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ABSTRACT

In this paper, we propose a new approach to sensitivity analysis by utilizing the Dirac Delta family method.
In a novel way, we combine it with the classical infinitesimal perturbation analysis (IPA) estimator, and
propose a new class of Dirac-Delta based sensitivity estimators, which we name as the Delta-Family
IPA estimators. We establish an explicitly computable error bound for the Delta-Family IPA estimators,
which bypasses the usual technical assumption of interchangeability of limit and differentiation as in the
literature of IPA stochastic derivatives estimators. Numerical examples of Greeks computations in the case
of European call options and Asian digital options illustrate the improved efficiency of the proposed method
as compared to the IPA method.

1 INTRODUCTION

Stochastic derivatives estimation is an important research area with far-reaching connections to contextual
areas in operations research. For example, it plays a crucial role in gradient-based optimization methods,
which are popular in machine learning applications, e.g., training of artificial neural network, (Peng et al.
2022), in statistics, e.g., estimating score function in maximum likelihood estimation, (Peng et al. 2020),
and in financial engineering, e.g., options Greeks estimation, (Chen and Liu 2014), etc.

In the literature, there are two prominent classes of methods for stochastic derivatives estimation: the
infinitesimal perturbation analysis (IPA), and the likelihood ratio method (LRM). There is a vast literature
on the IPA and LRM and their comparison, see for example (L’Ecuyer 1990; Fu 2006; Liu and Hong 2011;
Cui et al. 2020) and the references therein. There have also been various variants and extensions of these
two methods in the literature. However, to clearly illustrate the idea and advantages of the proposed method,
in this paper, we shall focus on comparing with the original IPA method. In particular, we utilize the
Dirac Delta family method to design a new stochastic derivative estimator, the Delta-Family IPA estimator.
We shall name it DF-IPA estimator in subsequent discussions. The possible combination of the Dirac
Delta family method with variants of IPA estimators shall be delegated to future research. In numerical
experiments, we found that our method almost always outperforms the traditional IPA and LRM. Even
under extreme parameter conditions, our method is not worse than IPA and LRM. By adjusting ε , our
method can achieve a smaller root mean square error.

A summary of the existing representative methods together with our proposed method is provided in
Table 1. It can be seen that our method allows the presence of both discontinuous sample performance
function and the structural parameter. On the other hand, the limitation of our method should be ac-
knowledged. Our method relies on the choice of ε . If ε is too small, then the results may be inaccurate.
Conversely, if ε is too large, the computation can become time-consuming and the results may be unstable.
The determination of the optimal choice of ε is left as future research.
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Table 1: Comparison of key methods.

Methods discontinuity of sample performance structural parameter
IPA Not allow Allow

LRM Allow Not allow
DF-IPA Allow Allow

The contributions of the paper are as follows:

1. We propose a new class of unbiased stochastic derivatives estimator based on the Dirac Delta family
method, which combines the Dirac Delta family representation with the IPA method.

2. We establish explicitly computable theoretical error bound for the DF-IPA estimator, bypassing the
need for the hard-to-verify interchangeability conditions as in the literature. This broadens the scope
of applications in which our method can be employed. It is of independent theoretical interest.

3. Numerical experiments demonstrate the improved efficiency of the proposed method against the
IPA and LRM, as measured by smaller root mean squared errors (RMSEs)

The remainder of the paper is organized as follows: Section 2 presents the main results on the construction
of the Delta-Family IPA estimator and analyzes its theoretical properties, including the convergence and the
explicitly computable error bound. Section 3 illustrates the new estimator in two applications: computing
Greeks of European options under the Variance Gamma process, and Greeks for Asian digital options.
Section 4 concludes the paper with a discussion of future research directions.

2 MAIN RESULTS

Recall that a Dirac delta function, denoted by δ , is a generalized function on the real line that is zero
everywhere except at zero, with an integral of one over the entire real line. To elucidate our method, we
first introduce the following definition of (Dirac) Delta family. For an open subset Ω⊂R, let C∞

c (Ω) denote
the space of infinitely differentiable functions on Ω with compact support. A function f belongs to L∞(Ω)
if there exists a real number M such that the absolute value of f is bounded by M almost everywhere in Ω.
Definition 1 A family of functions δε ∈ L∞(Ω) is said to be a Delta family on Ω if for each φ ∈C∞

c (Ω)
and x ∈Ω, the following holds:

lim
ε→0

∫
Ω

δε(x− y)φ(y)dy = φ(x). (1)

One can see that the Delta family essentially converges weakly to the Dirac Delta function as ε → 0.
Recall the sifting property of the Dirac Delta function, i.e.,∫

Ω

δ (x− y)φ(y)dy = φ(x). (2)

Then by (1) and (2), we can replace the Dirac Delta function by its equivalent distributional representations
using the tools of Delta family method, i.e., through Delta sequences. As for the Delta sequences, there
are many possible choices as documented in (Walter and Blum 1979), see Table 2 below.

For simplicity, throughout this paper, we utilize the Delta sequence based on the Normal density
function:

δ (x−a) = lim
ε→0

1
2
√

πε
e−

(x−a)2
4ε ,

where the convergence is in the weak sense and accordingly, the indicator function can be represented as

1{x≥a} =
∫ x−a

−∞

δ (u)du = lim
ε→0

1
2
√

πε

∫ x−a

−∞

e−
u2
4ε du.
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Table 2: Different types of Delta sequences.

Types Delta sequences δ (x− y)

Normal density 1
2
√

πε
e−

(x−y)2
4ε

Lorentzian type 1
π

ε

(x−y)2+ε2

Fourier integral 1
2π

∫ 1/ε

−1/ε
ei(x−y)tdt

Trigonometric function 1
2π

sin[( 1
ε
+ 1

2)(x−y)]
sin( 1

2 (x−y))

2.1 Delta Family Method Combined with IPA Estimator

Let the random variable S depend on a parameter θ and have a probability density f . For the differentiable
functions g and h, we consider the payoff of the following form G(S) = g(S)1{h(S)≥0}, and denote
p(θ) := E[G(S)]. The goal is to calculate p′(θ), the sensitivity of p(θ) with respect to θ .

From Theorem 1 of (Liu and Hong 2011), under some technical conditions for g and h, p′(θ) can be
expressed as follows:

p′(θ) = E
[
∂θ g(S)1{h(S)≥0}

]
−∂yE

[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

. (3)

Alternatively, by using the Dirac Delta family method, first we have the following representation:

p(θ) = E
[
g(S)1{h(S)≥0}

]
= lim

ε→0

1
2
√

πε
E
[

g(S)
∫ h(S)

−∞

e−
u2
4ε du

]
, (4)

such that one can differentiate w.r.t. θ and obtain the following representation:

p′(θ) = lim
ε→0

1
2
√

πε

(
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]
+E

[
g(S)e−

(h(S))2
4ε ∂θ h(S)

])
. (5)

Note that in order to obtain the above expression (5), it requires interchanging the limit and the differentiation.
We will make (5) rigorous in Proposition 3 by not only showing that (5) holds but also providing an explicitly
computable error bound between p′(θ) and the right hand side in (5) for any sufficiently small ε .

From the above, it can be observed that our approach is to first apply the Dirac Delta family method
to represent the probability density function, and then carry out the differentiation. However, in the
previous literature, the differentiation is usually carried out first, and then followed by the smoothing.
More specifically, (Liu and Hong 2009) apply Gaussian kernel smoothing to the expression (3), which is
obtained after the differentiation procedure. Our approach is instead to first represent p(θ) as in (4), and
then apply differentiation after the smoothing procedure. This explains the main distinction of our method
from the literature.

Next, as promised, we shall provide an explicit error bound, and more specifically, we would like to
upper bound the difference between (3) and

1
2
√

πε

(
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]
+E

[
g(S)e−

(h(S))2
4ε ∂θ h(S)

])
. (6)

We first introduce the following lemma that provides an error bound on the difference between the
first terms in (3) and (6).
Lemma 1 For any δ > 0, we have∣∣∣∣E[∂θ g(S)1{h(S)≥0}

]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]∣∣∣∣
≤ 2(E|∂θ g(S)|)1/2 (P(−δ ≤ h(S)≤ δ ))1/2 +2e−

δ2
4ε E [|∂θ g(S)|] .
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In particular, for any 0 < ε < 1, by taking δ =
√

4ε log(1/ε), we have∣∣∣∣E[∂θ g(S)1{h(S)≥0}
]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]∣∣∣∣
≤ 2(E|∂θ g(S)|)1/2

(
P(−

√
4ε log(1/ε)≤ h(S)≤

√
4ε log(1/ε))

)1/2
+2εE [|∂θ g(S)|] .

Next, we have the following lemma that provides an error bound on the difference between the second
terms in (3) and (6).
Lemma 2 Assume that h is monotonically increasing and s∗ is the unique value such that h(s∗) = 0 and
h′(s∗) ∈ (0,∞). Moreover, g(s∗)∂θ h(s∗) f (s∗) 6= 0, where f is the probability density function of S. Then,
there exists some C0 > 0 which can be computed out explicitly, such that for any sufficiently small ε ,∣∣∣∣ 1

2
√

πε

∫
∞

−∞

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds+∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

∣∣∣∣≤C0ε.

By applying the above two technical lemmas to (3) and (6), we obtain the following proposition in a
straightforward way, and thus its proof is omitted.
Proposition 3 Assume that h is monotonically increasing and s∗ is the unique value such that h(s∗) = 0
and h′(s∗) ∈ (0,∞). Moreover, g(s∗)∂θ h(s∗) f (s∗) 6= 0, where f is the probability density function of S.
Then, there exists some C0 > 0 which can be computed out explicitly, such that for any sufficiently small
ε , ∣∣∣∣p′(θ)− 1

2
√

πε

(
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]
+E

[
g(S)e−

(h(S))2
4ε ∂θ h(S)

])∣∣∣∣
≤C0ε +2(E|∂θ g(S)|)1/2

(
P(−

√
4ε log(1/ε)≤ h(S)≤

√
4ε log(1/ε))

)1/2
+2εE [|∂θ g(S)|] .

Note that Proposition 3 essentially states that it is possible to replace p′(θ) by the expression in (6)
and the error is controllable by an explicitly computable upper bound given in Proposition 3. In proving
the result, we bypass the traditional hard-to-verify interchangeability conditions in the IPA literature. Thus
in practice, we can conveniently use (5) to compute p′(θ), as we not only know the explicit form of the
maximum error, but also know that this maximum error is converging to zero as ε is taken arbitrarily small.

Note that if we further suppose that h and g are independent of θ , which implies that h and g themselves
do not contain θ . Then ∂θ h(S) can be interpreted as h′(S) ∂S

∂θ
, and ∂θ h(s) is given by:

∂θ h(s) = h′(S)
∂S
∂θ

∣∣∣
S=s

. (7)

Similarly, ∂θ g(S) = g′(S) ∂S
∂θ

, and ∂θ g(s) = g′(S) ∂S
∂θ
|S=s.

Remark 4 The assumptions of Proposition 3 are satisfied in practice, and they are also met in subsequent
numerical examples. For most financial options, h is a linear function that increases monotonically.
g(s∗)∂θ h(s∗) f (s∗) 6= 0 means g(s∗), ∂θ h(s∗) and f (s∗) are all not equal to zero. By (7), ∂θ h(s∗) =
h′(S) ∂S

∂θ

∣∣∣
S=s∗

. When h′(s∗) ∈ (0,∞), we only need ∂S
∂θ

∣∣∣
S=s∗
6= 0.

Therefore, by Proposition 3, we can represent the Delta-family IPA estimator (denoted as DF-IPA)
equivalently as

DF-IPA = lim
ε→0

1
2
√

πε

{
∂θ g(S)

∫ h(S)

−∞

e−
u2
4ε du+g(S)e−

(h(S))2
4ε ∂θ h(S)

}
= lim

ε→0

1
2
√

πε

{
∂θ S

(
g′(S)

∫ h(S)

−∞

e−
u2
4ε du+g(S)e−

(h(S))2
4ε h′(S)

)}
. (8)
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2.2 Applications to Greeks of European Options

Let us take a simple example of the European call option payoff at maturity, i.e. G(S) = (S−K)+ where
g(S) = h(S) = S−K. Then we have

E[(ST −K)+] = E
[
(ST −K)1{ST≥K}

]
= E

[
(ST −K)

∫ ST−K

−∞

δ (u)du
]

= lim
ε→0

1
2
√

πε
E
[
(ST −K)

∫ ST−K

−∞

e−
u2
4ε du

]
.

To summarize, we have

E[(ST −K)+] = lim
ε→0

1
2
√

πε
E[aDF−IPA(ST −K)], (9)

where

aDF−IPA(x) := x
∫ x

−∞

e−
s2
4ε ds.

For the DF-IPA approach, by taking the derivative of (9) w.r.t. θ and by chain rule, we obtain:

∂

∂θ
E[(ST −K)+] = lim

ε→0

1
2
√

πε
E
[(

∂ST

∂θ

)
·
(∫ ST−K

−∞

e−
u2
4ε du+(ST −K)e−

(ST−K)2

4ε

)]
.

Then

DF-IPA := lim
ε→0

1
2
√

πε

(
∂ST

∂θ

)
·
(∫ ST−K

−∞

e−
u2
4ε du+(ST −K)e−

(ST−K)2

4ε

)
. (10)

θ represents different parameters in the model corresponding to different Greeks. For example, in (10),
delta corresponds to θ = S0, and vega corresponds to θ = σ .

We can similarly derive the DF-IPA formula for the Greeks of Asian digital options, and detailed
derivations are available upon request.

3 NUMERICAL EXPERIMENTS

For comparison purposes and in order to distinguish the notations of the classical method from ours, we
denote the IPA estimator based on our Dirac Delta family method by “DF-IPA”, and denote the classical
IPA and LRM by “IPA” and “LRM” respectively. In this section, each result is conducted through Monte
Carlo simulations and all the estimators are estimated through 100 independent runs.

3.1 Greeks of European Options under Variance Gamma Process

In this section, we consider the same example of a Variance Gamma (VG) model as presented in (Glasserman
and Liu 2011), which proposed the LRM using the characteristic functions or Laplace transforms. Assume
that under the risk-neutral measure, the asset dynamic follows ST = S0 exp((r + b)T +XT ), where b =
log(1− θν −σ2ν/2)/ν . Here θ ,ν and σ are the parameters of a VG model, which is defined by the
following: Let Wt be a standard Brownian motion, γ

(ν)
t be the gamma process with drift µ = 1 and variance

parameter ν , then the VG model Xt can be represented as a Brownian motion subordinated to a gamma
subordinator, i.e.,

Xt = B(θ ,σ)
γν

t
= θγ

(ν)
t +σW

γ
(ν)
t
,
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whose Laplace transform is given by

L(u) = E
[
e−uXt

]
=

(
1

1+θνu−ρ2νu2/2

)t/ν

,

where B(θ ,σ) is a Brownian motion with drift θ and volatility σ and W is a standard Brownian motion. For
the European call option, denote p(X) := e−rTE[(ST −K)+], we focus on the Greeks delta (∂ p/∂S0)
and vega (∂ p/∂σ ).

We replicate the parameters in (Glasserman and Liu 2011), where S0 = 100,r = 0.05,T = 1,σ = 0.2,θ =
−0.15,K = 100, ν = {1,0.5}. They also provide the values of Greeks (delta, vega) as the benchmark, see
Table 1 in (Glasserman and Liu 2011). The root mean square error (RMSE) is a commonly used metric
for evaluating the performance of a model. It measures the average magnitude of the error between the
results of our method and the benchmark. The RMSE is defined as:

RMSE =

√
1
n

n

∑
i=1

(yi− ŷ)2,

where n is the number of independent runs, yi is the result of the i-th run and ŷ is the benchmark. In
Table 3, we report RMSE of five estimators with different sample sizes and 100 independent runs, where
“LRM” denotes the proposed method in (Glasserman and Liu 2011), employing the parameters: truncation
parameter Tp = 100 and grid spacing δ = 0.05. It is shown that DF-IPA significantly outperforms the
remaining two estimators in all cases, even with M = 104, the performance of DF-IPA is better than that
of IPA and LRM at M = 106.

Table 3: RMSE for Greeks of European call options under the VG model.

M = 104 M = 105 M = 106

RMSE delta vega delta vega delta vega

ν = 1

DF-IPA 0.0055 0.7731 0.0016 0.2741 5.9421E-04 0.0745
IPA 0.0371 1.3557 0.0375 1.2911 0.0373 1.1810

LRM 0.7726 6.9233 0.5390 4.5282 0.3767 3.7516

ν = 0.5

DF-IPA 0.0056 0.7696 0.0020 0.2654 4.9188E-04 0.0875
IPA 0.0359 1.6572 0.0356 1.4967 0.0355 1.4561

LRM 0.6765 6.0926 0.5051 4.0755 0.3271 3.5637

3.2 Greeks of Asian Digital Option under OU Process

In this section, we consider an example of Asian digital option, where the underlying asset is assumed
to follow an Ornstein-Uhlenbeck (OU) process that satisfies the following stochastic differential equation
(SDE):

dSt = κ(µ−St)dt +σdWt , t ≥ 0, (11)

where {Wt , t ≥ 0} is a standard Brownian motion and the solution of (11) can be written as

St = µ +(S0−µ)e−κt +σ

∫ t

0
e−κ(t−u)dWu.

The payoff of the Asian digital option is given by1{S̄≥K} with S̄= 1
n

n
∑

i=1
Sti and ti = i ·T/n, which is considered

in (Liu and Hong 2011). We aim to estimate delta, vega and theta for A(θ) = e−rTE[1{S̄≥K}], which
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are defined by ∂A/∂S0,∂A/∂σ and −∂A/∂T , respectively. In our setting, g(S) = 1, h(S) = S̄−K. By (8),
we obtain the following estimators using the Delta family method:

DF-IPA =e−rT · lim
ε→0

1
2
√

πε
· ∂ S̄

∂θ
e−

(S̄−K)2
4ε ,

The classical IPA and LRM estimators can be also derived, which are illustrated in (Liu and Hong 2011).
We replicate the parameters specified as r = 0.05,σ = 0.3,κ = 0.2,µ = 98,S0 = 100,K = 100 and T = 1 in
(Liu and Hong 2011), and they also provide the exact values with different numbers of discrete monitoring,
which are regarded as the benchmark. We report the variance of the three estimators with varying sample
sizes for fixed ε = 1/300, which is found to be sufficiently accurate from pilot numerical experiments. In
Figure 1, it is obvious that DF-IPA outperforms the other two estimators significantly in terms of variance.
Moreover, the variance of DF-IPA remains quite small even with a small sample size, indicating that its
performance is more stable than the classical IPA and LRM. We conduct a comparison among these three
estimators for delta, vega and theta in terms of the root mean squared error (RMSE). The results are
presented in Table 4, where N denotes the number of discrete monitoring time points. One can observe
that the DF-IPA exhibits the lowest root mean square error (RMSE) in all cases. The results of DF-IPA
show minimal variation with different numbers of discrete monitoring N, while the results of IPA and LRM
fluctuate with different N.
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3 10
3
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3

5 10
3
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3
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Figure 1: Variance of our method with respect to sample size M for delta under the OU process.

Table 4: RMSE for Greeks of Asian digital option under the OU process.

N=10 N=20 N=50
delta vega theta delta vega theta delta vega theta

DF-IPA 0.0292 0.0124 0.0020 0.0156 0.0155 0.0062 0.0209 0.0132 0.0019
IPA 0.0600 0.0344 0.0120 0.1169 0.0412 0.0300 0.1049 0.0781 0.0594

LRM 0.0718 0.0228 0.0172 0.0707 0.0207 0.0094 0.0399 0.0256 0.0081
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4 CONCLUSION

In this paper, drawing on the Dirac Delta family method, we devise a new stochastic derivative estimator, the
DF-IPA estimator. Explicit error bounds are established for the newly proposed estimator and we manage
to bypass the hard-to-verify assumption of intechangeability of limit and differentiation in the literature
on IPA estimators. We illustrate the new class of estimators through numerical examples and demonstrate
the improved efficiency as compared to IPA estimator, as measured by a smaller RMSE.

It is of interest to extend the DF-IPA estimator to cases of computing sensitivities of quantiles (Hong
2009; Cui and Ding 2022) and distortion risk measures (Glynn et al. 2021). It is also interesting to compare
the performance of our method with the generalized likelihood ratio method in (Peng et al. 2019) and
other variants. We leave these topics to future research.

A PROOFS

A.1 Proof of Lemma 1

First, we can compute that for any δ > 0,

E
[
∂θ g(S)1{h(S)≥0}

]
= E

[
∂θ g(S)1{h(S)≥δ}

]
+E

[
∂θ g(S)1{h(S)≥0}1{h(S)<δ}

]
,

and

1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]
=

1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)≥δ}

]
+

1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)<δ}

]
.

This implies that∣∣∣∣E[∂θ g(S)1{h(S)≥0}
]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]∣∣∣∣
≤
∣∣∣∣E[∂θ g(S)1{h(S)≥δ}

]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)≥δ}

]∣∣∣∣
+
∣∣E[∂θ g(S)1{h(S)≥0}1{h(S)<δ}

]∣∣+ ∣∣∣∣ 1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)<δ}

]∣∣∣∣ .
We can compute that∣∣∣∣E[∂θ g(S)1{h(S)≥δ}

]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)≥δ}

]∣∣∣∣
=

∣∣∣∣ 1
2
√

πε
E
[

∂θ g(S)
∫

∞

h(S)
e−

u2
4ε du ·1{h(S)≥δ}

]∣∣∣∣
≤ 1

2
√

πε

∫
∞

δ

e−
u2
4ε du ·E [|∂θ g(S)|]

= P(Xε ≥ δ )E [|∂θ g(S)|] ,

where Xε ∼N (0,2ε). For any θ > 0,

P(Xε ≥ δ )≤ E[eθXε ]e−θδ = eθ 2εe−θδ ,
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so that P(Xε ≥ δ )≤ e−
δ2
4ε by choosing θ = δ

2ε
. Therefore, we obtain∣∣∣∣E[∂θ g(S)1{h(S)≥δ}

]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)≥δ}

]∣∣∣∣
≤ e−

δ2
4ε E [|∂θ g(S)|] .

Next, we can compute that∣∣E[∂θ g(S)1{h(S)≥0}1{h(S)<δ}
]∣∣≤ (E|∂θ g(S)|)1/2 (P(0≤ h(S)≤ δ ))1/2 ,

where we have applied the Cauchy-Schwarz inequality and moreover,∣∣∣∣ 1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)<δ}

]∣∣∣∣
≤
∣∣∣∣ 1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)<δ}1{h(S)>−δ}

]∣∣∣∣
+

∣∣∣∣ 1
2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du ·1{h(S)≤−δ}

]∣∣∣∣
≤ E

[
|∂θ g(S)| ·1{h(S)<δ}1{h(S)>−δ}

]
+P(Xε ≤−δ )E [|∂θ g(S)|]

≤ (E|∂θ g(S)|)1/2 (P(−δ ≤ h(S)≤ δ ))1/2 + e−
δ2
4ε E [|∂θ g(S)|] .

Hence, we conclude that∣∣∣∣E[∂θ g(S)1{h(S)≥0}
]
− 1

2
√

πε
E
[

∂θ g(S)
∫ h(S)

−∞

e−
u2
4ε du

]∣∣∣∣
≤ 2(E|∂θ g(S)|)1/2 (P(−δ ≤ h(S)≤ δ ))1/2 +2e−

δ2
4ε E [|∂θ g(S)|] .

This completes the proof.

A.2 Proof of Lemma 2

First, we can compute that

−∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

= lim
η→0

1
η

(
E
[
g(S)∂θ h(S)1{h(S)≥0}

]
−E

[
g(S)∂θ h(S)1{h(S)≥η}

])
= lim

η→0

1
η

∫ h−1(η)

h−1(0)
g(s)∂θ h(s) f (s)ds,

where we assume that f is the probability density function of S and moreover we assume that h is a
monotonic increasing function such that its inverse function h−1 exists.

Let us assume that

lim
η→0

h−1(η)−h−1(0)
η

= c,

for some c ∈ [0,∞]. We discuss c in three cases in the sequel.
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(i) If c = 0, then, it is easy to see that

−∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

= 0.

This is a trivial case, and in this case, we do not need to introduce an estimator of−∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

since we know this quantity equals to 0.
(ii) If 0 < c < ∞, then

−∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

= c ·g(h−1(0))∂θ h(h−1(0)) f (h−1(0)).

Note that if g(h−1(0))∂θ h(h−1(0)) f (h−1(0)) = 0, then we do not need to introduce an estimator of
−∂yE

[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

since we know this quantity equals to 0.

(iii) If c = ∞, then −∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

diverges and since it is a trivial case, we do not

discuss this case.
More generally, if

∫ h−1(η)

h−1(0) g(s)∂θ h(s) f (s)ds does not go to 0 as η → 0, then

−∂yE
[
g(S)∂θ h(S)1{h(S)≥y}

]∣∣∣
y=0

= ∞,

and we do not need to introduce an estimator of it. If limη→0
∫ h−1(η)

h−1(0) g(s)∂θ h(s) f (s)ds = 0, then by
L’Hôpital’s rule,

lim
η→0

1
η

∫ h−1(η)

h−1(0)
g(s)∂θ h(s) f (s)ds = lim

η→0

g(h−1(η))∂θ h(h−1(η)) f (h−1(η))

h′(h−1(η))

= lim
s→0

g(s)∂θ h(s) f (s)
h′(s)

.

On the other hand,

1
2
√

πε
E
[

g(S)e−
(h(S))2

4ε ∂θ h(S)
]
=

1
2
√

πε

∫
∞

−∞

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds.

We assumed that h is monotonically increasing, and let us assume that s∗ is the unique value such that
h(s∗) = 0. We also assume that g(s∗)∂θ h(s∗) f (s∗) 6= 0.

For any M > 0,

1
2
√

πε

∫
∞

−∞

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds

=
1

2
√

πε

∫ h−1(M)

h−1(−M)
g(s)e−

(h(s))2
4ε ∂θ h(s) f (s)ds

+
1

2
√

πε

∫
s/∈[h−1(−M),h−1(M)]

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds,

where it is easy to see that∣∣∣∣ 1
2
√

πε

∫
s/∈[h−1(−M),h−1(M)]

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds
∣∣∣∣≤ e−

M2
4ε

2
√

πε
E [|g(S)∂θ h(S)|] .
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We consider case (ii), that is,

lim
η→0

h−1(η)−h−1(0)
η

= c ∈ (0,∞).

This is equivalent to

h′(s∗) =
1
c
∈ (0,∞).

By Laplace’s method, one has∫ h−1(M)

h−1(−M)
g(s)e−

(h(s))2
4ε ∂θ h(s) f (s)ds∼ g(s∗)∂θ h(s∗) f (s∗)

√
2πε

∂ 2

∂ s2
(h(s))2

4 |s=s∗

,

as ε → 0, where f ∼ g means f/g→ 1. One can compute that

∂ 2

∂ s2
(h(s))2

4

∣∣∣∣∣
s=s∗

=
1
2
(
(h′(s))2 +h(s)h′′(s)

)∣∣∣∣∣
s=s∗

=
1

2c2 .

Hence, we conclude that
1

2
√

πε

∫
∞

−∞

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds∼ c ·g(s∗)∂θ h(s∗) f (s∗),

as ε → 0. Indeed, by applying Proposition 3 in (Aristoff and Zhu 2018), one can show that there exists
some C0 > 0 which can be computed out explicitly, such that for any sufficiently small ε ,∣∣∣∣ 1

2
√

πε

∫
∞

−∞

g(s)e−
(h(s))2

4ε ∂θ h(s) f (s)ds− c ·g(s∗)∂θ h(s∗) f (s∗)
∣∣∣∣≤C0ε.

The proof is complete.

REFERENCES
Aristoff, D. and L. Zhu. 2018. “On the phase transition curve in a directed exponential random graph model”. Advances in

Applied Probability 50(1):272–301.
Chen, N. and Y. Liu. 2014. “American option sensitivities estimation via a generalized infinitesimal perturbation analysis

approach”. Operations Research 62(3):616–632.
Cui, Z. and K. Ding. 2022. “Quantile sensitivity estimation through Delta family method”. In 2022 Winter Simulation Conference

(WSC), 939–950 https://doi.org/10.1109/WSC57314.2022.10015438.
Cui, Z., M. C. Fu, J.-Q. Hu, Y. Liu, Y. Peng and L. Zhu. 2020. “On the variance of single-run unbiased stochastic derivative

estimators”. INFORMS Journal on Computing 32(2):390–407.
Fu, M. C. 2006. “Gradient Estimation”. Volume 13 of Handbooks in Operations Research and Management Science, 575–616.

Elsevier.
Glasserman, P. and Z. Liu. 2011. “Sensitivity estimates from characteristic functions”. Operations Research 58(6):1611–1623.
Glynn, P. W., Y. Peng, M. C. Fu, and J.-Q. Hu. 2021. “Computing sensitivities for distortion risk measures”. INFORMS Journal

on Computing 33(4):1520–1532.
Hong, L. J. 2009. “Estimating quantile sensitivities”. Operations Research 57(1):118–130.
L’Ecuyer, P. 1990. “A unified view of the IPA, SF, and LR gradient estimation techniques”. Management Science 36(11):1364–1383.
Liu, G. and L. J. Hong. 2009. “Kernel estimation of quantile sensitivities”. Naval Research Logistics 56(6):511–525.
Liu, G. and L. J. Hong. 2011. “Kernel estimation of the Greeks for options with discontinuous payoffs”. Operations

Research 59(1):96–108.
Peng, Y., M. C. Fu, B. Heidergott, and H. Lam. 2020. “Maximum likelihood estimation by Monte Carlo simulation: Toward

data-driven stochastic modeling”. Operations Research 68(6):1896–1912.
Peng, Y., M. C. Fu, J.-Q. Hu, and L. Lei. 2019. “Estimating quantile sensitivity for financial models with correlations and

jumps”. In 2019 Winter Simulation Conference (WSC), 962–973 https://doi.org/10.1109/WSC40007.2019.9004858.
Peng, Y., L. Xiao, B. Heidergott, L. J. Hong and H. Lam. 2022. “A new likelihood ratio method for training artificial neural

networks”. INFORMS Journal on Computing 34(1):638–655.
Walter, G. and J. Blum. 1979. “Probability density estimation using delta sequences”. Annals of Statistics 7(2):328–340.

2557

https://doi.org/10.1109/WSC57314.2022.10015438
https://doi.org/10.1109/WSC40007.2019.9004858


Cui, Ding, Liu, and Zhu

AUTHOR BIOGRAPHIES
ZHENYU CUI is an Associate Professor in Financial Engineering in the School of Business at Stevens Institute of Technology.
He holds a Ph.D. degree in Statistics from University of Waterloo. His research interests include derivatives pricing, Monte
Carlo methods, nonparametric statistics and financial technology. His email address is zcui6@stevens.edu.

KAILIN DING is an Assistant Professor in the School of Economics & Management at Nanjing University of Science and
Technology, China. She holds a Ph.D. degree in Mathematics from Nankai University. Her research interests include quantitative
finance and numerical simulation. Her email address is klding@njust.edu.cn.

YANCHU LIU is a Professor of Finance at Lingnan College, Sun Yat-sen University, China. He holds a Ph.D. degree in
Financial Engineering from Chinese University of Hong Kong. His research interests include financial engineering and financial
technology. His email address is liuych26@mail.sysu.edu.cn.

LINGJIONG ZHU holds the Thinking Machines Eminent Scholar Chair in the Department of Mathematics at Florida State
University. He has a PhD in Mathematics from Courant Institute of Mathematical Sciences at New York University. His
research interests include applied probability, data science, operations research and financial engineering. He serves on the
editorial board of Probability in the Engineering and Informational Sciences. His email address is zhu@math.fsu.edu.

2558

mailto://zcui6@stevens.edu
mailto://klding@njust.edu.cn
mailto://liuych26@mail.sysu.edu.cn
mailto://zhu@math.fsu.edu

	INTRODUCTION
	MAIN RESULTS
	Delta Family Method Combined with IPA Estimator
	Applications to Greeks of European Options

	NUMERICAL EXPERIMENTS
	Greeks of European Options under Variance Gamma Process
	Greeks of Asian Digital Option under OU Process

	CONCLUSION
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2


