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ABSTRACT

Agent-based models (ABMs) are used to simulate human-subject experiments. A comprehensive un-
derstanding of these human systems often requires executing large numbers of simulations, but these
requirements are constrained by computational and other resources. In this work, we build a framework
of digital twins for modeling human-subject experiments. The framework has three modules: ABMs of
player behaviors built from game data; extensions of these models to represent virtual assistants (agents
that are exogenously manipulated to create controlled environments for human agents); and an uncertainty
quantification module composed of functional ANOVA and a Gaussian process-based emulator. The em-
ulator is built from the extended ABM; we focus on emulator validation. By incorporating experimental
data and agent-based simulation data, our proposed framework enhances the virtual representation of the
dynamics in human-subject word formation experiments, which we consider a digital twin. Networked
anagram experiments are used as an exemplar to demonstrate the methods.

1 INTRODUCTION

1.1 Background and Motivation

Augmenting agent-based models. Agent-based modeling (ABM) has been used for many decades,
and with ever expanding modeling capabilities, there is a commensurate desire to expand the sets of
inputs to be analyzed, and the sizes of problems to solve (Matković et al. 2014). Oftentimes, there are
restrictions on computing resources, making it difficult to evaluate all possible input sets in a timely fashion.
Stochastic simulations require even more simulation executions, to account for variability. A case in point
is epidemiological simulations, whose value has been illustrated with recent Ebola and COVID outbreaks.
In a Cluster Computing and the Grid (CCGRID) Scale Challenge, Bhatele et al. (2017) demonstrated
that a stochastic agent-based simulation (ABS) of influenza, on a constructed digital twin of the U.S.
population incorporating 280 million people and 5.8 billion daily interactions over a 180-day simulation
period, could be completed in 10.4 seconds. This simulation and others used some of the most advanced
supercomputers at the time (Blue Waters, Cori, and Mira). For the first time, then, meaningful parametric
studies could be completed on a digital twin of the continental U.S. in less than 24 hours. The COVID
outbreaks demonstrated that the Centers for Disease Control and Prevention (CDC) require daily predictions
on disease propagation to assist in setting policy, so this simulation scaling has real-world implications.

Therefore, there is ample motivation to accelerate simulations and commensurate analyses of digital twins
for understanding phenomena, establishing causal relationships, and predicting or forecasting. Alternatives
to making massively parallel simulators (e.g., Bhatele et al. (2017)) are coupling simulations with other
analytic tools, such as dynamical systems models (Swinerd and McNaught 2012) and statistical models
(Boulesteix et al. 2020). By incorporating analytic tools to explore input spaces, these tools can efficiently
guide the selection of input parameters with which to run a reduced set of detailed ABSs. Also, using
statistical methods, one can build surrogate models based on ABM results (Edali and Yücel 2019; Wate
et al. 2020). For our purposes here, a surrogate model is a (statistical) model that takes as input a (sub)set
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of ABM parameters and predicts one output quantity of an ABS; it is trained on ABS data. Such surrogate
models, embedded in software called emulators, can then be run much more rapidly with far fewer resources,
enabling uncertainty quantification and the exploration of greater input spaces (Carbajal et al. 2017; Wate
et al. 2020). With the above motivation, this work devises an approach for integrating ABM and surrogate
modeling for understanding networked anagram games (i.e., word construction games).
Extending human behavior data and models. When building (agent-based) models based on experimental
data, the resulting models could be limited by the parameter space of the experiments. Therefore, it is
often desirable to calibrate such models (with appropriate analyses) and use them for conditions beyond
those of the experimental data. One use of extending models of human behaviors is for the design and
analysis of experiments involving virtual assistants (VAs). A virtual assistant is an agent that has realistic
behaviors that are controlled exogenously to purposely manipulate the environment of other agents (e.g.,
humans). Game designers often use VAs to control an ego’s environment (Kohavi et al. 2009). In this
work, we use data-driven modeling of heterogeneous human behaviors in word formation games, as an
exemplar, for extending an ABM.

Studying anagram games is useful because they are recognized as non-trivial cognitive tasks with
well-defined success parameters, e.g., whether a word is formed in a single-player game and the number of
words formed in a multi-player game (Cadsby et al. 2007). These games are used to research the effects
of and on cognitive physiological tasks, e.g., (Charness et al. 2014).
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𝑡1 𝑣0 𝑎3 𝑣0 requests “m” from 𝑣1.
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Figure 1: Illustrative networked group anagram game (NGrAG). The network G(V,E) of five players is on
the left, with two humans (v0,v2 ∈V ) and three VAs (v1,v3,v4 ∈V ). Sets Linit(k) of nl = 3 initial letters
are assigned to each vk ∈ V , k ∈ {0,1,2,3,4}. The set of permissible player action types is given in the
middle. The table on the right shows a time sequence of representative interactions between player v0 and
VA v1 in carrying out various actions of a game at time steps 0 < t1 < t2 < t3 ≤ tg.

1.2 Networked Anagram Game

Figure 1 is a representative instance of a networked group anagram game (NGrAG). On the left, a star
graph G(V,E) is specified with human hub node v0 and VAs for three of four leaf nodes (v1,v3,v4), which
along with human player v2, form the node set (i.e., player set) V . The four communication channels (i.e.,
lines) comprise the edge set E. Each node is assigned nl initial letters, placed by the players in rectangles.
Players can interact with their network neighbors, requesting letters and replying to letter requests (see
action set in the middle of Figure 1). A player who replies with a copy of a letter also retains that letter,
so the replier can continue to use that letter in her words. Each player may repeat these actions, in any
order, throughout the tg = 300 second game duration. The team’s earnings in a game are based on the total
number of words formed by the entire team; the earnings are split evenly among the players to encourage
them to cooperate during the game. Players can use a letter multiple times in the same word, e.g., see the
far right table in the figure: using t and o twice in word bottom. Once a player acquires a letter, she can
use it any number of times within and across words; the letter is never lost. This enables players to form
more words. Additional details and experimental results of over 240 games/experiments played online with
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all human subjects (i.e., no VAs) are provided in (Cedeno-Mieles et al. 2020). This is also the game we
model herein, and these data are used to build the models.

1.3 Novelty and Contributions

Novelty. The novelty of this work is two-fold. First, models of heterogeneous behaviors in VAs in ABSs
are presented. Second, NGrAG emulators are built from the ABM output. Both of these have seldom been
done for models based on experimental game data of human behavior. They have not been done for group
word construction games.

(a) Analysis methodology pipeline. (b) Game data space and expanded LPC-ABM and GPE
prediction spaces.

Figure 2: (a) The complete analysis pipeline for extrapolative analysis of experimental data. The upper
box, Analytical Model, is presented in prior work, which includes experimental validation of the models
(see text for references). The remaining two boxes, Agent-Based Model and Uncertainty Quantification,
are contributions of this work. (b) Conceptual view of the space of experiment inputs, denoting that the
models are built to explore input parameter spaces beyond those tested, with those of Gaussian Process
Emulator (GPE) beyond those of the Localized Probability Calibration Agent-Based Model (LPC-ABM).

Contributions. The contribution of the proposed framework can be summarized as the analysis pipeline
of Figure 2a. The first component, the upper dotted box titled Analytic Model, represents previous work
(Cedeno-Mieles et al. 2020; Liu et al. 2023) and the ABMs in it were validated extensively in (Cedeno-
Mieles et al. 2020). The second and third components are new and are part of our contribution. Our first
contribution, which is the second component (bottom left box in purple), Agent-Based Model, is a local
version of the Probability Calibration (PC) model (Liu et al. 2023), designated LPC model, that captures
heterogeneous behaviors across players (and agents) and within players over time. The ABM has been
extended to incorporate these modeling effects and is referred to as LPC-ABM. The models are presented
in Section 3.

Our second contribution is the third component (bottom right box in green) of Figure 2a. Functional
ANOVA (FANOVA) and Gaussian Process Emulator (GPE) inherently incorporate Uncertainty Quantifi-
cation (UQ), which enhances model capability and resource optimization. The concept of “uncertainty"
encompasses the uncertainty present in the game data, simulation outputs, and the outcomes produced by
the GP Emulator. The technical details of Functional ANOVA and GP Emulator are elaborated in Section 3,
and further discussions can be found in Górecki and Smaga (2019) and Gramacy (2016). Building surrogate
models remains a challenge (Heppenstall et al. 2021). Use of surrogate modeling for prediction and UQ
can be much more efficient than running a set of ABSs. It can greatly enhance wider exploration of input
parameter spaces of ABMs. This is conveyed in Figure 2b, where we illustrate that experimental data
can be used to create ABMs that can investigate a larger input space (owing to resource limitations in
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conducting experiments). Then, surrogate (e.g., Gaussian process) models can be built from simulation
output and used to construct emulators. The emulator space is greater than that for ABMs because more
analyses can be completed with an emulator, in a given amount of time.

Given the impracticality of enumerating all possible experimental conditions, our GPE facilitates
extrapolation into unexplored domains. In this work, FANOVA is run on LPC-ABM input/output to
identify the input parameters whose changes most affect a target dependent variable. GP modeling (GPM)
approaches use ABM simulation output to construct statistical models that emulate LPC-ABM; the software
that is produced are the GPEs. Execution of GPEs in this work focuses on emulator validation. Results of
FANOVA guide the specification of inputs to the GPE, but other input conditions can also be specified.

Our third contribution is the application of this pipeline and digital twin framework to NGrAG data.
LPC-ABM is used to produce the output of new player behaviors in games. Simulations include (1) node
of the game network that is occupied by a VA, (2) time segment of the 300-second game duration in which
VA behavior differs from human behavior, and (3) the level of deviation in the performance of VAs relative
to human subjects. Results show, for example, that the latter two factors more significantly affect results
than the first factor. Also, there are carry-over effects in that for some conditions, when VA behavior is
removed, the system’s performance remains greater than baseline system behaviors. Analyses confirm that
the quality of the GPE emulator predictions against LPC-ABM results are good, with the Nash-Sutcliffe
efficiency (NSE) above 98%.

The rest of this paper is organized as follows. Section 2 contains related work. Section 3 presents
the models, including details about the LPC-ABM, FANOVA and GPE introduced in Figure 2. Section 4
begins with a presentation of the LPC-ABM simulation results, followed by an analysis of the FANOVA
test outcomes and an evaluation of the GPE’s performance. Section 5 summarizes this paper and discusses
some future work.

2 RELATED WORK

Studies use statistics to steer simulations for exploring large input spaces. Matković et al. (2014) employed
hybrid steering of simulations in analyzing car engines, to identify new input parameter sets for simulation.
Their system enables a domain expert to interactively select data points (representing simulation inputs)
in an iterative manner, with the aid of regression to interpolate the simulation solution space. To realize
efficient but rigorous parameter space exploration in constructing neurological networks, Nowke et al.
(2018) developed an interactive tool for visualizing and steering parameters in neural network simulation
models.

Emulators are used as a proxy for simulation systems; classes of emulators are provided in Pietzsch et al.
(2020). The literature is vast and we give a small sampling here. Kasim et al. (2021) used neural networks
to build simulation emulators from small datasets, for climate and energy sciences. Wate et al. (2020)
built emulators from simulation data, using Gaussian process modeling, to predict heating and cooling
loads for buildings, incorporating variability in inputs through uncertainty quantification. Emulators for
communication in traffic simulations are described in (Babu and Kumar P 2022). We know of no works
that emulate group-based word construction games, as we do here.

3 THE PROPOSED METHODOLOGY

This section contains the models within the flowchart of Figure 2a. Sections 3.1 and 3.3 provide, respectively,
the LPC model and the LPC-ABM (see the bottom left box of the figure). Sections 3.4 and 3.5 contain,
respectively, details of FANOVA and the Gaussian process model in green in the bottom right box.

3.1 Localized Probability Calibration (LPC) Model

Given that a decision-making sequence of a player in a 5-minute NGrAG—see the right table in Figure 1
as a simple example of such sequences—can be treated as a discrete-time stochastic process, multinomial
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logistic regression is utilized to estimate the transition probabilities from a player’s current action to possible
next actions (Cedeno-Mieles et al. 2020).

The dynamics of an agent in the NGrAG are as follows. The action ai, i ∈ {1,2,3,4}, of a player/agent
at time (t − 1) is known. Permissible actions are those in the middle table of Figure 1. The goal is
to compute the player’s next action a j, j ∈ {1,2,3,4} at time t. The transition probability vector is
πππ i(t) = (πi1(t),πi2(t),πi3(t),πi4(t))T , where πi j is the probability that the next action is a j, given ai. For the
conditions at (t −1), including known i, the four πi j are computed using a multinomial logistic regression
model, and using these four probabilities, then a multinomial sampling is used to determine the player’s
action a j at time t (Cedeno-Mieles et al. 2020). This process is repeated over all agents at a fixed t, and
then over all 0 < t ≤ tg, in performing one simulation instance of the word game.

To generate behaviors not observed in the original experiments, a probability calibration (PC) model
is developed in Liu et al. (2023) to adjust the transition probability vector πππ i(t) as

πππ
α
i (t) ∝ (1+ααα) ·πππ i(t),

where ααα = (α1,α2,α3,α4)
T are calibration parameters. For example, ααα = (0,0,0,1)T means that an agent

is much more likely to form words because α4, corresponding to action a4, is elevated. A human agent
has ααα = (0,0,0,0)T . This model, however, assumes uniform calibration across all players throughout the
game’s duration, not accounting for the varied effects of VAs on different players at different times.

To address this shortcoming, we introduce a localized probability calibration (LPC) method to explore
the heterogeneous effects of VA usage among game players. Specifically herein, the transition probability
of only one node at a time in the network is calibrated for particular time segments, allowing for an in-depth
exploration of how the VA affects decision-making dynamics within the game. The calibration parameter
ααα(ṽ, τ̃) is defined as a function of node ṽ and time segment τ̃ , and the LPC model is expressed as

πππ
α
i (ṽ, τ̃) ∝ (1+ααα(ṽ, τ̃)) ·πππ i(t) .

3.2 Experimental Design

To investigate the heterogeneous effects of VAs, our experimental design focuses on three factors. First, node
ṽ, is the ID of the node to which the LPC is applied. The small ego network in Figure 3 represents a node in
a larger graph that has two neighbors. The node ṽ is either v0 or v1 in analyses below. Second, alpha value ααα

is the specific calibration vector applied to the node. In this study, we focus on calibrating the probability of
being idle πi1; hence, for simplicity, we denote α1 as α and explore four values α = α1 =−0.2,−0.4,−0.6,
and −0.8, while keeping α2 = α3 = α4 = 0. This makes the VA more active because the probability of
being idle is reduced. Third, τ̃ is the time segment where LPC is applied. The 300-seconds game is divided
into the three segments: τ̃ = 1: 1-100 seconds; τ̃ = 2: 101-200 seconds, and τ̃ = 3: 201-300 seconds.

Using a Full Factorial Design (FFD), there are 24 unique experimental runs to consider all possible
combinations of the three factors: node ṽ, alpha value α , and time segment τ̃ , as shown in Table 1.
Additionally, Table 2 provides an example of how the LPC model works within simulation run 9. The
FFD allows for a systematic examination of both individual and joint effects of multiple factors, and
therefore provides a more comprehensive understanding of how different factors collectively influence
decision-making dynamics in the NGrAG. Here, we restrict the LPC model to a single node, but the
proposed method easily extends to multiple nodes.

3.3 Local Probability Calibration Agent-Based Model and Simulation

The aforementioned LPC method is employed in the LPC-ABM simulation system, and a flowchart of the
operations is provided in Figure 4. The flowchart adheres to the game description of Section 1.2 quite
closely. After reading in simulation parameters such as the human/VA network, word corpus, and number
of simulations to conduct, per-agent inputs are read, e.g., multinomial logistic regression constants for
the transition model and initial letters to assign to each player. In this work, we perform 100 simulation
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Figure 3: Star-2 network GS2 where there are two leaf nodes (node v1 and v2) with degrees d1 = d2 = 1
and one hub node (v0) with d0 = 2. This small graph is intended as a subgraph for an ego node (v0) and its
neighbors within a larger graph. The orange nodes here are ṽ, which are assgined α =−0.2,−0.4,−0.6
and −0.8, while α2 = α3 = α4 = 0. The blue node always has ααα = (0,0,0,0), i.e., no calibration.

Table 1: The 24 simulation runs for 3 factors: node (ṽ), alpha value (ααα), and time segment (τ̃).

Run Node ṽ α Time Segment τ̃ Run Node ṽ α Time Segment τ̃ Run Node ṽ α Time Segment τ̃

1 Hub(v0) −0.2 1 9 Leaf(v1) −0.2 2 17 Hub(v0) −0.6 3
2 Hub(v0) −0.4 1 10 Leaf(v1) −0.4 2 18 Hub(v0) −0.8 3
3 Hub(v0) −0.2 2 11 Leaf(v1) −0.2 3 19 Leaf(v1) −0.6 1
4 Hub(v0) −0.4 2 12 Leaf(v1) −0.4 3 20 Leaf(v1) −0.8 1
5 Hub(v0) −0.2 3 13 Hub(v0) −0.6 1 21 Leaf(v1) −0.6 2
6 Hub(v0) −0.4 3 14 Hub(v0) −0.8 1 22 Leaf(v1) −0.8 2
7 Leaf(v1) −0.2 1 15 Hub(v0) −0.6 2 23 Leaf(v1) −0.6 3
8 Leaf(v1) −0.4 1 16 Hub(v0) −0.8 2 24 Leaf(v1) −0.8 3

Table 2: Illustration of the LPC model within simulation run 9 in Table 1: applying alpha values ααα =
(α1,α2,α3,α4) = (−0.2,0,0,0) at leaf node ṽ = v1 in the range [101, 200] seconds.

Node α in Time Segment τ̃

1-100 s 101-200 s 201-300 s
v0 0 0 0
v1 0 -0.2 0
v2 0 0 0

instances for each set of inputs. Before starting each instance, initial conditions are reset. Then, each
instance consists of looping over time in one-second intervals, from 0 to 300 seconds (0 seconds corresponds
to the initial conditions). At each time, each agent executes its model, represented by the two rows of five
boxes each in Figure 4. These boxes break down into three groups of activities. First, requests and replies
from other agents, sent in the previous step, are received by the appropriate agents at the beginning of
the agent’s activities and messages are put on queues (boxes 1-3). Second, the probability computations
of Section 3.1 are completed and the next action for an agent is determined (boxes 4-6). Third, the agent
executes the action, e.g., if the action is a j = a3, then the agent requests a letter from one of its neighbors
(see boxes 7-10). ααα is applied only to agents representing VAs (see last box, first row). We use fixed
time steps of one second, for the 300-second game, because the experimental (game) data show that the
granularity of successive actions by players is more than one second in the vast majority of the data.
Simulation outputs include actions of agents in time, from which counts of words formed, and requests
and replies made, can be computed.

3.4 Functional ANOVA for Analyzing ABS Data

To analyze the effects of the three factors (node ṽ, alpha value α , and time segment τ̃) on player behavior
in the LPC model, we adopt FANOVA, a technique for investigating differences in functional data across
different conditions. Suppose there are n replications for each simulation. Then the linear model for the
main effect of these three factors is
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Figure 4: Flowchart of LPC-ABM simulations. Inputs are read (listed below the left-most box), and initial
conditions are reset for the first (or next) simulation instance. The first (or next) time step begins. The
sequence of ten possible events are executed by each agent (see header above the ten boxes). When the
time step ends, if the maximum number of time steps is not reached for the current simulation instance,
then control goes to begin the next time step. Otherwise, control goes from end time step to the reset initial
conditions, as preparation for the next simulation instance (arrow not shown to reduce clutter).

yi jkl(t) = η +δi(t)+β j(t)+ γk(t)+ εi jkl(t), t = 1, ...,300,

i = 1, ..,a, j = 1, ..,b, k = 1, ..,c, l = 1, ...,n,

where yi jkl(t) represents the analyst-specified outcome (total number of words formed by all players, in
our case) for the lth replicate at time t, under the ith level of ṽ, the jth level of α , and the kth level of
τ̃; δi denotes the effect of the ith level of ṽ, with a = 2 levels: ṽ = v0 and ṽ = v1; β j denotes the effect
of the jth level of α , with b = 4 levels: α =−0.2,−0.4,−0.6, and −0.8; γk denotes the effect of the kth
level of τ̃ , with c = 3 levels: τ̃ = 1, 2, and 3; and εi jkl is an error term, assumed to be independently and
identically distributed N(0,σ2). In this work, n = 100 replicates.

FANOVA is used to test whether there is significant difference in functional data when factors are at
different levels over time. There are two types of tests we employ in this study.

1. Main effect test: This test aims to determine whether a particular factor has significant impact on
the outcome. For instance, to assess the effect of the LPC on node ṽ regarding the number of words formed
over time, the null hypothesis H0 can be written as

H0 : δ1(t) = δ2(t), t = 1, . . . ,300.

The alternative hypothesis H1 states that at least one level of δi(t) is different from others over the time
range. In this example, δ1(t) and δ2(t) represent the unknown effects of the factor node ṽ, and the estimation
and hypothesis testing are conducted using observed functional response yi jkl(t) (total number of words
formed by all players as a function of time t). The detailed procedures are illustrated in (Górecki and
Smaga 2019). The main effect tests are conducted for all three factors.

2. Pairwise test: Pairwise test compares the LPC outcomes to the baseline case (without LPC) represented
by y000l(t), l = 1, . . . ,n. The null hypothesis H0 is

H0 : µi jk(t) = µ000(t), t = 1, . . . ,300,
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where µi jk(t) = ∑
n
l=1 yi jkl(t)/n and µ000(t) = ∑

n
l=1 y000l(t)/n are the mean of the functional data over n

replications. The pairwise test is conducted across all 24 simulation conditions. For example, if we want
to compare the case of the VA being the hub node with α = α1 =−0.6 being operative in the range [101,
200] seconds, with respect to the baseline, then the null hypothesis would be H0 : µ132(t) = µ000(t). The
results of this pairwise test provide insight into whether there are statistically significant differences in the
response (which is the words formed by all nodes as a function of t) for the experimental setting in Run 15
in Table 1 compared to baseline.

Through FANOVA, we aim to systematically assess the impact of various factors on time-dependent
outcomes in the NGrAG. Investigating the main effect allows us to understand the individual impact of
each factor on the outcome, while the pairwise test allows for direct comparisons between specific levels
of the factors versus baseline.

3.5 Gaussian Process Emulator Based on LPC-ABM

The full factorial experimental design for ABSs proposed in Section 3.2 enables investigating the effects
of various experimental settings on human and VA behaviors. However, the exhaustive enumeration of
all possible conditions via LPC-ABM is impractical, particularly when our predictors are potentially time-
dependent functions. In response to this limitation, we introduce the GP model as an emulator, which is
a statistical model that enables us to extrapolate the full spectrum of VA and human behaviors under any
experimental conditions as shown in Figure 2b. In our full factorial design, the GP model is defined as
follows:

Y (x, t) = β0 +Z(x, t)+ ε, t = 1, ...,300,

where Y (x, t) is the functional response of the total number of words formed by all the players, β0 is the
overall mean of the data, and Z(x, t) ∼ GP(0,k(·, ·)) is a Gaussian process with mean 0 and covariance
function k(·, ·) (e.g., k(Y (x1, t1),Y (x2, t2)) =Cov(Y (x1, t1),Y (x2, t2))) defined as a separable product function
(Hung et al. 2015). The parameters in the covariance function are estimated through maximum likelihood
estimation (MLE). Then the distribution of prediction at new input points (i.e., new sets of inputs) can be
derived from conditional likelihood:

Y ∗(x∗, t∗) | D ∼ N (β0 +µ((x∗, t∗)),σ2((x∗, t∗))) ,

where D represents the set of all training data, N is a normal distribution, (x∗, t∗) represents the value of
new input points, and µ((x∗, t∗)), σ2((x∗, t∗)) are the prediction mean and variance (Gramacy 2016).

Although the GP model is a highly robust predictive tool, it demands considerable computational
resources (computation complexity of O(q3)). This is especially the case for time-dependent functional
responses, where the number of data points (q) is equal to the number of time points (300) multiplied
by the number of experimental settings (24). To mitigate this computational cost, we employ the local
approximation for Gaussian Process (laGP), which dynamically defines the support of a Gaussian process
predictor based on a local subset of the data (Gramacy 2016). The Leave-One-Out-Cross-Validation
(LOOCV) is adopted to evaluate the predictive performance of laGP. The specific criterion we selected is
the Nash-Sutcliffe efficiency (NSE) given by:

NSE = 1−
∑t∈[1,300](ŷpred(t)− ytest(t))2

∑t∈[1,300](ytest(t)− ȳ(t))
,

where ŷpred(t) is the predicted function from the GP model for t = 1, . . . ,300, ytest(t) is the function from
one of the 24 runs left out and treated as test data, and ȳ is the average of the test data. The NSE value
represents an estimate of the proportion of variability in the response Y explained by the predictive model,
analogous to R2 as a performance metric in the linear model.
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4 RESULTS

This section presents the ABS and GP emulator results from exercising the models of Section 3 for the
NGrAG configuration of Figure 3.

4.1 LPC-ABS and FANOVA Results

Figure 5 contains selected results from the FFD of Table 1. In all plots, the VA is node ṽ = v0, the hub
node in Figure 3, with α =−0.6 active during τ̃ = 2, i.e., during the time segment 101 ≤ t ≤ 200 seconds
of the 300-second game. Moving left to right across the figure, the plots are the time histories of number of
words formed, of letter requests made, and of (letter) replies sent. Each blue curve is the cumulative total
of all three agents in the graph, averaged over the 100 simulation instances; the individual instances are
in gray. The baseline results (averaged) in green represent no effects of VAs. The blue and green curves
deviate from each other near t = 100 seconds, when α is applied, as intuitively expected.

(a) α =−0.6, Total Words (b) α =−0.6, Requests (c) α =−0.6, Replies

Figure 5: LPC-ABM results for NGrAG and the network of Figure 3. Simulation conditions are: ṽ = v0;
τ̃ = 2 (i.e., the VA has its α value non-zero in the time range 101 ≤ t ≤ 200 seconds of the 300-second
game); and α =−0.6. (a) Numbers of words formed; (b) Numbers of letters requested; and (c) Numbers
of replies to letter requests. All values on y-axes are the cumulative numbers over all three agents; the
blue and green curves are averages over 100 simulation instances. The instances or replicates are in gray.
Error bars are ±1 standard deviation.

Figure 6 provides results for greater ranges of input conditions, focusing on the output of the cumulative
number of words formed across all three agents. Figure 6a employs v0 as the VA, and is active during
τ̃ = 2 (i.e., over 101 ≤ t ≤ 200 seconds). The VA becomes more active as α decreases from 0 to −0.8.
A large change in results is observed in going from α =−0.6 to −0.8, indicating that the effect of α is
nonlinear. Figure 6b shows the effect of time segment τ̃ over which α ̸= 0. The greatest effect is when α

is applied in the first time segment τ̃ = 1, i.e., in the range 1 ≤ t ≤ 100 seconds (in blue). The departure
from baseline is immediate. The results for τ̃ = 2 and 3 show lesser effects, and the times at which the
curves depart from baseline are in accord with the time segments. Interestingly, for τ̃ = 2, the behavior in
the third time segment (201 ≤ t ≤ 300 seconds) is retarded to the point that the results for τ̃ = 3 data catch
up. But these curves never catch up to the τ̃ = 1 curve. Figure 6c shows no effect of the location of the
VA (whether hub node [ṽ = v0] or leaf node [ṽ = v1]).

The behavior of time segment τ̃ on the results in Figure 6b is investigated in greater depth. Figure 7
presents the total words formed by the three agents within each time segment, for all four values of α .
Each box represents results from the 100 simulation instances. These results demonstrate that the trends
for the particular results in Figure 6b hold for all α , and although not shown, for all ṽ, on average. That
is, once a VA is active for one time segment of a simulation, the subsequent time segments show increased
numbers of words formed, so there is a lingering or carry over effect of α . For example, in Figure 7a, VA
is only operative in τ̃ = 1 (i.e., between 1 ≤ t ≤ 100 seconds), but the plot shows that the players will form
more words in each of the later time segments 101 ≤ t ≤ 200 seconds and 201 ≤ t ≤ 300 seconds. Also,
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(a) GS2, ṽ = v0, τ̃ = 2, 101 ≤ t ≤ 200 (b) GS2, ṽ = v0, α =−0.6 (c) GS2, α =−0.6, 101 ≤ t ≤ 200

Figure 6: LPC-ABM results highlighting the effects of (a) α value, (b) τ̃ over which α ̸= 0, and (c) node
that is the VA. The fixed variables are given below each plot. See text for explanation of results.

(a) α calibrated τ̃ = 1, 1 ≤ t ≤ 100 (b) α calibrated τ̃ = 2, 101 ≤ t ≤ 200(c) α calibrated τ̃ = 3, 201 ≤ t ≤ 300

Figure 7: Number of words formed by all three agents in the graph for each τ̃ and each α , when the VA is
active in (a) τ̃ = 1, (b) τ̃ = 2, and (c) τ̃ = 3. Each plot contains the average results from two simulations:
one where VA is the hub node (v0) and one where the VA is a leaf node (v1). Each plot contains three
collections of boxes, corresponding the cumulative number of words formed in each of the time ranges
[1, 100], [101, 200], and [201, 300]. The four boxes in each collection correspond to the four values of
α . Results show that when a VA is active during one particular time segment, the effects continue, in the
form of elevated numbers of words formed, in subsequent time segments.

the second group of boxes in Figure 7a, for τ̃ = 2, can be compared against the second group of boxes in
Figure 7c where α still has not been applied. In this comparison we see that the results for α =−0.2 are
comparable, but that there is an appreciable difference for α =−0.8. We write on average above because
boxes are averages of results for ṽ = v0 and ṽ = v1 conditions; there are particular cases where there are
not cumulative effects, as noted in Figure 6b for τ̃ = 2.

FANOVA, introduced in Section 3.4, is used to determine the significance of various factors on the
number of words formed. The p-value is used as a numerical measure of whether there are significant
differences between different levels of a factor. For the FFD specified in Table 1, the p-values for the
factors ṽ, α , and τ̃ are 8.3×10−6, 0, and 0, respectively, suggesting that all three factors have significant
influence on the total words formed. Table 3 presents results for more detailed pair-wise tests between each
run of Table 1 and the baseline, where there are no VAs (i.e., α = 0). There are extremely small p-values
for runs 13 through 24, and those for runs 2, 4, 8, and 10 are also small, suggesting that the magnitude of
α is the most influential factor on the outcome. The large p-values for runs 5, 9, and 11 indicate that there
is no significant different between the baseline and probability calibrated VA outcomes if the probability
calibration is introduced in a later stage of the game (i.e., τ̃ = 2 and τ̃ = 3) with small magnitudes of α .
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Table 3: P-values of pairwise tests for the 24 runs of Table 1. Results indicate that the magnitude of α is
the most influential factor for forming words and that there is no significant difference between the baseline
and VA-included simulations if the VA is introduced in a later stage with small magnitudes of α .

Run p-value Run p-value Run p-value Run p-value Run p-value Run p-value
1 0.025 5 0.620 9 0.449 13 0.000 17 0.000 21 0.000
2 0.000 6 0.065 10 0.005 14 0.000 18 0.000 22 0.000
3 0.137 7 0.593 11 0.581 15 0.000 19 0.000 23 0.001
4 0.000 8 0.006 12 0.146 16 0.000 20 0.000 24 0.000

4.2 Gaussian Process Emulator Prediction Results

The FFD framework enabled by LPC-ABM and the FANOVA testing results have established solid conditions
for predictive models. With GP models, we are able to interpolate and extrapolate to experimental conditions
that have not been simulated. Since a GP model naturally makes predictions with uncertainty measure,
it also facilitates the process of designing optimal experimental settings. Figures 8a and 8b illustrate the
LOOCV prediction results for selected runs. The GP model makes predictions with mean point-wise values
in red and with grey dashed lines as confidence bands (95% confidence interval); these bands contain the
(black) simulation test data.

(a) Run 12 as test data (b) Run 21 as test data (c) LOOCV NSE Boxplot
Figure 8: Results of laGP predictions. (a) and (b): LPC-ABM data serve as input to construct a GPE. laGP
predictions are given in red, with prediction intervals in gray. These intervals almost always contain the
corresponding test data, in black. (c) NSE results summarizing the goodness of fit across all 24 cases of
Table 1; results show good prediction capability.

Figure 8c contains an evaluation of the predictive performance of the laGP method, using Nash-Sutcliffe
Efficiency (NSE), which is analogous to R2 as a performance measure in a linear model. The laGP method
has a cross-validated NSE of 0.94 or higher and most of the simulation runs have NSE close to 1. This
means that the GP Emulator captures most of the variances in the observed data, suggesting high predictive
performance. (NSE is based on the average curves, shown in red in Figures 8a and 8b, and hence the larger
variances in laGP predictions do not affect NSE calculations.)

5 SUMMARY AND FUTURE WORK

In this work, we develop a framework of digital twins to enable the expansion of the input space to study
heterogeneous agent behaviors. The developed methods have been executed for a networked group word
formation game. As part of this input space expansion, we develop a Gaussian process method to emulate
agent-based simulations and validate the emulator predictions against simulation results. Contributions
of this work are provided in Section 1.3. There are many avenues for future work, such as improving
emulators to predict other quantities (e.g., number of interactions of players in the game). This highlights
an interesting aspect of the overall methodology: its flexibility in that methods and parameters can be
changed out.
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