscillating loss, mode
collapse, uninformative loss, vanishing gradients, and hyperparameter-tuning (Figueira and Vaz 2022).

To preserve as much structural information from graphs, we use an alternative method combining
multiple graphs for later decomposition and reconstruction. As part of the process of graph compression,
finding similar graph structures can reduce the complexity from large networks (Fan et al. 2012). These
aggregated structures can hold privacy safe information, but the need for decomposition is still required. The
topic of decomposition in the literature can be equivalent to the term graph disentanglement. Decomposition
methods include creating a Directed Acyclic Graph (DAG) of all possible subgraphs and evaluating their
isomorphism (Williams et al. 2006), using k-edge connected components to decompose large graphs (Chang
et al. 2013), and compact matrix decomposition (Sun et al. 2007). Whereas, graph disentanglement uses
deep learning methods such as graph neural networks to find granular relationships in large graph structures
(Wang et al. 2020; Hu et al. 2020). In large graph decomposition research, the common validation approach
revolves around the speed of the process. Additionally to the speed of our methods, we validate based on
the similarity of the produced decompositions compared with the true graph.

3 CLINICAL PATHWAY DECOMPOSITION

Patient activities in healthcare systems give rise to sequences of medical events, such as General Prac-
titioner (GP) visits, diagnostic tests, specialist appointments, surgeries, etc. A clinical pathway r that
describes passage through the healthcare system by a given patient is thus an ordered sequence of nodes
(nr,1, . . . ,nr,s, . . . ,nr,S), where nr,s is the medical event incurred at step s of the pathway and S is the length
of the pathway. The set of all possible medical events is denoted with N = {n1, . . . ,n|N|}, so that nr,s ∈ N.
Throughout, we assume that there exists a common exit event e to all pathways, i.e., e ≡ e(r), ∀r, which
may be either a real or a virtual event, the latter when this is artificially appended at the end of a pathway.
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A pathway r may be readily summarized by a counting matrix Cr = [Cr(i, j)], where Cr(i, j) counts
the number of transitions from node i to j. For a given pathway, we denote with ar = [ar( j)] as its initial
vector, i.e., a vector of all zeros but a 1 in the position associated with the first event of the pathway.

Note that counting matrices are a fairly flexible way of describing a pathway. On the one hand, since
repeated medical events may be modeled as separate nodes (e.g., 1st GP visit, 2nd GP visit, . . . ), the set
N may be defined to preserve in the counting matrix exactly all the sequence information available in the
original pathway r. In such case, the counting matrix is a binary matrix. However, if repeated visits to
the same medical event are merged as visits to the same node, the counting matrix allows compression of
the representation at the expense of some loss of information on the precise sequence of the events, while
exactly preserving the transition counts. In such case, the counting matrix is integer valued.

Throughout, we focus on datasets represented as counting matrices Cr and initial vectors ar. Note that
from Cr, it is straightforward to define a discrete-time Markov chain (DTMC) by normalizing rows to be tran-
sition probabilities. DTMCs of this kind are in widespread practice in clinical pathway simulation (Standfield
et al. 2014).

3.1 Problem Statement

We assume that the dataset available for simulation features only aggregate data obtained by merging multiple
pathways, typically having some similar characteristics, e.g., based on demographics or co-morbidities.
More precisely, consider a group formed by g pathways having counting matrices C1,C2, . . . ,Cg. Henceforth,
we assume that due to anonymization or data access costs, it is not possible to access directly the g counting
matrices, and instead we have access to an aggregate counting matrix A = [A(i, j)], with

A(i, j) =
g

∑
r=1

Cr(i, j), i, j = 1, . . . , |N| (1)

Similarly, the initial vectors are summarized into an aggregate initial vector a= [a( j)], with a( j)=∑
g
r=1 ar( j),

j = 1, . . . , |N|. Note that, according to these definitions, we also know the number of pathways g = |a|.
In addition to the (a,A) pair, we also assume we know values l(k), kmax, counting the number of

pathways of length l(k), where lmax is an upper bound on the length of all the clinical pathways in the
dataset. Lastly, we assume we have the bias-corrected standard deviation of the transition counts, i.e., the
matrix S = [S(i, j)], with

S(i, j) =

(
1

g−1

g

∑
r=1

(Cr(i, j)−A(i, j)/g)2

)1/2

, i, j = 1, . . . , |N| (2)

where A(i, j)/g is the mean number of transitions from i to j for a patient in the group.
Our problem statement is as follows: we seek to obtain the decomposed counting matrices C1,C2, . . . ,Cg

from the knowledge of the (a,A) pair, l, and S. Let Ĉ1,Ĉ2, . . . ,Ĉg, be decomposed counting matrices. For
a given algorithm, we assess the performance of the decomposition in terms of cosine similarity. For two
matrices A and B, the cosine similarity is defined as

θ(A,B) =
∑i, j A(i, j) ·B(i, j)√

∑i, j A(i, j)2
√

∑i, j B(i, j)2
(3)

The cosine similarity is known to lie in [−1,1], with θ(A,B) = 1 indicating that the vectors vec(A) and
vec(B) obtained by stacking the columns of their argument are proportional vectors, θ(A,B) =−1 indicating
opposite vectors, and θ(A,B) = 0 orthogonal vectors. Thus, higher values of the cosine similarity indicate
higher similarity.
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The cosine similarity metric is widely used to compare sparse matrices in high dimensions, which is
indeed typical of the counting matrices for clinical pathways. For instance, in the real-world dataset we use
for validation, where data is aggregated based on demographic and other information, the counting matrix
order is |N| = 29, but only approximately 49 ≈ 2|N| non-zeros are used on average across the counting
matrices.

Given a set of decomposed matrices (Ĉ1,Ĉ2, . . . ,Ĉg), we define the summary value of their cosine
similarity from the true matrices (C1, . . . ,Cg) as follows. First, we compute the cosine similarity matrix
Θ = [θi, j], where θi, j = θ(Ĉi,C j) for all i, j = 1, . . . ,g. Then, we solve the integer optimization program

Θ = max
y

1
g

g

∑
i=1

g

∑
j=1

θi, jyi, j

s.t.
g

∑
i=1

yi, j = 1

g

∑
j=1

yi, j = 1

yi, j ∈ {0,1} i, j = 1, . . . ,g

(4)

This program seeks through the integer variables y = (yi, j) for the best possible one-to-one matching of a
matrix Ĉi to a counting matrix C j, to maximize the average cosine similarity Θ across the resulting pairs.
Note that this metric requires to know the true pathways, therefore it is used here only for performance
evaluation purposes, and it is not part of the proposed decomposition technique.

3.2 Illustrative Example

As an example of the problem at hand, consider a toy model with |N| = 3 nodes and g = 2, pathways
r1 = (1,1,1,2,3) and r2 = (2,1,3). The counting matrices are

C1 =

2 1 0
0 0 1
0 0 0

 C2 =

0 0 1
1 0 0
0 0 0

 A =

2 1 1
1 0 1
0 0 0


Since the pathways have respectively length 5 and 3, the pmf of the length is l = (0,0,1,0,1), with kmax = 5.
The initial vectors are a1 = (1,0,0), a2 = (0,1,0), so that a = (1,1,0).

As expected, the aggregation process introduces spurious pathways in the aggregate model. For example,
pathways s1 = (2,1,1,1,3) and s2 = (2,1,1,3) are in principle feasible under knowledge only of (a,A).
However, they do not map to either C1 or C2 and thus are both in reality spurious.

However, adding to the knowledge of (a,A) the pathway length vector l, we can readily recognize
that s2 is spurious, since l(4) = 0. Conversely, s1 remains compatible with the available information, since
l(5) ̸= 0. Indeed, even assuming s1 to be a legitimate pathway and removing its transition counts from A,
we are left with the counting matrix

A′ =

0 1 0
0 0 1
0 0 0


that identifies the second pathway to be s3 = (1,2,3). Indeed, the pair of pathways {s1,s3} is fully consistent
with all the available information. This occurs since s1 and s3 are permutations of r1 and r3 that preserve
the same initial event and 1-step transition counts. A similar conclusion is also reached if we include
standard deviation information in the analysis. Let S be the standard deviation matrix for {r1,r2} and let

955



Plumb, Bottle, and Casale

S′ be the corresponding matrix for {s1,s3}. We have

S′ =


√

2
√

2/2
√

2/2√
2/2 0

√
2/2

0 0 0

= S

That is, both the pathway groups {r1,r2} and {s1,s3} have the same standard deviation matrix and which
pair is spurious cannot be distinguished based on all the available information.

Let us now repeat the analysis above, using the spurious pathways s4 = (1,1,3) and s5 = (2,1,1,2,3).
Following a similar logic, we find that, while they are both compatible with (a,A) and l, the standard
deviation matrix for these pathways would now be

S′′ =

 0
√

2/2
√

2/2√
2/2 0

√
2/2

0 0 0

 ̸= S

Thus, the {s4,s5} pair can now be recognized as including at least a spurious pathway. In summary,
the above example illustrates that, while the addition of l and S to an aggregate count dataset does not
deanonymize in general the dataset, it enables us to recognize that several candidate pathways for the
counting matrices C1, . . . , Cg are spurious. In the following, we investigate general methods to rely on
these observations to identify best-effort estimators for C1, . . . , Cg that are as close as possible to the true
counting matrix values.

4 DECOMPOSITION METHOD

4.1 Decision Variables

We propose a methodology based on optimization to obtain a decomposition Ĉ = (Ĉ1,Ĉ2, . . . ,Ĉg). In our
setting, several options are assessed to define the decision variables within the optimization program, which
we compare in the next subsections. In particular, we argue that the first two proposed methods, transition
probabilities and sequence variables, have shortcomings that lead us to prefer to work directly with counts
as decision variables.

4.1.1 Transition Probabilities

In this formulation, we search over a continuous space of DTMCs P1, . . . ,Pg, where Pr = [pr(i, j)], with
real-valued pr(i, j) ≥ 0 and subject to ∑ j pr(i, j) = 1, ∀i. The DTMCs all feature an absorbing state,
corresponding to the exit event e. Such a method enables the use of continuous optimization, which is
more efficient than integer programs. However, this type of decision variable faces two limitations.

First, for a given pair (i, j) such that A(i, j)> 0, a continuous solver has a limited incentive to set any
of the pr(i, j) values to zero; thus, the Pr matrices are unlikely to display a similar sparsity pattern as the
original Cr matrices. A second problem is that the modeling of the pathway lengths to match the l vector
introduces complexity, since a DTMC can represent a path length using powers of its transition matrix
Pr. This corresponds to polynomial terms of order lmax, resulting in a difficult and typically non-convex,
continuous optimization program. Due to the above difficulties, in preliminary experiments this approach
performed significantly worse than all the other methods discussed in this section, thus it is not undertaken
further in the paper.

4.1.2 Sequence Variables

In this approach, we leverage the knowledge of the pathway lengths to define a collection of g integer
vectors x1, . . . ,xg, of the same length as the entries in the vector l. For instance, in the illustrative example
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of Section 3.2 this would correspond to two vectors x1 = (x1,1,x1,2,x1,3) and x2 = (x2,1,x2,2,x2,3,x2,4,x2,5),
where xi, j ∈ {1, . . . , |N|} represents the j-th event in the i-th decomposed clinical pathway. The formulation
can be further reduced by recognizing that the final event of both pathways is x1,3 = x2,5 = e. From the
sequence variables in xr, it is straightforward from the definitions to obtain the decomposed counting
matrices C̃r and the decomposed initial vector ar for each patient r in the group.

The sequence variables overcome the problems of the DTMC representation in that the length of the
pathways is matched exactly by construction, while the pathways can easily provide counting matrices
with different sparsity patterns. However, the method is inefficient if the counting matrix models repeated
medical events as successive visits to the same node. For instance, if a patient loops 20 times at a medical
event ni, then this would result in 20 integer variables, whereas the counting matrix data in A and S describes
these transition as a single coefficient for A(i, i).

Another drawback of this representation is that the order of the medical events in the sequence maps
into distinct values of the solution vectors xi. While this may be appropriate in some problems, in general
the counting matrices A and S do not fully preserve sequence information and in some instances can even be
invariant with respect to sequence permutations. In such cases, the integer program would forcibly spend
computational effort to compare permutations that can neither improve the objectives nor the feasibility of
the constraints. Due to these shortcomings, we also do not consider this formulation again. Instead, we
consider a related integer representation in the next section that overcomes the above limitations.

4.1.3 Count Variables

In what follows, we focus instead on the following formulation, which rely on decision variables for the
counts that appear in the entries of the Cr matrices and ar vectors. In this representation, we consider integer
vectors x1 = (x1(i, j)),. . . , xg = (xg(i, j)) of identical length, equal to h, where H(A) is the set of index
pairs (i, j) associated with the non-zero elements in A and h = |H(A)|. Each element xr(i, j) ∈ [0,A(i, j)],
(i, j) ∈ H(A), describes the number of times the transition (i, j) occurs in the decomposed counting matrix.
Thus, the decomposed counting matrices are given by C̃r = [c̃r(i, j)], where c̃r(i, j) = xr(i, j) if (i, j)∈ H(A)
and c̃r(i, j) = 0 otherwise.

Using this representation, the matching of the aggregate counting matrix follows from the linear
constraints

g

∑
r=1

xr(i, j) = A(i,r), (i, j) ∈ H (4)

Pathway lengths are also readily imposed by setting

∑
(i, j)∈H

xr(i, j) = l(r), r = 1, . . . ,g (5)

To describe the initial state of the pathway, we introduce an additional set of integer variables ur = [ur( j)],
ur( j)≥ 0, where j ∈H(a), H(a) being the set of non-zeros of the aggregate initial vector a. The decomposed
initial vector is then S̃r( j) = ur( j) if j ∈ H(a) or S̃r( j) = 0 otherwise. We then require that there exists a
single initial event

∑
j∈H(a)

ur( j) = 1, r = 1, . . . ,g (6)

and that the overall sum of the initial vectors matches the aggregate initial counts

g

∑
r=1

ur( j) = a( j), j ∈ H(a) (7)

The above formulation generally overcomes the main issues of the previous representations. However,
compared with the sequence representation, it does not ensure that the decomposed counting matrices
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define a valid pathway. For example, the decomposed counting matrices

C̃′
r =

0 0 0
0 0 1
0 0 0

 C̃′′
r =

1 0 0
0 0 1
0 0 0


with initial vector ṽr = (1,0,0) would be both invalid: C̃′

r has no transition outgoing to the initial event;
conversely, C̃′′

r has no valid sequence of transitions connecting to the exit event e = 3. To exclude these
behaviors, we need to impose flow balance constraints for each node, i.e., impose that all nodes (except the
last one) have the same count of incoming and outgoing transitions, excluding self-loops, and accounting
also for the contribution of the initial state. Formally,

δ{i∈H(a)}ur(i)+ ∑
k:(i,k)∈H(A) and i ̸=k

xr(i,k) = ∑
k:(k, j)∈H(A) and j ̸=k

xr(k, j), i = {1, . . . , |N|} \{e} (8)

where δP = 1 if predicate P is true or zero otherwise. To prevent getting caught in a self looping node,
we constrain that if a diagonal value is non-zero, it must have a transition out. Given by,

xr(i, i)> 0 =⇒ ∑
(i, j)∈H and j ̸=i

xr(i, j)> 0, i ∈ H(a) (9)

Lastly, we require that there is a single transition to the end state, i.e.,

∑
(i,e)∈H(A)

xr(i,e) = 1 (10)

One limitation with the above formulation is that it does not rule out the presence of multiple connected
components in the count matrix of a patient.

4.2 Optimization Programs

Leveraging the count variables, we note that the set of constraints (4)-(10) are all linear in the integer
variables xr(i, j) and ur( j). Thus, any feasible solution to an integer linear program (ILP) with such
constraints and also imposing the bounds on the variables xr(i, j) and ur( j) will be consistent with the
information available from (a,A), and the pathway lengths in l. In general, this solution does not need to
be unique, due to the aforementioned problem of the spurious pathways.

As shown in the illustrative example, to reduce the incidence of spurious pathways, we may search
within the feasible set for solutions also consistent with the standard deviation matrix S. However, such
formulation involves quadratic terms, making it considerably harder to find solutions than in an ILP. To
address this problem, we propose two bi-level optimization strategies, described in the following subsection.

4.2.1 Integer Quadratic Program

In this formulation, we consider the Integer Quadratic Program (IQP) with integer variables to maximize
the cosine similarity θ(S̃,S) of the decomposed standard deviation matrix S̃ from the true standard deviation
matrix S. This is given by

θ
∗
S = max

u,x
θ(S̃(u,x),S)

s.t. constraints (4)− (10)

ur( j) ∈ {0,1} j = 1, . . . ,H(a);

xr(i, j) ∈ {0, . . . ,A(i, j)} i, j = 1, . . . ,H(A).

(11)

A limitation of this formulation is that IQPs are known to be significantly harder to solve than ILPs (Eiben
et al. 2019), thus we propose next a set of strategies to ease the evaluation of the program by restricting
the set of feasible solutions.
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4.2.2 Bi-level Pathway Decomposition (BPD)

In this approach, we propose a bi-level optimization program, where we use an ILP in the inner program,
leveraging a linear objective function with cost vector c = (ci) to control the decomposition. The vector
c is then chosen optimally by means of an outer program that aims at matching the aggregate standard
deviation matrix S. We refer to this formula as the Bi-level Pathway Decomposition (BPD) algorithm.

In BPD, the inner ILP has a feasible region described by the constraints (4)-(10) and the bounds on
the variables xr(i, j) and ur( j). In the real-world parameterization we use in the validation, this problem
can be typically solved in the order of seconds at most.

Conversely, the outer program varies the cost vector c = (ci) in the objective function of the inner
ILP so as to force the inner program to return different candidate feasible solutions. Formally, the bi-level
program has the outer program

θ
∗
S = max

c∈[−1,1]h
θ(S̃(u∗c ,x

∗
c),S), (12a)

where h = g|H(a)|+ g|H(A)| is the total number of variables in the inner program, θ(·, ·) is the cosine
similarity, and S̃ is the decomposed standard deviation matrix associated with the minimizer (u∗c ,x

∗
c) of the

inner program. To define the latter, let cx
r(i, j) define a cost coefficient associated with variable xr(i, j) and

similarly let cu
r (i, j) be a cost associated with variable ur(i, j). Then the inner program is

(u∗c ,x
∗
c) = argmin

(u,x)

g

∑
r=1

∑
j∈H(a)

cu
r ( j)ur( j)+

g

∑
r=1

∑
(i, j)∈H(A)

cx
r(i, j)xr(i, j)

s.t. constraints (4)− (10)

ur( j) ∈ {0,1} j = 1, . . . ,H(a);

xr(i, j) ∈ {0, . . . ,A(i, j)} i, j = 1, . . . ,H(A).

(12b)

Note that since both the objective and the constraints are linear, the resulting program can be optimized
using a standard integer (or mixed-integer) linear programming solver. Upon finding the optimal solution
of the outer program (12a), BPD finally returns the values (u∗c ,x

∗
c) associated with the optimal vector c.

It should be noted that, due to elementary properties of linear programs on convex sets, the inner program
does not allow us to obtain solutions in the interior of the feasible region, as the ILP will eventually return
a solution on the convex hull of the feasible set, if a finite solution exists. Thus, by varying the objective
function by modifying the c vector, several vertices of the convex hull can be identified. Indeed, we show
later in the experimental validation, this is sufficient to achieve significant improvements in the decomposed
standard deviation matrix compared with a method that does not use the bi-level approach.

4.2.3 Iterated Bi-level Pathway Decomposition (IBPD)

In this strategy, we define a variant of BPD, called Iterated BPD (IBPD), where we iteratively adapt the
upper bound of the xr(i, j) variables. This is advantageous since we know their average value to be much
smaller, i.e., A(i, j)/g. Thus, the upper bound A(i, j) can become loose as g grows.

In detail, the iterative bi-level optimization program requires at iteration t = 0,1, . . . that we restrict
the range of the decision variables as xr(i, j) ∈ {0, . . . ,⌈(A(i, j)+ t)/g⌉}. If the problem is unfeasible, we
continue to the next iteration t +1. Conversely, we obtain and store (u∗c ,x

∗
c ,θ

∗
S ). The process is iterated,

skipping any iteration t where none of the upper bounds has changed compared with the previous iteration
t −1. Finally, we return the pair (u∗c ,x

∗
c) associated with the best θ ∗

S value.

5 EXPERIMENTS

5.1 Methodology

In this section, we run experiments to compare the optimization programs using two similarity metrics:

959



Plumb, Bottle, and Casale

Figure 1: Node popularity in orthopedic surgery dataset.

• Θ: the average cosine similarity to the original counting matrices, as introduced in (4).
• ΘS: the cosine similarity to the aggregate standard deviation matrices, i.e., ΘS = ρ(Ŝ,S), where Ŝ

is the standard deviation matrix computed using the decomposed counting matrices C̃r.

In particular, we compare the three formulations we have proposed in the last section, namely IQP, BPD,
and IBPD, together with a baseline Monte Carlo method based on DTMCs. The latter is used to illustrate the
value of constrained optimization approaches such as the ones we propose. All four methods are evaluated
numerically using code implementations in MATLAB 2023a. Remarks about the implementation of the
individual methods are as follows:

• DTMC. This is a baseline Monte Carlo method that repeatedly samples the DTMC obtained from
A until obtaining a collection of g decomposed pathways of the required length. The process is
repeated 30 times and the decomposition with the highest ΘS is returned.

• IQP. The integer quadratic program is solved using a genetic algorithm with 3000 generations, as
implemented in MATLAB’s ga function. The default control to stop the optimization based on stall
generations is disabled to ensure that all the 3000 generations are produced. The program stops
early only if the objective reaches its maximum value 1.

• BPD/IBPD. The inner program evaluations rely on MATLAB’s intlinprog, based on the dual simplex
algorithm. Instead, for the outer program we choose a blackbox optimization method that takes into
account the high cost of the inner program: we use Bayesian Optimization (BO), as implemented in
MATLAB’s bayesopt, configured with the expected-improvement-plus acquisition function1. The
latter combines the classic expected improvement function with a correction to avoid overexploitation
of an area. The BO algorithm is configured to stop upon reaching 30 evaluations of the outer
objective function.

5.2 Dataset

We validate the method using artificial data generated according to realistic parameters aligned to actual
clinical pathways in the UK National Healthcare System, using Clinical Practice Research Datalink (CRPD)
GOLD (CPRD 2023) linked with Hospital Episode Statistics (HES). Our original dataset contains 2712
aggregated pathways related to elective orthopedic surgery, with an average of 6.11 pathways in each
aggregate. Using a pathway represented from the first symptom or diagnosis event, to completed hip or
knee replacement surgery. The original aggregation criteria are based on surgery type, UK region, followed
by demographics. The dataset includes medical events ranging from primary care, such as family doctor
visits, to secondary care, which encompasses elective procedures.

1https://uk.mathworks.com/help/stats/bayesian-optimization-algorithm.html
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(a) (b)

Figure 2: Counting matrix distance and aggregate standard deviation matrix distance results. |N| represents
the number of medical events, ΘS is the cosine similarity of the standard deviation matrices.

As the original dataset does not have decomposed pathways, we generate artificial data with similar
aggregate characteristics to be able to verify the correctness of the decomposition. Each artificial aggregate
matrix consists of g = 6 pathways. We vary the number of medical events in |N| ∈ {3,7,15,29}, where
|N|= 29 matches the value observed in the aggregate orthopedics dataset (29.1). The probability of sampling
an event i in a pathway matches the popularity of the top-|N| most popular events in the real-world trace,
renormalized to have support {1, . . . , |N|}. This distribution is illustrated in Figure 1. The pathway length
is drawn randomly from the range [2,4|N|+1]. For |N|= 29, this has a mean of about 59.5 events, which
is slightly more complex than the real-world dataset, which has a mean of 49.0 events.

5.3 Results

Experimental results are summarized in Figure 2. As expected, Figure 2a shows that, as the number of
medical events |N| grows, the cosine similarity generally decreases. This appears unavoidable due to the
necessary increase in the number of spurious paths that meet all known constraints.

Aside from this systematic trend, the results indicate that the IQP, BPD and IBPD methods deliver
systematically higher similarity values in both counting matrix distance (Θ; Figure 2a) and aggregate
standard deviation similarity (ΘS; Figure 2b). In particular, while BPD is not as effective as IQP, the
additional tunings that define its IBPD variant make the bi-linear formulation generally more effective
for both Θ and ΘS. In particular, for |N|= 3 the DTMC method achieves (ΘS,Θ) = (0.98930,0.63942),
considerably lower than the IBPD values (0.99813,0.88379). For larger number of events, with |N|= 29,
DTMC scores (0.85084,0.32377) while IBPD reaches (0.98945,0.49155). Overall, IBPD improves the
DTMC method by 16% in ΘS and by 52% in Θ. We further note that the performance of IBPD appears
more stable in terms of ΘS value across all the instances, whereas the other methods display a more marked
decrease in aggregate standard deviation similarity as the number of medical events grows.

To better understand the role that each IBPD feature plays in determining the results, we present in
Table 1 an ablation analysis of the method. Three variants of IBPD are considered:

• “IBPD Inner”. In this variant, we obtain a solution by solving IBPD’s inner program only, with
c = (1, . . . ,1). The results are found to be fairly accurate, although less than the proposed IBPD
method. Thus, this variant offers a good heuristic when there is a need to execute IBPD without
an expensive Bayesian optimization search.

• “IBPD Monte Carlo”. This method replaces Bayesian Optimization with random sampling of 30
c vectors. The results indicate that the method is dominated by IBPD, thus further corroborating
the effectiveness of Bayesian Optimization for the problem at hand. In the case of |N| = 29, the
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Table 1: Ablation analysis results. Bold highlights the best objective function value ΘS.

|N|= 3 |N|= 7 |N|= 15 |N|= 29

Method ΘS Θ ΘS Θ ΘS Θ ΘS Θ

IBDP 0.99813 0.88379 0.99214 0.62809 0.99162 0.49119 0.98945 0.49155
IBDP Inner 0.99215 0.85512 0.98559 0.61599 0.98711 0.48483 0.98589 0.48654
IBDP Monte Carlo 0.99201 0.87197 0.98547 0.62054 0.98684 0.49307 0.98593 0.49324
IBDP w/o Path Length 0.95857 0.68769 0.95267 0.50158 0.94815 0.41417 0.93589 0.41544

Θ value of the variant is higher than for IBPD. However, this is a result of the fact that lower ΘS
scores do not strictly result in higher Θ values. Since the optimization does not know the original
counting matrices, it is not possible to optimize directly Θ.

• “IBPD w/o Path Length”. In this variant, the formulation does not impose the pathway length
constraints (5). The major drop in both similarity scores indicates the significance of constraining
the pathway counts.

Summarizing, the results indicate that the IBPD provides the best performance among the considered
methods and delivers significantly higher similarity to the original counting matrices than sampling the
DTMC associated to the aggregate matrix A. The ablation analysis further demonstrates that Bayesian
optimization systematically improves over the other strategies to compare feasible solutions subject to
constraints (4)-(10). Computational time for all methods exhibits a significant increase with the complexity
of the system, particularly with increased |N| such as BPD increasing from 15 minutes to 7 hours with 3
and 29 events respectively. IBPD, employing an additional iterative approach, incurs a threefold increase
in computation time compared with BPD. Notably, IQP terminates upon reaching a predefined objective
threshold, resulting in reduced computation time compared with other methods.

6 CONCLUSION

In this paper, we have considered the problem of clinical pathway decomposition from aggregate datasets.
After comparing representations for the decision variables, we adopt a search style based on count variables.
Then, we define an Integer Quadratic Program (IQP), a Bi-linear Pathway Decomposition (BPD), and an
iterative variant of the latter (IBPD) to obtain decomposed pathways as close as possible to the original
pathways. The BPD and IBPD rely on Bayesian optimization to reduce their computational cost.

Numerical results indicate that the IBPD method provides the best performance. Conversely, BPD
provides slightly worse performance but is less computationally demanding. The IQP method, instead,
while dominated by the proposed bi-level approach, is more customizable as it may be easily expanded
with other non-linear constraints. For clinical pathway simulation modeling, the proposed methods enable
a data-driven discovery of higher fidelity pathways without manual clinical input, thereby improving the
accuracy of future pathway simulation models.

Future extensions of this work may consider the availability of multiple aggregate count matrices
simultaneously and the possible presence of noise in count data, as suggested for example in anonymization
schemes based on differential privacy (Olatunji et al. 2022).
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