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ABSTRACT

This paper introduces a new perspective on the problem of finite sample Ranking and Selection. An
asymptotically equivalent approximation to the probability of correct selection in terms of power series
is derived beyond the classic large deviations principle that has been widely adopted for the design and
measurement of allocation policies. The novel approximation method provides more information on the
finite sample performance of allocation policies, based on which a new finite computing budget allocation
policy is proposed. The asymptotically equivalent approximation may also serve as an estimate of policy
performance after allocating the samples. We develop a simple finite computing budget allocation policy
based on our approximation and carry out experiments in various settings to show its superiority.

1 INTRODUCTION

This paper considers the problem of Ranking and Selection (R&S) that has been actively studied for decades
(Bechhofer et al. 1995; Goldsman et al. 1998; Chen and Lee 2011). The classic R&S problem involves
selecting the best simulation design with the largest mean output among a finite number of alternatives
via Monte Carlo simulation. The primary goal of R&S is more about correct identification rather than
achieving sufficiently accurate estimates for mean simulation outputs, which is why R&S is also regarded
as an Ordinal Optimization problem (Ho et al. 1992). A central issue therein arises as balancing the cost of
computationally expensive simulation and reducing uncertainty in comparing alternatives. Throughout this
paper, we will assume a fixed-budget setting where the total number of available simulation samples for all
alternatives is predetermined, and we aim to intelligently allocate the limited budget in order for correct
identification. Moreover, the performance of an allocation rule will be evaluated using the well-known
probability of correct selection (PCS) when the budget is exhausted.

In recent years, there has been growing research interest in the special case of a limited budget
constraint. This interest stems from the increasing demand for practical applications, such as simulating
complex systems like socio-cyber-physical systems (Szabo et al. 2023) and digital twin systems (Boschert
and Rosen 2016), which has led to a rise in computational intensity. The budgets for these applications tend
to be relatively small, driven by the practical need for quick responses. As simulation systems become more
complex, the number of decision variables within these systems also scales up, giving rise to large-scale
problems (Hong et al. 2021). Consequently, the cost of conducting simulations has further increased, and
simulation resources are inadequate. Moreover, the behavior of allocation rules may exhibit essentially
different properties with a small budget size. For instance, Peng et al. (2015) describes a low-confidence
scenario where the total budget is absolutely small or relatively small, due to large variances and/or
small mean gaps between alternatives, and exemplifies a counter-intuitive phenomenon: PCS may not be
monotonically increasing with respect to the amount of simulation budget of some alternatives, which
does not often appear when the simulation budget is sufficiently large. Therefore, the allocation policies
designed for a sufficient budget should be improved for finite budget cases.
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An in-depth examination of PCS evaluation is necessary to improve the finite sample performance of
R&S procedures. The optimal computing budget allocation (OCBA), initialized by Chen (1995) and Chen
et al. (2000), is among the most widely adopted allocation rules in fixed-budget settings. It relies on a lower
bound for the PCS derived from the Bonferroni inequality. Chen et al. (2000) derives an approximately
optimal sampling ratio, i.e., the fraction of the simulation budget allocated to each alternative, maximizing
the lower bound at the point when no simulation samples have been collected. The approximation heavily
relies on the assumption that the best alternative should receive a significantly larger budget than others
asymptotically. Glynn and Juneja (2004) introduce a large deviations principle (LDP) for PCS, which
asserts that PCS converges to 1 exponentially and provides an explicit expression for the convergence rate.
They accordingly propose a new rate-optimal allocation (ROA) of OCBA type by maximizing the estimated
exponential rate. LDP serves as a theoretical foundation for policy development for various R&S problems
(Branke et al. 2007; Fu et al. 2007). The LDP rate has been extensively utilized to measure the asymptotic
efficiency of R&S procedures, no matter whether they are directly derived from the LDP rate (Li and Gao
2023) or not (Peng et al. 2016; Chen and Ryzhov 2019; Russo 2020).

In this paper, we introduce a novel approximation method for PCS. Given a sampling ratio, we present
an asymptotically equivalent characterization of PCS in the form of series expansions. Our approximation
extends the expansion in Bahadur and Rao (1960) for the tail probability of sample means to PCS, which
involves simultaneous multiple comparisons among alternatives. We demonstrate that our method provides
more information about PCS compared to the LDP rate when the sample size is limited. This holds true
even if only the first term in the series expansion is retained, as our approximation reflects the impact of the
sampling budget and the number of alternatives on PCS, whereas the LDP rate remains invariant to these
variations. We outline an optimal allocation rule and propose a new Finite Computing Budget Allocation
(FCBA) policy, which outperforms OCBA and other state-of-the-art benchmarks in empirical comparisons.
Our approximation method is extensible and has the potential to enhance the exploration policy for many
other problems under the umbrella of R&S, including fixed-precision R&S (Cheng et al. 2023), contextual
R&S (Cakmak et al. 2023; Shi et al. 2023), R&S under low-confidence scenarios (Peng et al. 2018), and
large-scale R&S problems (Hong et al. 2021; Li et al. 2023). We demonstrate in numerical experiments
the capability of our methodology for estimating the PCS after sample allocation.

The organization of this paper is as follows. Section 2 presents the main result compared to LDP.
Section 3 sketches the proof and key ideas. Section 4 designs a simple budget allocation policy for Gaussian
distributions. Section 5 demonstrates the properties of our new method and Section 6 concludes.

2 SERIES EXPANSION OF PROBABILITY OF CORRECT SELECTION

Consider the classic problem of identifying the best design with the largest mean among k alternatives. Let Xi
be the population of simulation outputs from the i-th alternative for 1≤ i≤ k. We assume m1 >m2≥ ·· · ≥mk,
where mi = E[Xi] represents the mean output. Therefore, the first alternative is the unique best design.

Suppose the total number of simulation budget is equal to T ≥ 1 and fixed. Let Ti denote the number of
simulation samples allocated to the i-th alternative and pi := Ti/T indicate the sampling ratio for 1≤ i≤ k.
We will ignore the minor issue that Ti = piT might not be integer valued for an allocation rule with
ppp = (pi)i≤k fixed as in the literature (Chen et al. 2000; Glynn and Juneja 2004). Additionally, let X (t)

i

be the t-th simulation sample drawn from the i-th alternative, and X̄i(τ) := τ−1
∑

τ
t=1 X (t)

i be the sample
mean for the i-th alternative with τ simulated samples. When the budget is exhausted, the alternative with
the largest sample mean i∗ := argmax1≤i≤k X̄i(Ti) is identified as the best design. Thus the probability of
correct selection is defined as

P{CS} := P
(

X̄1(T1)> max
2≤ j≤k

X̄ j(Tj)

)
= 1−P

(
X̄1(T1)≤ max

2≤ j≤k
X̄ j(Tj)

)
.
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Let int(·) denote the interior of a set, and D(·) and R(·) denote the domain and range of a function,
respectively. Define Λi(λ ) := logEexp{λXi} as the cumulant generating function (CGF) of population Xi.
We reiterate the same assumption in Glynn and Juneja (2004) as follows.
Assumption 1 (Light-tailed distribution) The domain of Λi(·) has a non-empty interior containing the
origin, i.e., 0 ∈ int(D(Λi)). Moreover, assume [mk,m1]⊆ int(R(Λ′i)), where Λ′i denotes the derivative.

The first statement in Assumption 1 ensures that the underlying distributions of simulation outputs
are light-tailed with finite CGFs. As for the second statement, notice that the derivative functions of
CGFs, if existing, range in the closure of the support of the underlying distribution. The second statement,
informally speaking, rules out the trivial case where certain alternatives are deterministically inferior, i.e.,
their distributions’ supports are strictly bounded above by m1, or vice versa.

Assumption 1 guarantees the existence of a rate function. We reiterate the result in Glynn and Juneja
(2004) to facilitate comparison.
Theorem 1 (LDP, Glynn and Juneja 2004) Under Assumption 1, there exist bivariate functions G j :R2

+→R+

for 2≤ j ≤ k, satisfying

lim
T→∞
− 1

T
log(1−P{CS}) = min

2≤ j≤k
G j(p1, p j).

The functions G j(·, ·) are known as rate functions.
The rate functions can be explicitly expressed, in the form of the infimum of Fenchel-Legendre

transformations of X̄1(T1)− X̄ j(Tj), using the Gartner-Ellis Theorem (Dembo 2009). The closed form
can be derived for common distribution families or estimated in a data-driven approach (Chen 2023).
However, the validity of the LDP rate does not imply that this seemingly correct asymptotically equivalent
characterization of PCS, i.e., 1−P{CS} = exp{−T ·min2≤ j≤k G j(p1, p j)} · (1+ o(1)) holds true. To be
specific, assume the following functional form of PCS

1−P{CS}= a(T ) · exp{−T · min
2≤ j≤k

G j(p1, p j)} · (1+o(1)). (1)

Regardless of the form of a(T ), as long as it is a function that decays slower than exponential functions
asymptotically, i.e., − 1

T loga(T )→ 0, a(T ) will have no impact on the LDP rate. In other words, the large
deviations principle may adopt any functional form of PCS as delineated in (1) with a sub-exponential
function a(T ).

Motivated by equation (1), we aim to find an asymptotical equivalent expression for PCS. To this end,
we make the following assumption.
Assumption 2 The density functions of Xi for i = 1, . . . ,k exist, and have bounded total variation (BTV).

The first statement excludes distributions with discrete or singular components. The BTV assumption
ensures that the error introduced by approximating the distribution function of Xi’s using the Edgeworth
expansion is controllable (see Cramer 1970). Assumption 2 is mild and satisfied by a majority of common
statistical models. Our main result then follows.
Theorem 2 Under Assumptions 1 and 2, for any ℓ∈N and ppp > 0 with ∑

k
i=1 pi = 1, the following expansion

is valid with G j(·, ·)’s as in Theorem 1:

1−P{CS}=
k

∑
j=2

exp
{
−T ·G j (p1, p j)

}
· 1√

2π ·λ ∗j p jσ̃1, j
√

T
·

(
1+

ℓ

∑
l=1

c j,l

T l +O(T−(ℓ+1))

)
. (2)

The symbols λ ∗j , σ̃1, j and c j,l in Theorem 2, which will be introduced in Section 3, stand for constants
that may vary depending on ppp and the specific problem instance, but remain independent of budget T .
Theorem 2 extends Theorem 1 by offering an asymptotically equivalent approximation to PCS. In other
words, the ratio of 1−P{CS} to the right-hand side of (2) without error terms O(1/T ℓ+1) approaches 1
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as T tends to infinity. Unlike the LDP rate, the novel approximation to the PCS is a nonlinear function of
T . Consequently, the optimal sampling ratio derived from our approximation depends on T . Besides, each
summand in Equation (2) reflects a probability of correct binary comparison between the means of the
optimal alternative and the corresponding sub-optimal alternative, which jointly affects PCS. For instance,
let a be an integer and 0 < s≪ S be two reals. Consider a sampling ratio pppa indexed by 2≤ a < k such
that G j(pa

1, pa
j) = s for 2 ≤ j ≤ a, G j(pa

1, pa
j) = S for a+ 1 ≤ j ≤ k. Given pppa, the ordinal relationships

between the best alternative and alternatives 2 to a are harder to tell, while the differences in sample means
between the best alternative and alternatives a+1 to k are relatively large with a high probability. Loosely
speaking, the value of a can be interpreted as the number of competitive alternatives, wherein a competitive
alternative denotes a design with a comparatively higher likelihood of being optimal. The LDP rate does
not depend on a directly but depends on the value of s. In contrast, even if the value of s stays unchanged,
an increase in the number of competitive alternatives would result in a decrease in our approximation,
reflecting the influence of competitive alternatives on PCS.

Our approximation better captures the behavior of PCS in the finite sample case compared to LDP.
Notice that LDP characterizes the exponential rate at which PCS converges. Although the exponential
terms in Equation (2) predominate the decrease of 1−P{CS} in the asymptotic case, it is the polynomial
term involving T−1/2 that decays more rapidly in the finite sample case, particularly when T ·G j(·, ·) is
close to zero. However, this distinction should never be interpreted as a contradiction between our result
and Theorem 1, which is in fact a direct corollary from Theorem 2 if the assumptions in the latter are
valid. Given ppp, and for any positive number ε > 0, the inequality

exp{−εT} ≤ 1√
2π ·λ ∗j p jσ̃1, j

√
T
·

(
1+

ℓ

∑
l=1

c j,l

T l +O(T−(ℓ+1))

)
≤ 1.

holds true for T sufficiently large because the intermediate term is roughly a polynomial in T−1/2, which
is a lower-order infinitesimal of exp{−εT}. Therefore, for T sufficiently large, the right hand side of
Equation (2) can be lower bounded by

max
2≤ j≤k

exp
{
−T ·G j (p1, p j)

}
exp{−εT}= exp

{
−T · min

2≤ j≤k
G j (p1, p j)

}
exp{−εT},

and upper bounded by

(k−1) max
2≤ j≤k

exp
{
−T ·G j (p1, p j)

}
= (k−1)exp

{
−T · min

2≤ j≤k
G j (p1, p j)

}
.

By taking logarithms on these bounds followed by dividing them with −T , we see that

min
2≤ j≤k

G j (p1, p j)≤ lim
T→∞
− 1

T
log(1−P{CS})≤ min

2≤ j≤k
G j (p1, p j)+ ε.

Then Theorem 1 follows from the arbitrariness of ε .
The following example illustrates our approximation to PCS in the widely used Gaussian setting.

Example 1 (Gaussian) Suppose Xi ∼ N(mi,σ
2
i ) with mean mi and variance σ2

i , i = 1,2, . . . ,k. Since
Λi(λ ) = miλ + 1

2 σ2
i λ 2, Assumption 1 is valid. Assumption 2 is also clearly valid.

Define R j(p1, p j) = (m1−m j)
2/(σ2

1 /p1 +σ2
j /p j) as the signal-to-noise ratio, j = 2, . . . ,k. Then we

have G j(p1, p j) =
1
2 R j(p1, p j) and λ ∗j p jσ̃1, j =

√
R j(p1, p j) for j = 2, . . . ,k, and c j,l =

(−1)l(2l−1)!!
Rl

j(p1,p j)
for

j = 2, . . . ,k and l ≥ 1. Theorem 2 implies that for any ℓ≥ 0,

1−P{CS}=
k

∑
j=2

exp
{
−1

2
T ·R j(p1, p j)

}
· 1√

2πT
√

R j(p1, p j)
·

(
1+

ℓ

∑
l=1

(−1)l(2l−1)!!
Rl

j(p1, p j)

1
T l +O(T−(ℓ+1))

)
.
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3 SKETCH OF PROOF OF THEOREM 2

In this section, we will outline the proof of the main result. A rigorous proof will be deferred to an extended
version of this work. We will commence by introducing the necessary notations in the large deviations
theory. Then, we will delve into the PCS for binary comparisons and extend the result to encompass generic
multiple comparisons.

3.1 Large Deviations of Sample Means

We here introduce notations similar to those in Glynn and Juneja (2004). The PCS can be easily expressed
by its complementary probability

1−P{CS}= P

(
k⋃

j=2

{
X̄1(T1)≤ X̄ j(Tj)

})
.

It follows from the sub-additivity of the probability measure that

max
2≤ j≤k

P(X̄1(T1)≤ X̄ j(Tj))≤ 1−P{CS}≤
k

∑
j=2

P(X̄1(T1)≤ X̄ j(Tj))≤ (k−1) max
2≤ j≤k

P(X̄1(T1)≤ X̄ j(Tj)) . (3)

For 2≤ j ≤ k fixed, the exponential rate of P(X̄1(T1)≤ X̄ j(Tj)) can be characterized utilizing the CGF
of the vector (X̄1(T1), X̄ j(Tj)), i.e., Λ(T )(λ1,λ j) := logEexp{λ1X̄1(T1)+λ jX̄ j(Tj)}. Moreover, define

I1, j(x1,x j) := sup
λ1,λ j

(λ1x1 +λ jx j− lim
T→∞

1
T

Λ
(T )(T λ1,T λ j)) = p1I1(x1)+ p jI j(x j),

where Ii(xi) := supλ λxi−Λi(λ ), i = 1,2, . . . ,k, denotes the Legendre-Fenchel transformation of Λi. For-
mally, I1, j(x1,x j) can be interpreted as the exponential rate of P({X̄1(T1) ≤ x1}∪{x j ≤ X̄ j(Tj)}), which
serves as a lower bound for the focal probability if x1 ≤ x j. Following Glynn and Juneja (2004), the LDP
rate for comparing X̄1(T1) and X̄ j(Tj) is G j(p1, p j) = I1, j(µ j,µ j) = infx1≤x j I1, j(x1,x j) with µ j ∈ [m j,m1]. It
follows from the two-sided bound in (3) that 1−P{CS} decays exponentially with rate min2≤ j≤k G j(p1, p j).

3.2 Binary Comparisons

Focus now on the binary comparison P(X̄1(T1) ≤ X̄ j(Tj)). We take inspiration from Bahadur and Rao
(1960) who evaluate the tail probability P(X̄(T ) ≥ x) for sample means utilizing a distribution shifting
technique. Suppose X and Z are two random variables with probability measure νX and νZ , respectively,
and are absolutely continuous with respect to each other. Then for any measurable function f and g, the
following equations are valid as long as the expectations on at least one side are well-defined (Yan 1998):

E[ f (X)] = E
[

f (Z)
dνX

dνZ
(Z)
]
, and E[g(Z)] = E

[
g(X)

dνZ

dνX
(X)

]
, (4)

where dνX
dνZ

and dνZ
dνX

represent the Radon-Nikodym derivatives. Specially, we will take advantage of the
exponential tilting technique which defines Z by dνZ

dνX
(x) =C−1eλx for some λ ∈R and normalizing constant

C. Since µZ is a probability measure, it follows by (4) that 1≡ EZ[1] =C−1E[eλX ], and thus C = E[eλX ].
For each 1 ≤ t ≤ T1, with X substituted by X (t)

1 and λ = λ ∗1, j := argmaxλ λ µ j −Λ1(λ ), we have

C = eΛ1(λ
∗
1, j) by the definition of Λ1. Let Z(t)

1 denote the corresponding Z variable constructed by the
exponential tilting for each t. Then, the first equality in Equation (4) reduces to

E[ f (X (t)
1 )] = eΛ1(λ

∗
1, j)E

[
f (Z(t)

1 )e−λ ∗1, jZ
(t)
1

]
=eΛ1(λ

∗
1, j)−λ ∗1, jµ jE

[
f (Z(t)

1 )e−λ ∗1, j(Z
(t)
1 −µ j)

]
=e−I1(µ j)E

[
f (Z(t)

1 )e−λ ∗1, j(Z
(t)
1 −µ j)

]
,

(5)
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where the last equality follows from the definition of I1(·).
Now, define Ω = {T−1

1 (x(1)1 + . . .x(T1)
1 ) ≤ T−1

j (x(1)j + . . .x(Tj)
j )} ⊆ RT1+Tj be a set leading to incorrect

binary comparison and 111Ω(X
(1)
1 , . . . ,X (T1)

1 ,X (1)
j , . . . ,X (Tj)

j ) denote the associated indicator function. Then
the focal probability equals to

P(X̄1(T1)≤ X̄ j(Tj))

=E[111Ω(X
(1)
1 , . . . ,X (T1)

1 ,X (1)
j , . . . ,X (Tj)

j )]

=E[E[111Ω(X
(1)
1 , . . . ,X (T1)

1 ,X (1)
j , . . . ,X (Tj)

j )|X (2)
1 , . . . ,X (T1)

1 ,X (1)
j , . . . ,X (Tj)

j ]]

=E[e−I1(µ j)E[111Ω(Z
(1)
1 , . . . ,X (T1)

1 ,X (1)
j , . . . ,X (Tj)

j )eλ ∗1, j(Z
(1)
1 −µ j)|X (2)

1 , . . . ,X (T1)
1 ,X (1)

j , . . . ,X (Tj)
j ]]

=e−I1(µ j)E[111Ω(Z
(1)
1 , . . . ,X (T1)

1 ,X (1)
j , . . . ,X (Tj)

j )e−λ ∗1, j(Z
(1)
1 −µ j)]

=e−T1·I1(µ j)E
[
111Ω(Z

(1)
1 , . . . ,Z(T1)

1 ,X (1)
j , . . . ,X (Tj)

j )e−λ ∗1, j ∑
T1
t=1(Z

(t)
1 −µ j)

]
.

The first equality holds by definition. The second and the fourth equality follow from the tower law of
iterated conditional probability. The third equality follows from (5) with t = 1, and the last follows by
repeating the process for t = 2, . . . ,T1.

Similarly, we define Z(t)
j by exponential tilting with X replaced by X (t)

j , λ = λ ∗j := argmaxλ λ µ j−Λ j(λ ).
It turns out that

P(X̄1(T1)≤ X̄ j(Tj))

=e−T1·I1(µ j)−Tj·I j(µ j)E
[

111Ω(Z
(1)
1 , . . . ,Z(T1)

1 ,Z(1)
j , . . . ,Z(Tj)

j )e−λ ∗1, j ∑
T1
t=1(Z

(t)
1 −µ j)−λ ∗j ∑

Tj
t=1(Z

(t)
j −µ j)

]
.

(6)

Recall that Ti = piT , and thus −T1 · I1(µ j)−Tj · I j(µ j) = −T (p1I1(µ j)+ p jI j(µ j)) = −T ·G j(p1, p j). It
can also be checked that p1λ ∗1, j + p jλ

∗
j = 0 by the definition of µ j, and consequently,

−λ
∗
1, j

T1

∑
t=1

(Z(t)
1 −µ j)−λ

∗
j

Tj

∑
t=1

(Z(t)
j −µ j) =−λ

∗
j p jT

(
T−1

j

Tj

∑
t=1

(Z(t)
j −µ j))−T−1

1

T1

∑
t=1

(Z(t)
1 −µ j)

)
.

Let H j denote the term in the parenthesis, then we see that

P(X̄1(T1)≤ X̄ j(Tj)) = e−T ·G j(p1,p j)E
[
111{H j ≥ 0}e−λ ∗j p j

√
T ·
√

T H j
]
.

Now, it remains to characterize the expectation. Let fH̃ j
(x) denote the probability density function of

H̃ j =
√

T H j, and F denote the Fourier transformation operator. Immediately, by the definition of H j,

F fH̃ j
(τ) :=

∫
eiτx fH̃ j

(x)dx = E
[
eiτH̃ j

]
= E

[
exp

{
iτ
√

T (T−1
j

Tj

∑
t=1

Z(t)
j −T−1

1

T1

∑
t=1

Z(t)
1 )

}]
.

It follows again by (4) that

F fH̃ j
(t) = exp{TjΛ j(λ

∗
j + iτ p−1

j T−1/2)+T1Λ1(λ
∗
1 − iτ p−1

1 T−1/2)}.

Let g(x) = 111{x≥ 0}e−λ ∗j p j
√

T ·x. Then, it follows from the Parseval–Plancherel identity that

E
[
111{H j ≥ 0}e−λ ∗j p j

√
T ·
√

T H j
]
=
∫

g(x) · fH̃ j
(x)dx =

1
2π

∫
conj(Fg(τ)) ·F fH̃ j

(τ)dτ.
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Since the power series expansions of Fg(τ), and Λ1(λ
∗
1 + ·) and Λ j(λ

∗
j + ·) in the expression of F fH̃ j

(τ),
are easily available, we can easily arrive at a power series expansion for the expectation in (6) by putting
pieces together. The calculations and the truncation of the series will be deferred to the extended version
of this work. The following proposition concludes the result in Section 3.2.
Proposition 1 (Binary Comparisons) Under Assumptions 1 and 2, the probability of incorrect binary
comparison decays exponentially. Specially, for 2 ≤ j ≤ k and ℓ ≥ 1, there exists constants c1, . . . ,cℓ,
satisfying

P(X̄1(T1)≤ X̄ j(Tj)) = exp{−T ·G j(p1, p j)} ·
1√

2π ·λ ∗j p jσ̃1, j
√

T
·
(

1+
c1

T
+ · · ·+ cℓ

T ℓ
+O(T−(ℓ+1))

)
,

where σ̃1, j =
√

var(X1)/p1 +var(X j)/p j.

3.3 Multiple Comparisons

Inequality (3) together with Proposition 1 does not yield Theorem 2 directly. We can make use of the
inclusion-exclusion principle:

k

∑
j=2

P(X̄1(T1)≤ X̄ j(Tj))− ∑
2≤ j1< j2≤k

P(X̄1(T1)≤ X̄ j1(Tj1)∧ X̄ j2(Tj2))≤ 1−P{CS} ≤
k

∑
j=2

P(X̄1(T1)≤ X̄ j(Tj)).

(7)
In other words, the sum of the probabilities of incorrect binary comparisons overestimates 1−P{CS} by
at most the probability of simultaneous incorrect binary comparisons. However, we can show that the
overestimation is negligible.
Proposition 2 (Simultaneous Comparisons) Under Assumptions 1 and 2, the probability of simultaneous
incorrect binary comparisons decays exponentially. For any 2 ≤ j1 < j2 ≤ k, there exists a rate function
G j1, j2(p1, p j1 , p j2) such that

P(X̄1(T1)≤ X̄ j1(Tj1)∧ X̄ j2(Tj2)) = exp{−T ·G j1, j2(p1, p j1 , p j2)} ·O(T−1/2).

Moreover, the rate functions satisfy

G j1, j2(p1, p j1 , p j2)> G j1(p1, p j1)∧G j2(p1, p j2).

The argument is similar to that for binary comparisons and is skipped. Proposition 2 implies that
P(X̄1(T1) ≤ X̄ j1(Tj1)∧ X̄ j2(Tj2)) is exponentially negligible to as least one of P(X̄1(T1) ≤ X̄ j1(Tj1)) and
P(X̄1(T1)≤ X̄ j2(Tj2)). Putting Propositions 1 and 2 and (7) together, we see that Theorem 2 is valid.

4 FINITE SAMPLE BUDGET ALLOCATION

It takes the explicit form of G j(·, ·), λ ∗j p jσ̃1, j and c j,l’s in Theorem 2 to develop allocation policies.
Henceforth, we will stick to the Gaussian case in Example 1 for policy development.

For ℓ≥ 0, define Uℓ : R2
+→ R+ by Uℓ(x) = exp{−1

2 T x− 1
2 lnx} · (1+∑

ℓ
l=1

(−1)l(2l−1)!!
xl

1
T l ). We adhere

to the convention that ∑
0
l=1 · = 0. Then Vℓ(ppp) := ∑

k
j=2Uℓ(R j(p1, p j)) is an approximation to 1−P{CS}

of order ℓ by our main result. It is worth mentioning that the constants c j,l are typically computationally
intractable except for the Gaussian case. However, we will empirically show that the approximation of
order 0 is good enough for static allocation rules. In the following, we prove the convexity property of
Vℓ(ppp) by utilizing the concavity of R j(·, ·).
Proposition 3 (Convexity) For any even ℓ≥ 0, Vℓ(ppp) is a convex function of ppp. For any odd ℓ≥ 1, Vℓ(ppp)
is asymptotically almost convex of ppp, in a sense that there exists a sequence of sets (ET )T≥1, such that the
complements of ET in {ppp≥ 0 : p1 + · · ·+ pk = 1} converge to the empty set as T →∞, and for any T ≥ 1,
Vℓ(ppp) is convex in ET .
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Proof. Since the conic combination of convex functions is still convex, it suffices to show that each
summand in Vℓ(ppp) is convex of ppp. Fix any alternative j ranging from 2 to k. It is well-known that R j(p1, p j)
is a concave function of (p1, p j) (Glynn and Juneja 2004). After some calculations, we see that

U ′ℓ(x) =exp
{
−1

2
T x− 1

2
lnx
}
·

(
−1

2
(T +

1
x
)− 1

2

ℓ−1

∑
l=0

(−1)l+1(2l +1)!!
xl+1

1
T l +

1
2

ℓ

∑
l=1

(−1)l+1(2l +1)!!
xl+1

1
T l

)

=exp
{
−1

2
T x− 1

2
lnx
}
·
(
−1

2
T +

1
2
(−1)ℓ+1(2ℓ+1)!!

xℓ+1
1

T ℓ

)
. (8)

For even ℓ≥ 0, U ′ℓ is strictly negative and increasing in x > 0, and thus Uℓ is strictly decreasing and
convex. Therefore, it follows that Uℓ(R j(p1, p j)) is a convex function of ppp from the property that the
composition of a concave function and a decreasing convex function is convex (Boyd and Vandenberghe
2004). For odd ℓ≥ 1, we have

U ′′ℓ (x) = exp
{
−1

2
T x− 1

2
lnx
}
·
(

1
4

T
x
+

1
4

T 2− 1
4
(2ℓ+1)!!

xℓ+1
1

T ℓ−1 −
1
4
(2ℓ+3)!!

xℓ+2
1

T ℓ

)
.

It can be seen that U ′ℓ(x) < 0 and U ′′ℓ (x) > 0 for x ∈
[
((2ℓ+3)!!)1/(ℓ+1)/T,∞

)
. Again, it follows from

Boyd and Vandenberghe (2004) that Uℓ(R j(p1, p j)) is convex in the domain {(p1, p j) ∈R2
+ : R j(p1, p j)≥

((2ℓ+3)!!)1/(ℓ+1)/T}. This completes the proof.

This allows us to formulate the optimal allocation problem that minimizesVℓ(ppp) in{ppp≥ 0 : p1+ · · ·+ pk =
1} as an (asymptotic) convex program. The following proposition characterizes a necessary optimality
condition.
Proposition 4 (Necessary Condition) If ppp ∈ {ppp≥ 0 : p1 + · · ·+ pk = 1} minimizes Vℓ(ppp), then

U ′ℓ(Ri(p1, pi)) ·Ri(p1, pi)
σ2

i /p2
i

σ2
1 /p1+σ2

i /pi
=U ′ℓ(R j(p1, p j)) ·R j(p1, p j)

σ2
j /p2

j

σ2
1 /p1+σ2

j /p j
, ∀ 2≤ i, j ≤ k,

p2
1

σ2
1
= ∑

k
j=2

p2
j

σ2
j
.

According to Proposition 4, we offer a series of finite computing budget allocation (FCBA) policies,
which sequentially balance the two sets of necessary conditions. See Algorithm 1.

Algorithm 1 Finite Computing Budget Allocation of Order ℓ (FCBA(ℓ))
1: Initialize: Set budget T , number of alternatives k, initial samples.
2: while the budget is not exhausted do
3: Update sample means m̂i and variances σ̂2

i , and sampling ratios p j and numbers of past samples Tj.

4: Estimate the best alternative using plug-in j∗← argmax1≤ j≤k m̂ j.
5: Use plug-in estimation based on sample means and sample variances to calculate

j′← argmax j ̸= j∗ Û
′
ℓ(R̂ j(p1, p j)) · R̂ j(p1, p j) ·

σ̂2
j /p2

j

σ̂2
j∗/p j∗+σ̂2

j /p j

6: if p2
j∗/σ̂2

j∗ > ∑ j ̸= j∗ p2
j/σ̂2

j then
7: Simulate one additional replication for alternative j′, else for alternative j∗

8: end if
9: end while
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Figure 1: Left: PCS of FCBA(ℓ) versus OCBA under varying number of total simulation budget based on
5,000 macro-replications. Right: Theoretically optimal allocation based on V0(ppp).

5 EXPERIMENTS

In Section 5, we conduct numerical experiments on FCBA policies using testing instances where simulation
outputs are assumed to follow Gaussian distributions. The means of alternatives are predetermined by
either (I) the stepping setting: mi = 0.1 ∗ (k + 1− i) for i = 1,2, . . . ,k; or (II) the random setting:

mi
i.i.d.∼ 0.1 ∗ k ∗Uniform([0,1]). Regarding variances, each instance is configured as either (i) the equal

setting, where all variances are fixed at 4; or (ii) the increasing setting: the alternatives are ranked by
means and divided equally into five groups, and the variances of the top 20% of alternatives to the bottom
20% of alternatives are 2, 3, 4, 5, and 6, respectively; or (iii) the decreasing setting: the variances of the
top 20% of alternatives to the bottom 20% of alternatives are 6, 5, 4, 3, and 2, respectively.

5.1 FCBA(ℓ) versus OCBA

We first test FCBA(ℓ) policies against OCBA. Our comparison involves k = 50 alternatives with means in
the stepping setting and with variances in the equal setting set at 1 as described above. The left panel of
Figure 1 shows the consistent superiority of FCBA(ℓ) with even ℓ over OCBA. However, FCBA(ℓ) policies
with odd ℓ exhibit poor performance. This result is possibly attributed to the non-convex nature of Vℓ(ppp)
for odd ℓ, as FCBA(ℓ) allocates samples by following the descending direction of Vℓ(ppp) whereas tracking
the descent of a non-convex function does not guarantee reaching to its global minimum. FCBA(0) and
FCBA(2) perform comparably, slightly outperforming FCBA(4) with small total budgets. These findings
suggest that FCBA(0) suffices for real applications. Therefore, we will focus on the FCBA of order ℓ= 0.
Notice that FCBA simply ignores the probability of simultaneous incorrect selection in (7), according to
Proposition 2. This ignored term is actually larger than the higher-order correction terms in absolute values
when the budget is limited. Nevertheless, our approximation remains asymptotically valid. To obtain
higher-order algorithms, it is necessary to characterize the ignored probability, which is deferred to the
extended version of this work.

We proceed by examining the behavior of FCBA(0) through its corresponding theoretically optimal
allocation, i.e., the optimal sampling ratio maximizing V0(ppp) under the presumption of known underlying
distributional parameters. The right panel of Figure 1 illustrates the theoretically optimal allocation based
on V0(ppp) for the first five alternatives. Dashed lines denote the rate-optimal allocation that maximizes the
LDR rate. With a small budget of T , FCBA(0) is more conservative, inclined to allocate fewer samples
to the best alternative compared to OCBA. However, as T approaches infinity, the allocation of FCBA(0)
converges to that of OCBA, empirically demonstrating the asymptotic rate-optimality of FCBA(0).
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5.2 Finite Sample Performances

The finite sample performance of FCBA(0) consistently outperforms all modern R&S procedures under
comparison, including equal allocation (EA), OCBA, ROA, the approximately optimal allocation policy
(AOAP, Peng et al. 2016), and mCEI (Chen and Ryzhov 2019), a variant of the expected improvement
method tailored for rate optimality. Table 1 presents the final PCS for every combination of policies and
problem instances. Each instance contains k = 50 alternatives, with a simulation budget T = 1,000.

Table 1: PCS estimated by 100,000 macro-replications for all instances with k = 50 and T = 1,000.

Instances FCBA(0) AOAP ROA OCBA mCEI EA

Stepping + Equal 0.5767 0.5537 0.5487 0.5641 0.5652 0.3027
Stepping + Increasing 0.7042 0.6702 0.6659 0.6847 0.6669 0.3805
Stepping + Decreasing 0.5050 0.4902 0.4851 0.4975 0.5045 0.2641

Random + Equal 0.9155 0.8140 0.7899 0.8129 0.8744 0.4897
Random + Increasing 0.9698 0.8965 0.8838 0.8993 0.9308 0.6819
Random + Decreasing 0.8468 0.7502 0.7206 0.7459 0.8194 0.3971

Notice that FCBA(0) is developed to maximize the final PCS and thus depends on the total budget.
The following experiment shows the PCS of FCBA(0) against compared policies if the identification of
the best alternative is made before the simulation budget is exhausted. The success of FCBA(0) can also
be recognized in Figure 2, with the only exception in the comparison against AOAP in the special case
when the simulation is stopped prematurely. It is because AOAP targets a nearly optimal dynamic policy
while FCBA merely targets the final PCS. The good performance of FCBA for cases when the budget is
nearly exhausted allows for the robust extensions of FCBA policies to applications where the total budget
is not completely predetermined, for example, in a fixed-precision setting. Figure 2 also demonstrates
the scalability of FCBA in an instance with means in the stepping setting as described above and with
variances in the equal setting set at 1 as described above. Three initial alternatives for each alternative are
counted in the total budget. Even if the simulation budget is given fixed, the difference in PCS between
FCBA(0) and other benchmarks increases as the size of the problem grows. To be specific, the gaps in the
final PCS are equal to 0.26%, 0.62%, 1.19%, 2.10% for k = 50,100,200,400, respectively.

Finally, we demonstrate the potential of our approximation as a rough estimate for the PCS. In the k = 100
instance mentioned earlier, we implement FCBA(0) across various total budgets, ranging from T = 1,000
to 5,000. Upon exhausting the simulation budget, we construct a post hoc estimation for the PCS using
1−V̂0(ppp), where V̂0(ppp) :=∑ j′ ̸= j∗ exp{−1

2 R̂ j′(p j∗ , p j′)T − 1
2 ln R̂ j′(p j∗ , p j′)}. Therein, j∗ := argmax1≤ j≤k m̂i,

R̂ j′(p j∗ , p j′) := (m j∗−m j′)
2/(σ̂2

j∗/p j∗+ σ̂2
j′/p j′), and m̂i’s and σ̂2

i ’s represent sample means and variances,
respectively. Consistent with our findings from the initial experiment, it turns out as in Table 2 that V̂0(ppp)
tends to be conservative, underestimating the PCS. However, the accuracy of this estimation improves with
the sample size growing.

Table 2: The true PCS and the statistical characteristics of the estimation V̂0(ppp), estimated via 100,000
macro-replications.

T 1,000 2,000 3,000 4,000 5,000

True PCS 0.8485 0.9437 0.9706 0.9789 0.9826
Mean Estimation 0.6381 0.8336 0.9205 0.9605 0.9801
± Standard Error (0.3586) (0.2667) (0.1799) (0.1199) (0.0789)
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Figure 2: PCS before the budget is exhausted estimated by 100,000 macro-replications.

6 CONCLUSION

We offer a new method to approximate the performance metric for R&S policies, i.e., the probability of
correct selection. The new method, in the form of the Edgeworth expansion, extends the classic LDP rate
to an asymptotical equivalent expression for PCS, allowing for finer characterization of the finite sample
performance. Based on the naive inclusion-exclusion principle, a simple approximation to PCS is available.
Although the approximation is conservative, the consequent allocation policy is empirically efficient.
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