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ABSTRACT 

In response to the demand diversification in automobile production, traditional manufacturing processes 
are transitioning towards more flexible systems with dynamic scheduling methods. The Matrix System 
(MS) stands out for its utilization of Autonomous Mobile Robots (AMRs) and multi-purposed workstations, 
enabling a dynamic production environment. Each AMR is tasked with transporting a partially assembled 
vehicle through multiple workstations until final assembly, adhering to predefined precedence orders. 
However, determining operation schedules amidst the complexity of multi-model systems poses a 
significant challenge in minimizing manufacturing time. To address this, we formalize the problem into a 
Markov Decision Process (MDP) and propose a Deep Q-Network (DQN) based scheduling optimization 
algorithm for the Vehicles Production Scheduling (VPS) problem. Our approach utilizes discrete event 
simulation to assess candidate actions suggested by the DQN, aiming to derive an optimal policy. This 
paper validated the proposed algorithm by comparing with various dispatching rules. 

1 INTRODUCTION 

As product diversity increases and consumer preferences rapidly change in the automotive market, 
automobile production systems are also undergoing transformation. In response to this trend, automotive 
assembly processes are transitioning from traditional conveyor systems to MS (Greschke et al. 2014; 
Holweg and Pil 2005; Kern et al. 2015; Oh et al. 2022). MS consists of a production system where all 
workstations are arranged in a matrix format (Kim et al. 2022a), with each workstation manned by workers 
or automated by robots, performing assembly operations for car production. This MS setup leverages multi-
purpose equipment capable of performing various operations within a facility and utilizes computer systems 
for flexible routing and process adaptability, achieved through the use of AMRs (Kim et al. 2022b; Julaiti 
et al. 2022; Alatise and Hancke 2020). 

However, a challenge arises from the fact that the services provided by AMRs vary depending on the 
designed algorithms. While MS can employ multiple AMRs to increase automobile throughput, 
overcrowding AMRs at workstations can lead to increased waiting and cycle times for vehicles, resulting 
in decreased throughput rates per unit time interval between two states. Hence, MS requires enhanced 
scheduling algorithms for assigning AMR operation priorities and route planning based on sequential 
procedures and workstation conditions. The complexity of MS utilizing multiple AMRs presents a 
challenge in devising algorithms that ensure optimal effectiveness, addressing its dynamic nature and high-
dimensional state complexity (Kim et al. 2022b). 

To address these challenges, this paper proposes the utilization of the DQN algorithm for the flexible 
VPS problem within automotive assembly processes. Initially, the paper formalizes the MDP for the system. 
Subsequently, it employs a DQN algorithm to find the optimal policy. Finally, the effectiveness of the 
algorithm is validated through simulations, comparing it with various dispatching rules. 
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2 LITERATURE REVIEW 

Enhancing system performance through job priority optimization is crucial in various manufacturing 
systems. Johnson (1954) initiated extensive research on job shop scheduling models. These models involve 
processing a series of jobs across multiple machines, requiring diverse operations to follow sequential 
procedures. Researchers such as Cummings and Egbelu (1998), Gupta et al. (2001), Kubzin et al. (2009), 
and Ivanov et al. (2016) have significantly contributed to this area. These problems have been proven to be 
NP-hard, with a few exceptions (Gonzalez and Sahni 1978). 
 The objective of the job shop scheduling problem is to minimize the makespan (the time to complete 
all jobs) by determining the optimal processing sequence for each job. Efforts to solve various types of 
production line scheduling problems have continued using mathematical, heuristic, and metaheuristic 
techniques (Carlier and Pinson 1989; Park et al. 2002; Rifai et al. 2016). However, ensuring high 
effectiveness while accounting for the complexity and dynamic nature of real-world problems remains 
challenging. 
 Due to the Markovian nature of dynamic scheduling problems, Deep Reinforcement Learning (DRL) 
is considered suitable for addressing these challenges (Liu et al. 2022). DRL addresses agent learning and 
decision-making through trial and error, integrating deep learning to enable the agent to make decisions 
from unstructured input data and approximate state values as nonlinear functions using deep neural 
networks (Jeon et al. 2022). According to Julaiti et al. (2022), DRL can handle uncertainties such as 
machine failures or the arrival of emergency queues in dynamic operation scheduling. 
 Among DRL algorithms, the DQN has been proposed in many studies due to its efficient learning and 
high stability, allowing effective learning even in high-dimensional and complex state spaces. Waschneck 
et al. (2018) proposed a DQN approach for scheduling lot movements between locations in semiconductor 
manufacturing facilities. Shi et al. (2020) proposed a DQN approach for job transfers within individual 
manufacturing systems. Hu et al. (2020) applied DQN to scheduling problems in Flexible Manufacturing 
Systems modeled with Petri nets, comparing its efficiency with heuristic methods. Jeon et al. (2022) 
validated the applicability and effectiveness of a scheduling system developed using DQN by applying 
situation-specific dispatching rules in re-entrant production lines. 

3 PROBLEM DEFINITION 

This study addresses the scheduling problem aimed at maximizing vehicle production throughput in the 
assembly process using a MS that employs multi-purpose equipment and AMRs. The assembly operations 
at each workstation are predetermined and executed sequentially, as illustrated in Figure 1.  

 
Figure 1: Example of precedence orders to complete operations in MS. 

In Figure 1, assembly operations labeled with operation names are performed in sequence according to the 
step numbers. Specifically, step 1 of the operation must be executed first, followed by steps 2, 3, and 4 in 
any order as they can be performed in parallel. After steps 5 or 6 are completed, the final operation ‘T’ is 
performed. To increase vehicle production throughput in the automotive assembly process, many AMRs 
are deployed. With the increase in AMRs, the flow of partially assembled vehicles also increases, thereby 
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enhancing throughput. However, the number of workstations capable of performing operations is limited, 
leading to constraints. To address this issue, setting objectives to increase throughput in the automotive 
assembly process is crucial. Typically, the goal is to minimize the makespan, which is the total time required 
for product production. Minimizing the total time needed to complete the scheduled production volume is 
a key metric in automotive manufacturing. Accordingly, this paper aims to minimize the makespan 
associated with the allocated vehicle production target, which is equivalent to the time taken for all AMRs 
to complete the assembly process. The following summarizes the objectives, decision factors, and 
constraints for the VPS problem defined in MS. 
 

• Objective: 
− Minimization of the makespan required for product production. 

• Decision Factors: 
− Selection of AMR's workstation. 
− Selection of the next operation to be performed by AMR within the workstation. 

• Constraints: 
− All operations follow a sequential procedure. 
− Each AMR can transport only one vehicle at a time, and vehicle changeovers are not allowed 

until all operations are completed. 
− Workstations can perform a limited number of operations. 
− Each workstation can handle only one vehicle per operation, and the AMS holding the next 

operation must wait in buffer. 
− Workstations with fully occupied buffers are not selectable. 

 
 The AMR selects an operation and then chooses a workstation capable of performing that operation. 
The selection of the workstation follows predefined path selection rules. If the chosen workstation is busy, 
the AMR moves to a buffer to wait until the preceding operation is completed. If the buffer is full, the 
workstation is excluded from the path planning, and an alternative workstation is selected. AMRs in the 
buffer must prioritize the next operation. Figure 2 illustrates this decision-making process of the AMR 
through an activity diagram. The completion time is significantly affected by which workstation performs 
the operation and which AMR transfers the finished operation. Therefore, algorithms are needed to plan 
the paths of AMRs and set operation priorities based on the sequential procedure and overall workstation 
status. However, achieving an optimal policy within a reasonable computation time is challenging due to 
the following issues. (1) Despite the use of many AMRs to increase product throughput, the availability of 
workstations capable of performing operations is limited. (2) As the number of AMRs increases, the number 
of states to consider grows exponentially. For some products, precedence relationships between tasks 
require sequential order. To address these issues, an algorithm capable of recognizing large-scale state 
spaces and making efficient decisions is necessary. 

 
Figure 2: Activity diagram of an AMR. 
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4 DEEP Q-NETWORK ALGORITHM FOR MINIMIZING MAKESPAN IN MATRIX 
ASSEMBLY SYSTEM 

In this section, we describe the proposed DQN algorithm for addressing the VPS problem to minimize the 
production makespan in MS. To achieve this, we first model the given problem as an MDP. The notation 
for MDP modeling is shown in the Table 1. 

Table 1: Notation for MDP modeling. 

Symbol  Description 
     𝑖𝑖 Index of workstation, 𝑖𝑖 ∈ 𝑊𝑊,  𝑊𝑊 = {0,1,2,⋯ , 𝑙𝑙} 
     𝑗𝑗 Index of operation ,  𝑗𝑗 ∈ 𝐽𝐽,  𝐽𝐽 = {1,2,⋯ ,𝑚𝑚} 
     𝑘𝑘 Index of vehicle, 𝑘𝑘 ∈ 𝐾𝐾,𝐾𝐾 = {1,2,⋯ ,𝑛𝑛} 
     𝑏𝑏 Index of buffer area,𝑏𝑏 ∈ 𝐵𝐵,𝐵𝐵 =  {1,2,⋯ , ℎ} 
     𝑔𝑔 Index of job progress,𝑔𝑔 ∈ 𝐺𝐺,𝐺𝐺 =  {1,2}, 1= True, 2= False 
     𝑜𝑜𝑖𝑖 Remaining progress time of the 𝑖𝑖-th workstation 
     𝑤𝑤𝑖𝑖 Working time of the 𝑖𝑖-th workstation between observation points 
     𝑃𝑃𝑘𝑘 Process time of 𝑘𝑘-th vehicle between observation points 
     𝑅𝑅𝑘𝑘 Remaining total process time of the 𝑘𝑘-th vehicle  
      𝑡𝑡𝑖𝑖𝑖𝑖 Remaining progress time of the 𝑘𝑘-th vehicle at the workstation 𝑖𝑖-th 

4.1 Markov Decision Process Modeling 

To apply the DQN algorithm to the VPS problem for minimizing the makespan, the given problem needs 
to be modeled as an MDP. The MDP model of this study is used to clarify the interaction between the agent 
and the environment in terms of 3 components such as states, actions, and rewards. Firstly, the state is 
characterized by three component information:  

1. Number of vehicles under production: It represents the number of products currently being 
processed in the system, the number of deployed vehicles, and is expressed as a scalar value. 

2. Vehicles information: It represents the state group of all products. Each product is assigned a 
vehicle identification number (𝑘𝑘) based on the deployment order, and it processes tasks while 
moving through workstations via the AMR. As the product progresses through tasks, it includes 
the identification number of the current workstation, the status of progress, the remaining time to 
complete the current progress (Remaining Progress Time at time 𝑡𝑡 ,  
RPT𝑡𝑡), and the total remaining time to complete all progress (Total Remaining Progress Time at 
time 𝑡𝑡, TRPT𝑡𝑡). For example, if 𝑛𝑛 vehicles are scheduled to be deployed on the production line, the 
state information of each vehicle is represented as shown in Table 2. 

3. Workstation information: It represents the state group of all workstations. For each workstation, it 
includes the remaining time for the ongoing operation (Remaining Progress Time of  
the 𝑖𝑖-th Workstation at time 𝑡𝑡, RPTWt) and the next task time for the vehicle located in the buffer 
area of the 𝑖𝑖-th workstation (Next Progress Time of the vehicle located in the 𝑏𝑏-th  Buffer area of 
the 𝑖𝑖-th Workstation, NPTB𝑏𝑏) sequentially. For example, if there are 𝑙𝑙 workstations and 𝑏𝑏 buffers, 
the workstation information is represented as shown in Table 3. 

Table 2: Example of partially assembled vehicle status information table. 

Vehicle index Location Process RPT𝑡𝑡 TRPT𝑡𝑡 
1 1 1  𝑡𝑡11 𝑅𝑅1 − 𝑃𝑃1 
⋮ ⋮ ⋮ ⋮ ⋮ 
𝑛𝑛          𝑤𝑤 𝑔𝑔  𝑡𝑡𝑖𝑖𝑖𝑖 𝑅𝑅𝑛𝑛 − 𝑃𝑃𝑛𝑛 
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Table 3: Example of workstation status information table. 

Workstation index RPTW𝑡𝑡 NPTB1 ⋯ NPTB𝑏𝑏 
1 𝑜𝑜1 𝑡𝑡1𝑘𝑘 ⋯ 𝑡𝑡1𝑘𝑘 
⋮ ⋮ ⋮ ⋯ ⋮ 
𝑙𝑙  𝑜𝑜𝑙𝑙 𝑡𝑡𝑙𝑙𝑙𝑙 ⋯ 𝑡𝑡𝑙𝑙𝑙𝑙 

In Table 2, the position of a vehicle that has not started any operations is represented as 0. At time 𝑡𝑡, 
when 𝑘𝑘 out of 𝑛𝑛 vehicles are performing assembly operations, the state vector including the information 
from Table 2 and Table 3 is expressed as follows: 

 𝑠𝑠𝑡𝑡 = (𝑘𝑘,  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) (1) 

At this point, the defined 𝑠𝑠𝑡𝑡 is difficult to apply directly to the proposed scheduling algorithm. The reason 
is that the main issue with the 𝑠𝑠𝑡𝑡 represented in equation (1) is that the dimensions of each table are different, 
making it difficult for the algorithm to interpret the state vector. Therefore, to address this problem, we 
extract the features of each state information. The information of common groups shares one convolutional 
layer and two fully connected layers. The convolutional layer applies filters to the input data to generate 
feature maps, enabling the extraction of features from high-dimensional data (Uchida et al. 2018).  
The transformed state vector obtained through feature extraction can be expressed as follows: 

 𝑓𝑓𝑠𝑠𝑡𝑡 = (𝑛𝑛, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2) 

The agent examines the system's state through the transformed state vector (𝑓𝑓𝑠𝑠𝑡𝑡)  obtained via the 
convolutional layers and then takes actions according to the defined priority rules. The defined priority 
rules are categorized into two types based on their objectives. The first type of priority rules under 
consideration are used to determine the path for an AMR to take for movement from a current position to 
the destination. The second type of priority rules under consideration are required for an AMR to choose 
as the next destination to visit. Each type of priority rules has three rules. By paring two types of priority 
rules, actions are defined. The defined priority rules used in actions are summarized as follows: 

• Priority rules for path selection: 
− Shortest path first: Select the shortest path to the workstation. 
− Shortest waiting time first: Choose the workstation with the least time left to complete the 

operation 
− Largest number of operations to process first: Prioritize workstations where the maximum 

number of operations to process can be performed at once. 
• Priority rules for operation selection: 

− First-come, first-start: Start operations in the order of vehicle arrival. 
− Longest processing time first: Start operations with the longest processing time. 
− Highest overall job progress first: Start operations based on highest overall job progress. 

Actions are denoted by natural numbers. Note that each action corresponds to a pair of path and operation 
priority rules. Table 4 describes the all actions. 
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Table 4: Action set consisting of prioritization rule pairing. 
Rule numbers applied  
to each action 

Priority rules for  
path selection 

Priority rules for  
operation selection 

Rule no.1 Shortest Path First(SPT) First-Come, First-Start (FCFS) 
Rule no.2 Shortest Waiting Time First(SWTF) First-Come, First-Start (FCFS) 
Rule no.3 Largest number of Operations to Job First (LOJF) First-Come, First-Start (FCFS) 
Rule no.4 Shortest Path First(SPT) Longest Processing Time First(LPTF) 
Rule no.5 Shortest Waiting Time First(SWTF) Longest Processing Time First(LPTF) 
Rule no.6 Largest number of Operations to Job First(LOJF) Longest Processing Time First(LPTF) 
Rule no.7 Shortest Path First(SPT) Highest overall Job Progress First(HJF) 
Rule no.8 Shortest Waiting Time First(SWTF) Highest overall Job Progress First(HJF) 
Rule no.9 Largest number of Operations to Job First(LOJF) Highest overall Job Progress First(HJF) 

Agent applies the selected action to the environment, transitions to the next state, and evaluates the 
performance of the action selection based on the received reward. Therefore, the reward must be given 
based only on the point in time when the action is applied. This study considers two evaluation metrics for 
calculating the reward. The first evaluation metric is the average job completion rate at time 𝑡𝑡 (AJCR𝑡𝑡), 
which calculates how many operations, on average, the vehicles in the system have completed during a unit 
time between observation points. It is calculated as follows: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 = ∑ 𝑃𝑃𝑘𝑘𝑛𝑛
1

(𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∗𝑛𝑛
 (3) 

The second evaluation metric is the average operating rate of workstations (AORW𝑡𝑡). When a vehicle, 
whose previous task has been completed, selects the next workstation for the subsequent operation, it must 
wait at its current location if the buffer space at the chosen workstation is full until it can move to the next 
position. During this waiting period, the workstation is inoperative as it cannot proceed with any operations. 
Therefore, the AORW𝑡𝑡considering the average inoperative rate of workstations, is calculated as follows: 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖
𝑙𝑙
1

(𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∗𝑙𝑙
 (4) 

 
The reward 𝑟𝑟𝑡𝑡 at time t, considering AJCR𝑡𝑡and AORW𝑡𝑡, can be expressed as follows: 

 𝑟𝑟𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 +  𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝑡𝑡 (5) 

As the sum of AJCR𝑡𝑡 and AORW𝑡𝑡 increases, the time to complete all tasks decreases, so it is evaluated 
as a reward. The DQN algorithm proposed in this study observes the system's state at predefined intervals 
and selects the action that maximizes the reward, thereby minimizing the makespan, which is the time taken 
for all operations of the deployed vehicles to be completed. 

4.2 Deep Q-Network Algorithm  

In this section, the DQN algorithm applied to solve the VPS problem using the defined MDP model is 
described. The DQN algorithm combines Q-learning, one of the reinforcement learning algorithms, with 
deep learning. In traditional Q-learning, the values of state-action pairs, denoted as 𝑄𝑄(𝑠𝑠,𝑎𝑎), are stored in a 
table format and learned over time (Watkins and Dayan 1992) . However, this approach requires significant 
memory and exploration time as the state and action spaces grow larger. To address this challenge, DQN 
approximates the Q-function using deep neural networks (Mnih et al. 2015). Additionally, DQN improves 
learning stability through techniques like experience replay and target Q-Network. The agent stores 
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experiences, represented by tuples 𝑄𝑄(𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) in an experience replay buffer (Nair et al. 2015). These 
tuples consist of the current (𝑠𝑠), taken action (𝑎𝑎), resulting reward (r), and next state (𝑠𝑠′). These experiences 
are randomly sampled from previously stored experiences to predict approximate Q-values. The target Q-
network is updated by copying the weights of the current Q-network. Using the fixed weights of the current 
Q-network, the target Q-value, and max Q value is computed. DQN minimizes the difference between the 
current predicted Q-value, the target predicted Q-value computed from the target Q-Network, and the actual 
value, which is the reward, by considering a loss function. Figure 3 illustrates this training process of DQN.  

 
Figure 3: Learning flow diagram of DQN (modified from Nair et al. 2015). 

5 NUMERICAL EXPERIMENT AND DISCUSSION 

In this section, simulation experiments are conducted to compare the proposed DQN with various rule 
combinations. The simulation environment used for the experiments and DQN training were implemented 
with Siemens Plant Simulation (version 23.02). 

To evaluate the performance of the proposed DQN, the makespan obtained using DQN was compared 
with the makespan obtained using each of the 9 predefined priority rule combinations. For this purpose, a 
small-scale layout design of the matrix system was created using operation, time, position, and precedence 
information data obtained from industry partners. Figure 4 depicts the layout of the MS implemented as a 
simulation model.  

 
Figure 4: A layout of matrix system used in the training and experiment. 
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The layout implemented for the experiment consists of 19 workstations. Each workstation has space to 
accommodate up to 4 AMRs in addition to the workspace and is capable of performing between 4 and 14 
operations. The AMRs operate at a speed of 1.5 m/s, transporting products, with one vehicle introduced 
every 30 seconds. Each product requires a total of 20 operations for assembly. The left image( shows an 
AMR heading towards the selected workstation for the next operation. The right image illustrates the 
scenario where the AMR waits in the buffer until the ongoing operation at the arrived workstation is 
completed. 
 In this study, the proposed DQN algorithm was trained through 310 simulation experiments. The agent 
interacts with the simulation environment and selects one of the predefined combination numbers as an 
action every 1,800 seconds (30 minutes). This 30-minute interval is defined as the unit time interval between 
two states. The ε-greedy method was used as the action selection strategy, where a random action is chosen 
if ε is less than the threshold value, otherwise, the action with the maximum Q-value is selected. The initial 
ε value was set to 1 and decreased at a fixed rate with each iteration to maintain a balance between 
exploration and exploitation throughout the simulation repetitions. Figure 5 shows the learning curve of the 
trained DQN algorithm, with the x-axis representing the number of training iterations and the y-axis 
representing the makespan in seconds. The proposed DQN algorithm achieved a makespan of 26,771 
seconds by selecting the action with the maximum Q-value at each moment, starting from the experiment 
with ε reaching 0 in the 300s range. 

 
Figure 5: Learning curve for DQN algorithm. 

 To evaluate the performance of the algorithm, we applied a single rule to each action selection and 
calculated the average makespan. We repeated the experiment five times with a goal of producing 60 
vehicles and computed the average of the results. Figure 6 illustrates the average makespan values obtained 
for each combination of priority rules. Among the disposable priority rules chosen as the control group, the 
second rule (Combination of SPT, FCFS) showed the shortest makespan at 27,880 seconds, while the ninth 
rule (Combination of LOJF, HJF) exhibited the longest makespan at 55,924 seconds. Comparing the 
makespan achieved by the DQN algorithm with those obtained when using static priority rules alone, the 
DQN algorithm demonstrated the shortest makespan, indicating its superior performance compared to other 
priority rules. The AORW (during the entire operation time) of the DQN algorithm and static priority rules 
over the entire operation time is shown in Figure 7. This was found to be at least 3% to a maximum of 31.4% 
higher compared to static priority rules combination. 
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Figure 6: Makespan of running priority rules and DQN algorithm. 

 

 
Figure 7: Comparison of AORW𝑡𝑡 Across Different Rules During the Entire Operation Time. 

 The reason why the DQN algorithm achieves a shorter makespan compared to static priority rule 
combinations is that it dynamically determines the utilization of each combination. The DQN algorithm 
uses the sum of AORW𝑡𝑡 and AORW𝑡𝑡 as a reward to minimize the makespan. Consequently, it continuously 
updates actions to learn the action that maximizes rewards according to the state. The rule combinations 
selected by the DQN algorithm to maximize rewards are shown in Table 5. Rule no.2 (Combination of SPT, 
FCFS) and rule no.8 (Combination of SWTF, HJF) are the two best-performing rule combinations among 
the remaining priority rules, excluding the DQN algorithm. 

Table 5: Action selection of the DQN algorithm. 
Application times for each action (Unit : Time) Combinations of Priority Rules 
00:00:00 ~ 02:30:00 Rule no.8 (Combination of  SWTF, HJF) 
02:30:00 ~ 07:26:11 Rule no.2 (Combination of  SPT, FCFS) 
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Table 6 compares the AORW𝑡𝑡over a 2-hour period when applying a single rule versus the DQN algorithm's 
rule changes. The points where the rules change are indicated in bold. Initially, the DQN algorithm selects 
rule 8, maintaining a high utilization rate for the first 2 hours and 30 minutes. After this period, it switches 
to rule no.2, allowing for a flexible response to changes in the workstation status. By selecting the optimal 
priority rule based on the workstation's status at this point, the DQN algorithm maintains a high overall 
utilization rate. 

Table 6: Difference in AORW𝑡𝑡 over time according to applied rules (Unit: Hour). 

Applied Rule 0.5 (%) 1 (%) 1.5 (%) 2 (%) 2.5 (%) 3 (%) 3.5 (%) 4 (%) 4.5 (%) 
DQN 0.35 0.64 0.78 0.79 0.78 0.74 0.80 0.78 0.81 

Rule no.2 0.35 0.67 0.81 0.76 0.73 0.68 0.75 0.79 0.80 
Rule no.8 0.35 0.64 0.78 0.79 0.78 0.69 0.73 0.72 0.80 

These rule changes can maximize overall throughput by applying the most suitable priority rule at each 
stage of the process. Table 7 shows a comparison of the reduction in WIP over time due to the rule changes 
by the DQN algorithm. The DQN algorithm begins to quickly reduce WIP from the 4-hour mark, achieving 
a greater reduction in WIP by the 6-hour mark compared to fixed priority rules. This indicates that the 
dynamic priority decisions made by the DQN algorithm are more effective during intermediate stages. 

Table 7: Difference in WIP over time according to applied rules (Unit: Hour). 

Applied Rule 1 (WIP) 2(WIP) 3(WIP) 4(WIP) 5(WIP) 6(WIP) 7(WIP) 7.5(WIP) 
DQN 60 60 60 58 54 35 11 0 

Rule no.2 60 60 60 60 59 42 15 3 
Rule no.8 60 60 60 59 59 49 24 8 

 
The common feature of the rules selected by the DQN algorithm is the use of the SWTF rule when 

selecting workstations. This helps minimize waiting time and increase processing speed. Additionally, 
when initially selecting task priorities, the DQN algorithm chooses HJF from rule no.8 to prioritize vehicles 
nearing completion. In other words, the combination of rules in rule no.8 is effective in quickly reducing 
the initial workload. Subsequently, based on the workstation status, the algorithm switches to rule no.2, 
applying FCFS to minimize waiting times across all workstations and enabling flexible task processing. 
Thus, the dynamic priority decisions made by the DQN algorithm can flexibly respond to the variability of 
the work environment by evaluating the workstation status at the observation point and selecting the optimal 
rule. This allows for the optimization of the workflow. 

6 CONCLUSION 

This study proposes a scheduling method based on the DQN algorithm that adapts to dynamic changes to 
apply optimal priority rules. Makespan, the time to complete all operations until the last vehicle, was used 
as the operational performance indicator. To apply the DQN algorithm, states, actions, and rewards were 
defined to suit the problem characteristics. To train and evaluate the scheduling model, a discrete event 
simulation was used to model and utilize a virtual matrix layout that represents the actual manufacturing 
environment. The proposed scheduling model demonstrated superior performance compared to fixed 
priority rules, validating the applicability and effectiveness of DQN-based scheduling. However, this study 
has several limitations. First, the applied DQN algorithm relies on predefined priority rules and may not 
fully reflect various production conditions. Although three rules were considered based on decision-making 
types, the actual production environment may have more diverse rules and complex situations. Second, this 
study targeted a small-scale matrix production system, so it is necessary to verify the proposed model's 
effectiveness in large-scale systems. Actual production lines are much larger and more complex than the 

3443



Lee, Oh, Park, Lee, Fan, Arinez, An, and Noh 
 

 
 

simulation model used in this study. Therefore, additional research targeting large-scale systems is needed, 
and experiments in large-scale environments are required to evaluate the model's scalability and 
generalization capability. Lastly, further research on real-time integration is needed. In this study, the DQN 
algorithm was set to select actions every 1,800 seconds (30 minutes). In actual production environments, it 
is crucial to explore the feasibility of real-time application using systems such as Internet of Things (IoT) 
devices, which can respond to production situations changing at the scale of minutes or seconds. 
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