
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

GENERALIZING THE GENERALIZED LIKELIHOOD RATIO METHOD THROUGH A
PUSH-OUT LEIBNIZ INTEGRATION APPROACH

Xingyu Ren1, and Michael C. Fu1,2

1Dept. of Electrical and Computer Eng. & Institute for System Research, University of Maryland,
College Park, MD, USA

2Robert H. Smith School of Business, University of Maryland, College Park, MD, USA

ABSTRACT

We generalize the generalized likelihood ratio (GLR) method through a novel push-out Leibniz integration
approach. Extending the conventional push-out likelihood ratio (LR) method, our approach allows the
sample space to be parameter-dependent after the change of variables. Specifically, leveraging the Leibniz
integral rule enables differentiation of the parameter-dependent sample space, resulting in a surface integral
in addition to the usual LR estimator, which may necessitate additional simulation. Furthermore, our
approach extends to cases where the change of variables only “locally” exists. Notably, the derived estimator
includes existing GLR estimators as special cases and is applicable to a broader class of discontinuous
sample performances. Moreover, the derivation is streamlined and more straightforward, and the requisite
regularity conditions are easier to understand and verify.

1 INTRODUCTION

Consider an output sample performance parameterized by a real-valued scalar θ ∈ Θ:

ψ(X ,θ),

where Θ is an open interval, ψ : R×Θ 7→ R is a real-valued function, and X is the input random variable
with density f (x,θ) and support Ω ⊂ R (independent of θ ). Suppose that we are interested in estimating
the derivative of the expected sample performance with respect to (w.r.t.) θ :

E(ψ(X ,θ)) =
∫

Ω

ψ(x,θ) f (x,θ)dx.

Typical methods include infinitesimal perturbation analysis (IPA), smoothed perturbation analysis (SPA),
the likelihood ratio (LR) method, and weak derivatives (WD) (Fu and Hu 1997; Glasserman 1991; Glynn
1987; Pflug 1996). Assume that ψ and f are differentiable w.r.t. θ , and density f is absolutely continuous
w.r.t. a density f0 : Ω 7→ R independent of θ . Under suitable conditions, we can interchange the order of
differentiation and integration:

d
dθ

E(ψ(X ,θ)) =
∫

Ω

d
dθ

(
ψ(x,θ)

f (x,θ)
f0(x)

)
f0(x)dx =

∫
Ω

(∂θ ψ(x,θ)h(x,θ)+ψ(x,θ)∂θ h(x,θ)) f0(x)dx,

where h(x,θ) := f (x,θ)/ f0(x) is the Radon-Nikodym derivative of f w.r.t. f0. With X sampled from
density f0, ∂θ ψ(X ,θ)h(X ,θ)+ψ(X ,θ)∂θ h(X ,θ) is an example of the IPA-LR estimator (L’Ecuyer 1990),
where ∂θ ψ(X ,θ)h(X ,θ) and ψ(X ,θ)∂θ h(X ,θ) are IPA and LR estimators, respectively.

In some practical scenarios, ψ is not continuous w.r.t. θ (e.g., an indicator function), or not analytically
available. Consequently, differentiation cannot be passed through integration, or the partial derivative
of ψ may not even exist. Nevertheless, in some cases, through a change of variables, we can “push”
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the parameter θ out of the function ψ , to circumvent the need to differentiate a discontinuous function
(Rubinstein 1992; Wang et al. 2012). Specifically, assume that there exists a real-valued function g(x,θ)
which is invertible w.r.t. x for each θ and differentiable w.r.t. both arguments, such that we can express
ψ(x,θ) = ϕ(g(x,θ)) for some ϕ : R 7→ R. Define a new random variable Y = g(X ,θ), whose density is
given by f̃ (y,θ) = f (g−1(y,θ),θ)

∣∣∂yg−1(y,θ)
∣∣ supported on Ω̃ ⊂ R. Make the change of variables:

E(ψ(X ,θ)) =
∫

Ω̃

ϕ(y) f̃ (y,θ)dy = E(ϕ(Y )),

and the LR method applies. Peng et al. (2018), Peng et al. (2020) extend the push-out LR method to
scenarios where g is only locally invertible (i.e., its Jacobian matrix Jg is invertible).

Note that the push-out LR method typically requires the support Ω̃ of Y to be independent of θ .
Consider a toy example ψ(X ,θ) = 1{X < θ}, where X follows an exponential distribution with parameter
θ > 0, having density fX(x,θ) = θe−θx over the support Ω = [0,∞). The expected sample performance
can be expressed as:

E(1{X < θ}) =
∫

∞

0
1{x < θ}θe−θxdx.

To apply the push-out LR method, we set Y = X
θ

, which follows an exponential distribution with parameter
θ 2, with density fY (y,θ) = θ 2e−θ 2y over the support Ω̃ = [0,∞). Make the change of variables:

E(1{X < θ}) =
∫

∞

0
1{x < θ}θe−θxdx =

∫
∞

0
1{y < 1}θ

2e−θ 2ydy = E(1{Y < 1}).

Since both the new sample performance ϕ(y) = 1{y < 1} and the support of Y are independent of θ , we
can apply the LR method w.r.t. Y :

d
dθ

E(1{X < θ}) = d
dθ

E(1{Y < 1}) = E(1{Y < 1}∂θ log fY (Y,θ)),

where 1{Y < 1}∂θ log fY (Y,θ) = 1{Y < 1}(2/θ −2θY ) is an unbiased derivative estimator.
Instead of setting Y = X

θ
, an alternative approach to remove θ from the indicator function is to set

Z = X −θ . This creates a shifted exponential random variable with density function fZ(z,θ) = θe−θ(z+θ)

over the support [−θ ,∞). Due to the dependence of the support on θ , the LR method cannot be directly
applied. However, if we write the integral as

E(1{X < θ}) =
∫

∞

−θ

1{z < 0}θe−θ(z+θ)dz,

we can apply the Leibniz integral rule to differentiate both the lower limit and the integrand simultaneously:

d
dθ

E(1{X < θ}) = d
dθ

∫
∞

−θ

1{z < 0}θe−θ(z+θ)dz

=
∫

∞

−θ

1{z < 0} d
dθ

θe−θ(z+θ)dz−1{z < 0}θe−θ(z+θ)
∣∣
z=−θ

d
dθ

(−θ) = E(1{Z < 0}∂θ log fZ(Z,θ))+θ ,

which leads to a standard LR estimator augmented by an extra constant term θ arising from the differentiation
w.r.t. the lower limit.

This example suggests that leveraging the Leibniz integral rule extends the applicability of the push-out
LR method to broader settings where the support of the newly introduced random variable may depend on the
parameter. Furthermore, despite the simplicity of this example, it falls outside the scope of the generalized
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LR (GLR) methods proposed by Peng et al. (2018) and Peng et al. (2020), which require either the
density function to vanish at the boundary of the support or the input random variables to follow a uniform
distribution. In this paper, we will explore the integration of the push-out LR method with the Leibniz
integral rule for an output sample performance of the form ϕ(g(X ,θ)), where X is a random vector and a
change of variables Y = g(X ,θ) removes the parameter from ϕ . A similar idea is proposed under different
regularity conditions by Puchhammer and L’Ecuyer (2022), which focuses on density estimation. The rest
of this paper is organized as follows. In Section 2, we formally define the output sample performance and
introduce a general form of the Leibniz integral rule for multivariate integrals, subsequently applying it to
the sample performance. Specifically, we demonstrate that the new estimator includes the existing GLR
estimators as special cases. In Section 3, we extend results in Section 2 to cases where the function g(x,θ)
is only locally invertible w.r.t. x and the sample space is unbounded. Section 4 presents simulation results
on the example from Section 1. Section 5 offers conclusions and future research directions.

2 INTEGRATING THE LEIBNIZ INTEGRAL RULE WITH THE PUSH-OUT LR METHOD

Consider an output sample performance ϕ(g(X ,θ)), where

• ϕ : Rn 7→ R is a bounded measurable function.
• g(·, ·) : Rn×Θ 7→Rn is twice continuously differentiable w.r.t. both arguments. For each θ , g(x,θ)

is an invertible function of x. Θ ⊂ R is a bounded open interval.
• X is an n−dimensional random vector with bounded support Ω ⊂ Rn (the boundedness condition

is relaxed in Section 3).
• X has a density function f (·, ·) : Ω×Θ 7→ R, continuously differentiable w.r.t. both arguments.

Making the change of variables y = g(x,θ), we can write

E(ϕ(g(X ,θ))) =
∫

g(Ω,θ)
ϕ(y) f (g−1(y,θ),θ)|det(Jg−1(y,θ))|dy, (1)

where g(Ω,θ) is the image of Ω under map g, and Jg−1(y,θ) is the Jacobian matrix of g−1 w.r.t. y, i.e.,
{Jg−1(y,θ)}i j = ∂y j g

−1
i (y,θ). Both the integrand and the domain of integration in Equation (1) involve the

parameter θ . The following result introduces the Leibniz integral rule that enables differentiation of the
domain w.r.t. θ . Theorem 1 is a special case of the Leibniz integral rule proved in Section 7 and 8 of
Flanders (1973), and a more general version is available in Amann et al. (2005).
Theorem 1 Let Dθ ⊂Rn be a compact set. Suppose that there exists a function φ(·, ·) : U ×Θ 7→Rn, where
U ⊂ Rn is a fixed domain, such that Dθ = φ(U,θ). Suppose φ(·, ·) : Rn ×Θ 7→ Rn is twice continuously
differentiable in both arguments, and for each θ , φ(x,θ) is an invertible function of x. Then, for any
function f (·, ·) : Rn ×Θ 7→ R continuously differentiable in both arguments,

d
dθ

∫
Dθ

f (x,θ)dx =
∫

Dθ

(∂θ f (x,θ)+div( f (x,θ )⃗v(x)))dx,

where div is the divergence operator, i.e., div(F) =∑
n
i=1 ∂xiFi, F : Rn 7→Rn, and v⃗(x) = ∂θ φ(u,θ)|u=φ−1(x,θ).

In particular, by the divergence theorem (Zorich 2004b), we can write∫
Dθ

div( f (x,θ )⃗v(x))dx =
∫

∂Dθ

f (x,θ )⃗v(x)T n⃗(x)ds,

where ∂Dθ is the boundary of Dθ , n⃗(x) is the outward normal vector on surface ∂Dθ , and ds is the area
element.

The Leibniz integral rule in Rn is more intricate than in R, as the boundary of the integral domain is an
(n−1)-dimensional "moving" surface, instead of endpoints of an interval. In fluid mechanics, the Leibniz
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Uθ Uθ+∆θ

n⃗

v⃗

v⃗ · n⃗∆θ

ds

Figure 1: The original domain Uθ and the perturbed domain Uθ+∆θ .

integral rule is also known as the transport theorem (Frankel 2011). We provide a “physical” interpretation
of the Leibniz integral rule in R2.

Suppose Uθ ⊂ R2 is a domain with a smooth boundary and F : R2 7→ R is a smooth function. We are
interested in computing d

dθ

∫
Uθ

F(x,y)dxdy. For small ∆θ , suppose the domain Uθ moves to Uθ+∆θ , as shown
in Figure 1. As in Theorem 1, we assume that Uθ is characterized by a smooth function φ : R2×Θ 7→R2 and
a fixed domain U ⊂ R2, i.e., Uθ = φ(U,θ). Consider the difference

∫
Uθ+∆θ

F(x,y)dxdy−
∫

Uθ
F(x,y)dxdy.

The integral over the intersection Uθ+∆θ ∩Uθ cancels out, leaving only two strips surrounding the boundary
∂Uθ contributing to the difference. We zoom in on a small segment of this strip around a point x ∈ ∂Uθ ,
illustrated by the blue region in Figure 1. Here, ds is the arc length element, n⃗ is the normal vector of
the boundary ∂Uθ at x, and v⃗ is the velocity vector of domain w.r.t. θ , given by ∂θ φ(u,θ)|u=φ−1(x,θ). For
sufficiently small ∆θ and ds, this region is approximately a rectangle of length ds and width v⃗ · n⃗∆θ , the
displacement of the domain along the normal vector. Therefore, the area of the blue region is v⃗ · n⃗∆θds,
and

d
dθ

∫
Uθ

F(x,y)dxdy = lim
∆θ→0

1
∆θ

(∫
Uθ+∆θ

F(x,y)dxdy−
∫

Uθ

F(x,y)dxdy
)
=
∫

∂Uθ

F(x,y)⃗v · n⃗ds.

Notice that Theorem 1 requires that the domain Dθ to be parameterized by a sufficiently smooth function
φ(u,θ) defined on a fixed set U . In our formulation, these correspond to the function g and the sample
space Ω. However, Theorem 1 also requires the integrand to be differentiable, a condition that ϕ may not
satisfy. To address this, we can approximate ϕ by smooth functions.
Proposition 1 Compactly supported smooth functions are dense in Lp(Rn), 1 ≤ p < ∞ and C(Rn) (the
space of continuous functions on Rn).

See Peng et al. (2018) and Section 8.2 in Folland (1999) for the proof and a method for constructing
smooth approximations via convolution with mollifiers. As both Ω and Θ are bounded sets, the set
g(Ω,Θ) := {y ∈ Rn | y = g(x,θ), (x,θ) ∈ Ω×Θ} is also bounded. In our problem formulation, we can
restrict ϕ to this bounded set g(Ω,Θ). Since ϕ is bounded, it is integrable over g(Ω,Θ). By Proposition 1,
there exists a sequence of smooth functions {ϕn}n∈N such that ϕn → ϕ in L1 as n → ∞. Substituting
ϕn, n ∈ N into Equation (1), we can apply Theorem 1:

d
dθ

E(ϕn(g(X ,θ))) =
d

dθ

∫
g(Ω,θ)

ϕn(y) f (g−1(y,θ),θ)|det(Jg−1(y,θ))|dy

=
∫

g(Ω,θ)
ϕn(y)

d
dθ

( f (g−1(y,θ),θ)|det(Jg−1(y,θ))|)dy (2)

+
∫

g(Ω,θ)
div(ϕn(y) f (g−1(y,θ),θ)|det(Jg−1(y,θ))|⃗v(y))dy, (3)

where v⃗(y) = ∂θ g(x,θ)|x=g−1(y,θ). Notice that for each θ , g(·,θ) : Rn 7→ Rn is a diffeomorphism, defined
as follows (Zorich 2004a).
Definition 1 A mapping f : U 7→ V , where U,V are open subsets of Rm, is a diffeomorphism of order
p if f is p-times continuously differentiable, f is a bijection, and f−1 : V 7→ U is p-times continuously
differentiable.
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The fact that g is a diffeomorphism directly follows from the following inverse function theorem which
is very useful for establishing Proposition 2.
Lemma 1 Suppose a mapping f : G 7→ Rm of a domain G ⊂ Rm is such that f is p-times continuously
differentiable, y0 = f (x0) at some x0 ∈ G, and the Jacobian matrix J f (x0) invertible. Then there exists
a neighborhood U(x0) ⊂ G of x0 and a neighborhood V (y0) of y0 such that f : U(x0) 7→ V (y0) is a
diffeomorphism of order p. Moreover, if x ∈U(x0) and y = f (x) ∈V (y0), then J f−1(y) = J−1

f (x).

See Section 8.6 in Zorich (2004a) for a proof of Lemma 1. Notice that the image set g(Ω,θ) can
be complex in high-dimensional spaces, and in some cases, the function g doesn’t have a closed-form
inverse. Specifically, in Section 3, we study the generalized scenario where g is only locally invertible,
meaning there is no global change of variables y = g(x,θ). Therefore, we would like to reverse the change
of variables.
Proposition 2 For y = g(x,θ), the following equations hold:

d
dθ

( f (g−1(y,θ),θ)|det(Jg−1(y,θ))|) = |det(Jg−1(y,θ))|(d(x,θ)+ l(x,θ)) f (x,θ), (4)

div(ϕn(y) f (g−1(y,θ),θ)|det(Jg−1(y,θ))|⃗v(y)) = |det(Jg−1(y,θ))|div(ϕn(g(x,θ)) f (x,θ)s(x,θ)), (5)

where d(x,θ) = div(− f (x,θ)J−1
g (x,θ)∂θ g(x,θ))/ f (x,θ) and l(x,θ) = ∂θ log f (x,θ) are real-valued func-

tions, and s(x,θ) = J−1
g (x,θ)∂θ g(x,θ) is an n−dimensional vector-valued function.

See Appendix A for the proof. To reverse the change of variables, we substitute (4) and (5) into (2)
and (3), respectively:∫

g(Ω,θ)
ϕn(y)

d
dθ

( f (g−1(y,θ),θ)|det(Jg−1(y,θ))|)dy =
∫

Ω

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx,∫
g(Ω,θ)

div(ϕn(y) f (g−1(y,θ),θ)|det(Jg−1(y,θ))|⃗v(y))dy =
∫

Ω

div(ϕn(g(x,θ)) f (x,θ)s(x,θ))dx.

By the divergence theorem,
∫

Ω
div(ϕn(g(x,θ)) f (x,θ)s(x,θ))dx =

∫
∂Ω

ϕn(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds,
where n⃗(x) is the outward normal vector on surface ∂Ω (Zorich 2004a). To summarize, we can write

d
dθ

E(ϕn(g(X ,θ))) =
∫

Ω

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx+
∫

∂Ω

ϕn(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds.

(6)

Under suitable conditions, d
dθ
E(ϕn(g(X ,θ))) converges to d

dθ
E(ϕ(g(X ,θ))) as n → ∞.

Theorem 2 If limn→∞

∫
∂Ω

supθ∈Θ |(ϕ(g(x,θ))−ϕn(g(x,θ)))s(x,θ)T n⃗(x) f (x,θ)|ds = 0, then

d
dθ

E(ϕ(g(X ,θ))) =
∫

Ω

ϕ(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx+
∫

∂Ω

ϕ(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds,

(7)

where d(x,θ) = div(− f (x,θ)s(x,θ))/ f (x,θ), l(x,θ) = ∂θ log f (x,θ), and s(x,θ) = J−1
g (x,θ)∂θ g(x,θ).

See Appendix B for the proof. Theorem 2 can be extended to functions g(·, ·) : Rm ×Θ 7→ Rn and
ϕ : Rm 7→ R, where m < n, by replacing J−1

g (x,θ) with an m×m invertible submatrix of it (Peng et al.
2018). In Equation (7), the first integral on the right-hand side is derived by differentiating the density of
the random variable Y = g(X ,θ) and reversing the change of variables. An unbiased gradient estimator
for it is given by

ϕ(g(X ,θ))(d(X ,θ)+ l(X ,θ)). (8)
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The second term in Equation (7) is a surface integral that arises from differentiating the domain g(Ω,θ)
w.r.t. θ . If the domain g(Ω,θ) does not depend on θ , the surface integral vanishes. In general, computing
the surface integral is challenging unless the surface can be parameterized and the normal vector has a
closed-form expression. However, for certain special forms of Ω and ϕ , the surface integral can be converted
into a regular integral that is easier to handle.

2.1 Rectangle Support

Consider the case where Ω = [a1,b1]× ·· · × [an,bn], a hyperrectangle in Rn, with boundary given by
∂Ω = ∪n

i=1(Ωai ∪Ωbi), a union of surfaces where

Ωai := [a1,b1]×·· ·×{ai}× ·· ·× [an,bn], Ωbi := [a1,b1]×·· ·×{bi}× ·· ·× [an,bn].

For each i, the normal vector n⃗(x) for surfaces Ωai and Ωbi are −ei and ei, respectively, where ei ∈ Rn

is the unit vector with ith component to be one. The surface integral over each Ωai and Ωbi reduces to a
standard multivariate integral:∫

∂Ω

ϕ(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds

=
n

∑
i=1

∫
x j∈[a j,b j], j=1,...,n, j ̸=i

ϕ(g(x,θ))s(x,θ)T ei f (x,θ) ∏
j=1,...,n, j ̸=i

dx j

∣∣∣bi

xi=ai

=
n

∑
i=1

(E(ϕ(g(X ,θ))s(X ,θ)T ei|Xi = bi) fXi(bi)−E(ϕ(g(X ,θ))s(X ,θ)T ei|Xi = ai) fXi(ai)),

where fXi is the marginal density of Xi. An unbiased gradient estimator for the surface integral is given by
n

∑
i=1

(ϕ(g(X ,θ)) fXi(bi)s(X ,θ)T ei
∣∣
X∼ fX |Xi=bi

−ϕ(g(X ,θ)) fXi(ai)s(X ,θ)T ei
∣∣
X∼ fX |Xi=ai

), (9)

where fX |Xi is the conditional density of X given Xi. In particular, if {Xi}i=1,...,n are independent, estimator
(9) simplifies to

n

∑
i=1

(ϕ(g(X ,θ)) fXi(bi)s(X ,θ)T ei
∣∣
Xi=bi

−ϕ(g(X ,θ)) fXi(ai)s(X ,θ)T ei
∣∣
Xi=ai

),

which can be simulated by a single sample path, concurrently with estimator (8). Peng et al. (2020) studies
a special case where the input consists of an independent sequence of uniform random variables. Another
special case occurs when the density function vanishes at the boundary of the support (Peng et al. 2018).
For the latter case, the marginal densities fXi(ai) and fXi(bi) are zero, resulting in the surface integral
vanishing, as well.

2.2 Almost Everywhere (a.e.) Differentiable ϕ

For an a.e. differentiable function F : Rn 7→ Rn with set of discontinuities DF , the divergence theorem
holds under certain conditions (Shapiro 1958). Suppose Γ ⊂Rn is a bounded set and its boundary ∂Γ is a
simple closed curve. Then

∫
Γ

div(F(y))dy =
∫

∂Γ
F(y)T n⃗(y)dy holds on Γ if the following conditions hold:

• F is continuous on closure(Γ)\DF and is L2-integrable on Γ.
• divF exists a.e. and is integrable on Γ.
• div∗ F and div∗ F are finite on Γ\DF , with

div∗F(y) := liminf
t→0

1
vol(B(y, t))

∫
∂B(y,t)

F(y)T n⃗(y)dy,

518



Ren, and Fu

where B(y, t) = {y′ ∈Rn | ∥y′−y∥∞ < t} is an open ball centered at y with radius t, and vol(B(y, t))
is its n−dimensional volume. div∗ F is defined similarly by replacing liminf with limsup.

• The set DF has logarithmic capacity zero if n= 2, or Newtonian capacity zero if n≥ 3. For a compact
set K, the logarithmic capacity is given by exp

(
−minµ

∫
K
∫

K log(|x− y|−1)dµ(x)dµ(y)
)
, and the

Newtonian capacity is given by
(
minµ

∫
K
∫

K |x− y|−(n−2)dµ(x)dµ(y)
)−1

, where the minimum is
taken over all Borel probability measures on K (Landkof 1972).

Notice that the condition “Newtonian capacity zero” is stronger than the condition “measure zero”. For
example, in R3, both a two-dimensional disk and a line segment have Lebesgue measure zero. However,
the line segment has zero Newtonian capacity, whereas the two-dimensional disk has a positive capacity
(Landkof 1972).

Suppose that ϕ is bounded and differentiable a.e. except on a set of capacity zero. Since functions
g, f and s are continuously differentiable, the divergence theorem holds:∫

Ω

div(ϕ(g(x,θ))s(x,θ) f (x,θ))dx =
∫

∂Ω

ϕ(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)dx.

Clearly, div(ϕ(g(X ,θ))s(X ,θ) f (X ,θ))/ f (X ,θ) is an unbiased estimator for the surface integral. Combined
with estimator (8), we obtain a single-run unbiased estimator for d

dθ
E(ϕ(g(X ,θ))):

ϕ(g(X ,θ))(d(X ,θ)+ l(X ,θ))+div(ϕ(g(X ,θ))s(X ,θ) f (X ,θ))/ f (X ,θ).

3 LOCAL CHANGE OF VARIABLES AND UNBOUNDED SAMPLE SPACE

In this section, we relax the condition for g to be invertible everywhere and instead consider it being locally
invertible. Specifically, we only assume that its Jacobian matrix Jg is invertible a.e., which is a necessary
but not sufficient condition for global invertibility. By Lemma 1, except on a set of measure zero, for
each x ∈ Ω, there exists a bounded open neighborhood U(x) of x, such that g(·,θ) is invertible on U(x).
Since Ω is bounded, by the Heine-Borel theorem, there exists a finite collection of open neighborhoods
{Ui}i=1,··· ,N , such that closure(Ω) ⊂ ∪N

i=1Ui. For each i, we can derive a “local” version of Equation (6)
over Ω∩Ui:

d
dθ

E(ϕn(g(X ,θ))1{X ∈ (Ω∩Ui)})

=
∫

Ω∩Ui

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)+div(ϕn(g(x,θ))s(x,θ) f (x,θ))dx.

Combining all the open sets {Ui}i=1,··· ,N , we can reconstruct Equation (6) over the entire sample space Ω:

d
dθ

E(ϕn(g(X ,θ))) =
N

∑
i=1

∫
Ω∩Ui

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)+div(ϕn(g(x,θ))s(x,θ) f (x,θ))dx

=
∫

Ω

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)+div(ϕn(g(x,θ))s(x,θ) f (x,θ))dx

=
∫

Ω

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx+
∫

∂Ω

ϕn(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds.

Therefore, the proof of Theorem 2 still holds for locally invertible function g.
In addition to the local change of variables, Theorem 2 can be extended to the unbounded sample

space Ω under appropriate conditions. We provide a brief outline of this extension, leaving the detailed
exploration to future research. Consider ΩL := Ω∩ [−L,L]n, the restriction of Ω to the hyperrectangle
[−L,L]n. For a fixed L > 0, by Proposition 1, there exists a sequence of smooth functions {ϕn,L}n∈N such

519



Ren, and Fu

that ϕn,L → ϕ in L1 as n → ∞ over the compact set g(ΩL,Θ). Hence, we can reconstruct Equation (6) over
ΩL:

d
dθ

E(ϕn,L(g(X ,θ))1{X ∈ ΩL})

=
∫

ΩL

ϕn,L(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx+
∫

∂ΩL

ϕn,L(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds.

Our goal is to show limn→∞
d

dθ
E(ϕn,L(g(X ,θ))) = d

dθ
E(ϕ(g(X ,θ))1{X ∈ ΩL}). By Theorem 2, a sufficient

condition is limn→∞

∫
∂ΩL

supθ∈Θ |(ϕ(g(x,θ))1{X ∈ ΩL}−ϕn,L(g(x,θ)))s(x,θ)T n⃗(x) f (x,θ)|ds = 0. Taking
n → ∞, we obtain

d
dθ

E(ϕ(g(X ,θ))1{X ∈ ΩL})

=
∫

ΩL

ϕ(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx+
∫

∂ΩL

ϕ(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds.
(10)

Next, we aim to show that limL→∞
d

dθ
E(ϕ(g(X ,θ))1{X ∈ ΩL}) = d

dθ
E(ϕ(g(X ,θ))), for which a sufficient

condition is the uniform convergence of both integrals on the right-hand side of Equation (10) over
Θ as L → ∞. Specifically, a sufficient condition for the uniform convergence of the first integral is∫

Ω
supθ∈Θ |ϕ(g(x,θ))(d(x,θ)+ l(x,θ))| f (x,θ)dx < ∞. We refer to Theorem 4 in Section 16.3.5 of Zorich

(2004b) for the conditions under which the interchange of the order of limit and integral is permissible.

4 SIMULATION EXAMPLE

In this section, we evaluate the generalized GLR method using the toy example introduced in Section 1:
E(1{X < θ}), where X follows an exponential distribution with parameter θ > 0. Notice that its derivative
can be computed analytically:

d
dθ

E(1{X < θ}) = d
dθ

∫
θ

0
θe−θxdx = (θe−θx)|x=θ

d
dθ

(θ)+
∫

θ

0

d
dθ

(θe−θx)dx = 2θe−θ 2
.

Using the conventional push-out LR method, we obtain an unbiased estimator as follows:

d
dθ

E(1{X < θ})LR = E(1{Y < 1}∂θ log fY (Y,θ)) = E(1{Y < 1}(2/θ −2θY )) ,

where Y follows an exponential distribution with parameter θ 2. The method introduced in Theorem 2 is
referred to as the GLR* method, offering another unbiased estimator:

d
dθ

E(1{X < θ})GLR* = E(1{X < θ}(d(X ,θ)+ l(X ,θ))+θ) = E(1{X < θ}(1/θ −θ −X)+θ) ,

where the constant θ corresponds to estimator (9), the derivative of the parameter-dependent domain.
We simulate both derivative estimators at θ = 0.2,0.4,0.6,0.8 with 2500 independent replications. The

simulation results are depicted in Figure 2. Both estimators demonstrate satisfactory accuracy. Notably,
the standard errors of the GLR* estimator are half or even less of those of the push-out LR estimator.
This observation can be explained as follows. From Equation (7), we observe that the “randomness” of
the derivative is split into two components. One component represents a conventional LR estimator (after
the change of variables). The other component captures the sensitivity the integration domain w.r.t. θ , and
(9) is an unbiased estimator for this component. In this simple example, the latter component is merely
the constant term θ , whereas if the input X is a random vector, additional simulations might be required
to estimate the value of the surface integral. Thus, the reduction in variance comes at the expense of
potentially additional simulation runs. Moreover, for this example, it is more efficient to use the conditional
density estimator (L’Ecuyer et al. 2022).
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0.2 0.4 0.6 0.8

0.4

0.6

0.8

θ

True value
GLR*

Push-Out LR

d
dθ
E(1{X < θ})

θ True value GLR* Push-Out LR
0.2 0.384 0.388±0.018 0.377±0.038
0.4 0.682 0.683±0.014 0.664±0.032
0.6 0.837 0.849±0.008 0.850±0.026
0.8 0.844 0.842±0.003 0.853±0.019

Figure 2: Simulation results: Point estimates and standard errors for d
dθ
E(1{X < θ}).

5 CONCLUSION

In this paper, we introduce a novel push-out Leibniz integration approach to generalize the GLR method. The
underlying idea of our method is straightforward: “push” the parameter θ out of the performance measure
ϕ(g(X ,θ)) through a change of variables Y = g(X ,θ), differentiate the transformed density function fY
and integration domain g(Ω,θ) using the Leibniz integral rule, and finally reverse the change of variables
X = g−1(Y,θ). Compared to the push-out LR method, the newly derived estimator can be applied to a wider
range of gradient estimation problems where the sample space is parameter-dependent and the function g
is only locally invertible. We demonstrate that the newly derived estimator encompasses the existing GLR
estimators as special cases. Simulation results suggest that the generalized GLR estimator, compared to the
push-out LR method, can reduce variance at the expense of potentially additional simulations. For future
research, we aim to extend our results from compact sample spaces to unbounded sample spaces and apply
them to more practical scenarios. We also observe that the form of the estimator (9) for the surface integral
resembles the form of some SPA estimators (Fu and Hu 1997). Investigating the connection between GLR
and SPA estimators is an interesting direction for further research.
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A PROOF OF PROPOSITION 2

We refer to Chapter 2 from Frankel (2011) for the justification of Equations (14) and (17).
Equation (4): By the chain rule,

d
dθ

( f (g−1(y,θ),θ)|det(Jg−1(y,θ))|) = (∇x f (g−1(y,θ),θ)T
∂θ g−1(y,θ)+∂θ f (g−1(y,θ),θ))

×|det(Jg−1(y,θ))|+ f (g−1(y,θ),θ)∂θ |det(Jg−1(y,θ))|,
(11)

Notice that g(g−1(y,θ),θ) = y. Therefore, by (implicit) differentiation,

0 =
d

dθ
g(g−1(y,θ),θ) = ∂θ g(g−1(y,θ),θ)+ Jg(g−1(y,θ),θ)∂θ g−1(y,θ),

i.e.,

∂θ g−1(y,θ) =−J−1
g (g−1(y,θ),θ)∂θ g(g−1(y,θ),θ). (12)
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To compute ∂θ |det(Jg−1(y,θ))|, we use the fact that ∂θ detA(θ) = detA(θ)trace(∂θ A(θ)A(θ)−1). Since g
is twice continuously differentiable, ∂θ ∂y j g

−1
i (y,θ) = ∂y j(∂θ g−1

i (y,θ)), and

trace
(
(∂θ Jg−1(y,θ))Jg−1(y,θ)−1)= n

∑
i, j

∂y j(∂θ g−1
i (y,θ))∂xig j(x,θ)|x=g−1(y,θ) =

n

∑
i=1

∂xi(∂θ g−1
i (y,θ))|y=g(x,θ).

It follows that

∂θ det(Jg−1(y,θ)) = det(Jg−1(y,θ))

(
n

∑
i=1

∂xi(∂θ g−1
i (y,θ))|y=g(x,θ)

)
. (13)

Substituting Equations (12) and (13) into Equation (11), we obtain Equation (4):

d
dθ

( f (g−1(y,θ),θ)|det(Jg−1(y,θ))|)dy

= (−∇x f (x,θ)T J−1
g (x,θ)∂θ g(x,θ)+∂θ f (x,θ))|det(Jg−1(y,θ))|

+ f (x,θ)|det(Jg−1(y,θ))|div(−J−1
g (x,θ)∂θ g(x,θ))

= |det(Jg−1(y,θ))|(div(− f (x,θ)J−1
g (x,θ)∂θ g(x,θ))+∂θ f (x,θ)),

where the last equation follows from the fact that for any real-valued function h and vector-valued function
v⃗,

div(h(x)⃗v(x)) = ∇xh(x)T v⃗(x)+h(x)div(⃗v(x)). (14)

Equation (5): By Equation (14), we obtain

div
(
ϕn(y) f (g−1(y,θ),θ)|det(Jg−1(y,θ))|⃗v(y)

)
= ∇y(ϕn(y) f (g−1(y,θ),θ))T |det(Jg−1(y,θ))|⃗v(y)+ϕn(y) f (g−1(y,θ),θ)div(|det(Jg−1(y,θ))|⃗v(y)).

(15)

Applying Equation (14) again, we obtain

div(|det(Jg−1(y,θ))|⃗v(y)) = ∇y|det(Jg−1(y,θ))|T v⃗(y)+ |det(Jg−1(y,θ))|div(⃗v(y)).

For i = 1, · · · ,n,

∂yi det(Jg−1(y,θ)) = det(Jg−1(y,θ)) trace(∂yiJg−1(y,θ)J−1
g−1(y,θ))

= det(Jg−1(y,θ))
n

∑
j,k

∂yi(Jg−1(y,θ)) jk(J−1
g−1(y,θ))k j

= det(Jg−1(y,θ))
n

∑
j=1

n

∑
k=1

(J−1
g−1(y,θ))k j∂yk(Jg−1(y,θ)) ji.

Note that for any differentiable function h : Rn 7→ R, ∇xh(g(x,θ)) = Jg(x,θ)T ∇yh(y)|y=g(x,θ), i.e.,

∇yh(y)|y=g(x,θ) = J−1
g (x,θ)T

∇xh(g(x,θ)).

Therefore, we can write

∇x(J−1
g (x,θ)) ji = J−1

g−1(y,θ)T
∇y(J−1

g (g−1(y,θ),θ)) ji,
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i.e., ∂x j(J
−1
g (x,θ)) ji = ∑

n
k=1(J

−1
g−1(y,θ))k j∂yk(Jg−1(y,θ)) ji, and it follows that

∂yi det(Jg−1(y,θ)) = det(Jg−1(y,θ))
n

∑
j=1

∂x j(J
−1
g (x,θ)) ji.

Hence,

∇y|det(Jg−1(y,θ))|T v⃗(y)

= |det(Jg−1(y,θ))|
n

∑
i=1

(
n

∑
j=1

∂x j(J
−1
g (x,θ)) ji)⃗vi(y) = det(Jg−1(y,θ))div(J−1

g (x,θ)T )T v⃗(y),

where divA(x) := (∑n
j=1 ∂x j A(x)1 j, · · · ,∑n

j=1 ∂x j A(x)n j)
T for any matrix-valued function A(x). Notice that

div(⃗v(y)) = trace(∇y∂θ g(g−1(y,θ),θ)) = trace(J−1
g (x,θ)T

∇x∂θ g(x,θ)),

where ∇yv(y) := (∇yv1(y), · · · ,∇yvn(y))T for any vector-valued function v(x). Therefore,

div(|det(Jg−1(y,θ))|⃗v(y))
= |det(Jg−1(y,θ))|div(J−1

g (x,θ)T )T v⃗(y)+ |det(Jg−1(y,θ))| trace(∇x∂θ g(x,θ)J−1
g (x,θ))

= |det(Jg−1(y,θ))|div(J−1
g (x,θ)T )T v⃗(y)+ |det(Jg−1(y,θ))| trace(J−1

g (x,θ)∇x∂θ g(x,θ))

= |det(Jg−1(y,θ))|div(J−1
g (x,θ)∂θ g(x,θ)), (16)

where the last equation follows from the divergence formula for matrix-vector production

div(A(x)v(x)) = div(A(x)T )T v(x)+ trace(A(x)∇v(x)). (17)

Using the chain rule for gradient ∇(pq) = p∇q+q∇p, we can write

∇y(ϕn(y) f (g−1(y,θ),θ)) = ϕn(y)∇y f (g−1(y,θ),θ)+ f (g−1(y,θ),θ)∇yϕn(y)

= J−1
g (x,θ)T

∇x(ϕn(g(x,θ)) f (x,θ)). (18)

Substituting Equations (16) and (18) into Equation (15), we obtain Equation (5). □

B PROOF OF THEOREM 2

Since Ω×Θ is compact and both f ,g are continuously differentiable, sup(x,θ)∈Ω×Θ | f (x,θ)| and
sup(x,θ)∈Ω×Θ |detJ−1

g (x,θ)| are bounded. Therefore,

lim
n→∞

|E(ϕ(g(X ,θ)))−E(ϕn(g(X ,θ)))| ≤ lim
n→∞

∫
Ω

|ϕ(g(x,θ))−ϕn(g(x,θ))|| f (x,θ)|dx

≤ lim
n→∞

∫
Ω

|ϕ(g(x,θ))−ϕn(g(x,θ))|dx sup
(x,θ)∈Ω×Θ

| f (x,θ)|

≤ lim
n→∞

∫
g(Ω,θ)

|ϕ(y)−ϕn(y)|dy sup
(x,θ)∈Ω×Θ

| f (x,θ)detJ−1
g (x,θ)|= 0,

where the last equation follows from the fact that ϕn → ϕ in L1. Similarly, sup(x,θ)∈Ω×Θ |d(x,θ)+ l(x,θ)|
is bounded, and

lim
n→∞

∣∣∣∣∫
Ω

ϕ(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx−
∫

Ω

ϕn(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx
∣∣∣∣

≤ lim
n→∞

∫
g(Ω,θ)

|ϕ(y)−ϕn(y)|dy sup
(x,θ)∈Ω×Θ

|(d(x,θ)+ l(x,θ)) f (x,θ)detJ−1
g (x,θ)|= 0.
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By Theorem 4 in Section 16.3.5 of Zorich (2004b), we obtain

d
dθ

E(ϕ(g(X ,θ))) = lim
n→∞

d
dθ

E(ϕn(g(X ,θ)))

=
∫

Ω

ϕ(g(x,θ))(d(x,θ)+ l(x,θ)) f (x,θ)dx+
∫

∂Ω

ϕ(g(x,θ))s(x,θ)T n⃗(x) f (x,θ)ds. □
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